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Abstract

Background: Umbilical cord blood (UCB) is a clinically relevant alternative source of hematopoietic stem/
progenitor cells (HSPC). To overcome the low cell number per UCB unit, ex vivo expansion of UCB HSPC in co-
culture with mesenchymal stromal cells (MSC) has been established. Bone marrow (BM)-derived MSC have been the
standard choice, but the use of MSC from alternative sources, less invasive and discardable, could ease clinical
translation of an expanded CD34+ cell product. Here, we compare the capacity of BM-, umbilical cord matrix
(UCM)-, and adipose tissue (AT)-derived MSC, expanded with/without xenogeneic components, to expand/maintain
UCB CD34+-enriched cells ex vivo.

Methods: UCB CD34+-enriched cells were isolated from cryopreserved mononuclear cells and cultured for 7 days
over an established feeder layer (FL) of BM-, UCM-, or AT-derived MSC, previously expanded using fetal bovine
serum (FBS) or fibrinogen-depleted human platelet lysate (HPL) supplemented medium. UCB cells were cultured in
serum-free medium supplemented with SCF/TPO/FLT3-L/bFGF. Fold increase in total nucleated cells (TNC) as well
as immunophenotype and clonogenic potential (cobblestone area-forming cells and colony-forming unit assays) of
the expanded hematopoietic cells were assessed.

Results: MSC from all sources effectively supported UCB HSPC expansion/maintenance ex vivo, with expansion
factors (in TNC) superior to 50x, 70x, and 80x in UCM-, BM-, and AT-derived MSC co-cultures, respectively.
Specifically, AT-derived MSC co-culture resulted in expanded cells with similar phenotypic profile compared to BM-
derived MSC, but resulting in higher total cell numbers. Importantly, a subpopulation of more primitive cells
(CD34+CD90+) was maintained in all co-cultures. In addition, the presence of a MSC FL was essential to maintain
and expand a subpopulation of progenitor T cells (CD34+CD7+). The use of HPL to expand MSC prior to co-culture
establishment did not influence the expansion potential of UCB cells.
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Conclusions: AT represents a promising alternative to BM as a source of MSC for co-culture protocols to expand/
maintain HSPC ex vivo. On the other hand, UCM-derived MSC demonstrated inferior hematopoietic supportive
capacity compared to MSC from adult tissues. Despite HPL being considered an alternative to FBS for clinical-scale
manufacturing of MSC, further studies are needed to determine its impact on the hematopoietic supportive
capacity of these cells.

Keywords: Umbilical cord blood, Human hematopoietic stem/progenitor cells, Mesenchymal stromal cells, Bone
marrow, Adipose tissue, Umbilical cord matrix, Ex vivo expansion

Background
Umbilical cord blood (UCB) has emerged as an alterna-
tive source of hematopoietic stem/progenitor cells
(HSPC) for patients lacking a suitable donor in the con-
text of allogeneic hematopoietic cell transplantation
(HCT). Over the last two decades, the number of allo-
geneic HCT more than duplicated in the United States
of America (USA). Considering unrelated donor allogen-
eic HCT only, the number of UCB transplants in adults
peaked at 14% in 2010 but has been losing ground to
the adult tissue sources of HSPC (mobilized peripheral
blood and bone marrow (BM)) and accounted for 7% of
the more than 5000 unrelated donor grafts performed in
the USA in 2019 [1]. It is estimated that around 800,000
and 4 million UCB units are currently stored in public
or private UCB banks, respectively, worldwide. This in-
vestment and development in UCB banking allowed a
reduction in the searching time for unrelated donors, as
compared to adult tissue sources [2]. Despite being a
readily available source, with lower immunogenicity and
lower risk of development of graft-vs-host disease
(GVHD) compared to other sources, the low cell dose in
a single UCB unit constitutes a major limitation [3]. In
this context, the majority of HCT with UCB cells were
initially limited to children weighing 20–40 kg [4]. To
overcome the limitations of a low cell dose for trans-
plantation of adult patients, two main strategies have
been employed: (i) HCT using two unmanipulated UCB
units (standard of care) [5] and (ii) HCT using two UCB
units, one of which containing cells that were expanded
ex vivo [6]. Several protocols were developed to promote
ex vivo expansion of UCB HSPC, including the use of
different media, cytokines, growth factors, and more re-
cently the use of small molecules and chemical com-
pounds [6–8]. Alongside these approaches, BM
mesenchymal stromal cells (MSC) have been used in a
co-culture system to support the ex vivo expansion and
maintenance of HSPC. This strategy emerged to recap-
itulate the hematopoietic niche within the BM, where
MSC have a pivotal role by giving structural support for
HSPC to grow but also to influence their homing, stem-
ness and differentiation potential [8]. Over the last years,
we have studied the supportive capacity of BM MSC to
UCB HSPC ex vivo in a co-culture setting [9–11] with a

tailored cytokine cocktail recently established [12]. In a
clinical setting, a significant improvement in neutrophil
and platelet engraftment was observed in patients with
hematologic cancers who received a unit of UCB previ-
ously expanded with BM MSC in addition to an unma-
nipulated UCB unit [13]. Co-transplantation of both BM
MSC and UCB HSPC has also been employed in an
HCT context with pediatric patients. Infusion of MSC
proved to be safe, was associated with decreased inci-
dence of acute GVHD, and consequently reduced
transplant-related mortality [14, 15].
From a hematopoietic niche perspective, the use of

BM MSC can be seen as the logical choice to establish a
recreation of the microenvironment where HSPC reside
in vivo. Despite the majority of studies employing hu-
man MSC use BM-derived cells [16], requiring an inva-
sive procedure that entails risks to donors, MSC can also
be efficiently isolated from other tissues [17]. Overall,
adipose tissue (AT) and umbilical cord matrix (UCM)
display advantages over BM as a source of MSC, namely
ease of collection using minimally/non-invasive proce-
dures. For instance, AT MSC, derived from the stromal
vascular fraction (SVF) of AT, can be easily obtained
through enzyme-based isolation procedures from sub-
cutaneous AT [18], which is usually discarded as medical
waste and offers the possibility of resampling. Interest-
ingly, stromal cells in the SVF share similarities with
those of the BM [19] and some studies have focused on
the potential of these cells to support ex vivo expansion
of UCB progenitors [20–22]. On the other hand, the
umbilical cord tissue, specifically the Wharton’s jelly or
matrix (UCM), has been explored as a promising source
of MSC [23]. Of notice, Wharton’s jelly MSC has been
recently proposed as a preferable feeder layer (FL) choice
for UCB HSPC expansion ex vivo considering the micro-
environment of the umbilical cord and placenta, where
UCB hematopoietic progenitors reside in, which differs
from the adult BM niche [24]. Although these alternative
sources of MSC have been compared with the standard
BM-derived MSC, namely focusing on identity criteria
such as immunophenotype and multilineage differenti-
ation potential [25, 26], a direct comparison among
these tissue sources is still missing in what concerns
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their capacity to support the ex vivo expansion of UCB
HSPC.
Regardless of the MSC source chosen for the co-

culture system, the main goal would be the development
of a cost-effective, clinical-grade, co-culture system using
serum-free (SF)/xenogeneic-free (XF) culture materials
towards the maximization of cell yield, while increasing
product consistency and maintaining product features
[12]. Specifically, the translation of such system to an ap-
proved cell therapy product would certainly rely on two
main parameters that are commonly evaluated in clinical
trials: total nucleated cells (TNC) and percentage of
CD34+ cells. This is due to the fact that higher doses of
TNC, as well as UCB units enriched with CD34+ cells,
have been positively correlated with better clinical out-
comes (namely, neutrophil engraftment) in patients re-
ceiving expanded UCB cells [6]. For single UCB
transplantation, a minimum TNC dose of ≥ 2.5 × 107/kg
and a minimum prefreeze CD34+ dose of ≥ 1.5 × 105/kg
is desirable [27].
To fulfill the existing gap regarding the efficacy of

using alternative sources to BM-derived MSC, we de-
signed this study whose aim is to make a comprehensive
comparison of the ex vivo expansion capacity of UCB
CD34+-enriched cells in a co-culture system using differ-
ent sources of MSC, namely BM, AT, and UCM. In an
attempt to establish a XF co-culture system, we also
tested the feasibility of establishing FL of MSC from the
different sources using medium supplemented with
fibrinogen-depleted human platelet lysate (HPL), instead
of fetal bovine serum (FBS). FBS is the most widely used
serum-based supplement for the culture of eukaryotic
cells in vitro, being rich in a variety of components, such
as vitamins, hormones, transport proteins, and growth
factors, that allows cell growth, maintenance, and prolif-
eration in vitro. Although FBS raises issues related to
safety (e.g., high endotoxin content, potential source of
microbial contaminants and presence of xenogeneic
serum antigens that can trigger severe immunological
reactions) and animal welfare [28], it is still the most
popular supplement used for MSC manufacturing, in-
cluding at a clinical level [13]. Specifically, a phase III
clinical trial with patients that received HSPC expanded
ex vivo in a co-culture system with MSC previously cul-
tured using FBS was recently completed (ClinicalTrials.
gov Identifier: NCT01854567).

Methods
Human samples
Human samples were obtained from local hospitals (um-
bilical cord blood (UCB) and tissue: Hospital São Fran-
cisco Xavier, Centro Hospitalar de Lisboa Ocidental;
bone marrow (BM): Instituto Português de Oncologia
Francisco Gentil, Lisboa; Adipose tissue (AT): Clínica de

Todos-os-Santos, Lisboa) under collaboration agree-
ments with Institute for Bioengineering and Biosciences,
Instituto Superior Técnico (iBB-IST), after written and
informed consent and according to the Directive 2004/
23/EC of the European Parliament and of the Council of
31 March 2004 regarding standards of quality and safety
for the donation, procurement, testing, processing, pres-
ervation, storage, and distribution of human tissues and
cells (Portuguese Law 22/2007, June 29), with the ap-
proval of the Ethics Committee of the respective clinical
institution. All samples used in this study were obtained
from human donors (the mothers, in the case of UCB
and tissue) that have previously tested negative for com-
mon virus and diseases.

Preparation of human mesenchymal stromal cell (MSC)-
feeder layers (FL)
Cells from a single donor of each tissue source (BM, AT
and UCM) were used to establish FL, mimicking an allo-
geneic universal donor for each source, as recently pro-
posed by our group [12]. Human MSC were obtained
from the Stem Cell Engineering Research Group (SCER
G) cell bank, at iBB-IST, Lisboa, Portugal. These cells
were previously isolated and expanded under normoxia
conditions using fetal bovine serum (FBS)-supplemented
medium, characterized and cryopreserved by our group
according to established protocols [29]. Cells from all
tissue sources used in this study have been previously
shown to comply with International Society for Cell &
Gene Therapy (ISCT) criteria in what concerns identity
and characterization of MSC (i.e., expression of CD73,
CD90 and CD105; lack of expression of CD34, CD45,
CD73, CD80, CD90, CD105, CD14 and HLA-DR and
confirmation of tri-lineage differentiation potential) [30,
31]. Firstly, MSC were thawed and seeded using low glu-
cose Dulbecco’s Modified Eagle’s Medium (DMEM)
(Thermo Fisher Scientific, United States of America
(USA)) supplemented with 10% (v/v) MSC-qualified FBS
(Thermo Fisher Scientific) (i.e., specially tested to sup-
port the expansion and clonal enumeration (MSC CFU-
F assay) of MSC). Then, in order to establish MSC-
based FL under xenogeneic-free (XF) conditions, i.e.,
MSC expanded without FBS-containing medium, half of
the cells were subjected to two adaptive passages with
low glucose DMEM supplemented with 5% (v/v)
fibrinogen-depleted human platelet lysate (HPL) (Ultra-
GROTM-PURE; kindly provided by AventaCell Biomed-
ical Corp., USA) (Certificate of Analysis (CoA)
provided), while the other half continued to be expanded
in low glucose DMEM with 10% MSC-qualified FBS
(both supplemented with 1% (v/v) Antibiotic-
Antimycotic (A/A) (Gibco, USA)). MSC were seeded at
3000 cells/cm2 into cell culture flasks and medium was
changed every 3 days until 80–90% confluence was
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reached. After the two adaptive passages, MSC were
seeded (in P5 or P6) onto wells of a 12-well plate using
the appropriate medium. Once confluence was reached,
MSC growth was arrested by using medium supple-
mented with 0.5 μg/mL (BM and AT MSC) [32] or 5 μg/
mL (UCM MSC) ([33]; unpublished results) Mitomycin-
C (Sigma-Aldrich, USA) for 2.5–3 h at 37 °C and 5%
CO2. A higher concentration of Mitomycin-C was used
for UCM MSC due to their higher in vitro proliferative
capacity compared to their adult counterparts [23].
Mitomycin-C treated FL were carefully washed twice
and kept with the respective medium at 37 °C and 5%
CO2 for no more than 72 h until further co-culture with
hematopoietic stem/progenitor cells (HSPC).

Isolation of umbilical cord blood (UCB) mononuclear cells
(MNC)
MNC were isolated from fresh UCB samples through a
Ficoll (GE Healthcare, USA) density gradient centrifuga-
tion. After washing with 2 mM ethylenediamine tetraa-
cetic acid (EDTA) (Sigma-Aldrich) in phosphate-
buffered saline (PBS) (Sigma-Aldrich) and upon treat-
ment with ammonium chloride (155 mM) (Sigma-Al-
drich) for 10 min at 4 °C to eliminate residual
erythrocytes, MNC were cryopreserved using Recovery
Cell Culture Freezing Medium (Gibco) and stored in a
liquid/vapor phase nitrogen tank.

Enrichment for CD34+ cells
Cryopreserved MNC from three UCB samples were indi-
vidually thawed in DMEM + 20% (v/v) FBS and washed
with magnetic-activated cell sorting (MACS) buffer.
CD34+ HSPC were then isolated using the CD34
MicroBead Kit UltraPure (Miltenyi Biotec, Germany)
through MACS, according to the manufacturer’s instruc-
tions. In order to attain a highly pure CD34+ cell popu-
lation, cells from the positive fraction were subjected to
a second LS MACS column.

Ex vivo expansion of CD34+-enriched cells
CD34+-enriched cells from UCB (30,000/mL) were re-
suspended in StemSpan SFEM II medium (STEMCELL
Technologies, Canada) supplemented with 1% (v/v) A/A
and SCF, TPO, FLT3-L, and bFGF cytokines (Pepro-
Tech, USA) (90, 77, 82 and 5 ng/mL, respectively, for
co-cultures with a MSC FL; and 64, 80, 61, and 5 ng/mL,
respectively, for cultures without a MSC FL). Cytokine
concentrations were previously optimized for these cul-
ture systems by our group [12]. Two milliliters of cell
suspension was deposited in each well of a 12-well plate
containing a MSC FL previously prepared as mentioned
above (or under stroma-free conditions, i.e., no feeder
layer (NO FL)) and expanded for 7 days at 37 °C and 5%
CO2 in a humidified atmosphere (Fig. 1). At the end of
the experiment, UCB total nucleated cell (TNC) count
and viability were determined through the Trypan Blue
(Gibco) exclusion method.

Fig. 1 Schematic representation of the experimental design. Umbilical cord blood CD34+ cells were expanded in a co-culture system using a
mesenchymal stromal cell (MSC) feeder layer (FL) from different sources for 7 days. MSC were previously expanded using medium with either FBS
or HPL. UCB cells were characterized by immunophenotyping and in vitro clonogenic assays. AT, adipose tissue; BM, bone marrow; FBS, fetal
bovine serum; FL, feeder layer; HPL, human platelet lysate; TNC, total nucleated cells; UCM, umbilical cord matrix
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Immunophenotypic characterization
HSPC before and after expansion (days 0 and 7, respect-
ively) were firstly incubated with Far Red LIVE/DEAD
Fixable Dead Cell Stain Kit (Thermo Fisher Scientific) to
assess cell viability and then surface stained with the fol-
lowing anti-human antibodies: CD34 (8G12) PerCP-
Cy5.5, CD41α (HIP8) PE (BD Pharmingen, USA); CD90
(5E10) PE, CD7 (CD7-6B7) FITC, CD14 (M5E2) FITC,
CD15 (HI98) PE, and CD33 (WM53) PE (BioLegend,
USA). Cells were acquired on a FACSCalibur flow cyt-
ometer (BD Biosciences, USA), and data was analyzed
using FlowJo v10 software (FlowJo LLC, USA).

In vitro clonogenic assays
The ability of expanded and non-expanded
hematopoietic progenitors to proliferate and differentiate
was assessed through the colony-forming unit (CFU)
assay. Briefly, 1000 (day 0) or 2500 (day 7) cells were re-
suspended in MethoCult H4434 Classic (STEMCELL
Technologies) and seeded onto wells of a 24-well plate.
After 14 days of incubation at 37 °C and 5% CO2, formed
colonies were counted using a bright-field microscope
(Olympus CK40-F200, Japan) and classified as erythroid
burst-forming unit (BFU-E), colony-forming unit
granulocyte-monocyte (CFU-GM) or multilineage
colony-forming unit (CFU-Mix). Colony number was
normalized by the number of seeded cells and multiplied
by the TNC number. Fold-increase (FI) of CFU was cal-
culated dividing the number of colonies on day 7 by the
number of colonies on day 0.
Stemness of expanded and non-expanded cells was

also assessed through the cobblestone area-forming cells
(CAFC) assay. Two thousand cells were resuspended in
MyeloCult™ medium (STEMCELL Technologies) supple-
mented with 350 ng/mL of hydrocortisone (STEMCELL
Technologies), seeded on top of a growth-arrested FL of
MS-5 cells on a 24 well-plate, in duplicates, and incu-
bated for 14 days at 37 °C and 5% CO2. CAFC were visu-
alized using a phase-contrast microscope (Leica
DMI3000 B, Germany) and registered if at least 5 cells
with cobblestone-like morphology were able to migrate
beneath the murine FL [34]. FI of CAFC was calculated
dividing the number of CAFC on day 7 by the number
of CAFC on day 0.

Statistical analysis
Statistical analysis was performed using SPSS Statistics
v26 software (IBM, USA). Results are presented as mean
± standard error of the mean (SEM). The Shapiro-Wilk
test was carried out to assess normal distribution. Paired
sample t tests were conducted to compare differences
between conditions. A p value < 0.05 was considered sta-
tistically significant for all tests.

Results
Adipose tissue (AT) mesenchymal stromal cells (MSC)
outperform umbilical cord matrix (UCM) MSC in
promoting the ex vivo expansion of umbilical cord blood
(UCB)-derived hematopoietic stem/progenitor cells (HSPC)
At day 7 of culture, UCB-derived HSPC showed a high
viability (> 90%) in all co-cultures tested using different
MSC feeder layers (FL) (bone marrow (BM), AT and
UCM), as well as in cultures without a MSC FL (NO
FL). Fold increase (FI) in total nucleated cells (TNC)
ranged from 50 to 83 (Fig. 2). Co-culture with AT and
BM MSC resulted in the highest FI of TNC for UCB
cells, with the former allowing slightly higher values (>
80 and > 70, respectively). In the conditions of our study,
UCM-derived MSC resulted in the lowest expansion of
UCB cells, with FI TNC values similar to the negative
control, i.e., HSPC expanded without a MSC FL. In par-
ticular, the expansion levels in TNC for UCB cells co-
cultured with a FL of UCM MSC previously established
using either fetal bovine serum (FBS)- (UCM-FBS) or
fibrinogen-depleted human platelet lysate (HPL)-supple-
mented medium (UCM-HPL) significantly differed (p <
0.01 and p < 0.05, respectively) from the FI values ob-
tained with HSPC co-cultured with a FL of AT MSC
previously established with FBS-supplemented medium
(AT-FBS). Nevertheless, the culture medium in which
MSC were previously expanded (FBS vs HPL supple-
mentation) did not seem to have a major impact on the
overall expansion of HSPC, as observed by the FI TNC
values obtained.

Tissue source of MSC and xenogeneic-free culture
conditions for the establishment of the FL influence the
differentiative potential of UCB expanded cells
Through immunophenotypic characterization of the ex-
panded and non-expanded UCB-derived HSPC, different
dynamics were observed according to the culture
medium in which MSC FL had been previously estab-
lished (Fig. 3). At day 7, a CD34+ cell population was
maintained in culture, which varied between 30.4 and
69.1% for the co-cultures, with the negative control (NO
FL) presenting a population of 43.7 ± 7.0%. Regarding
this CD34+ cell population, not only differences between
the distinct MSC sources were observed, but also be-
tween MSC-FBS and MSC-HPL FL within the same
source, with the former presenting a higher CD34+ cell
content: 69.1 ± 2.3% (BM-FBS) vs 56.2 ± 0.8% (BM-
HPL) (p < 0.05); 45.4 ± 2.9% (UCM-FBS) vs 30.4 ± 3.2%
(UCM-HPL) (p < 0.01); and 68.6 ± 0.9% (AT-FBS) vs
56.1 ± 2.2% (AT-HPL) (p = 0.056) (Fig. 4a). In order to
highlight the differences observed in what concerns
CD34 expression by the expanded UCB in the different
culture conditions, we performed a histogram overlay
analysis (Fig. 5a). For all conditions tested, two peaks
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can be observed: one corresponding to CD34+ cells
(positive peak) and the other to CD34- cells (negative
peak). The positive peak (i.e., CD34+ cells) is notably
higher and more pronounced for the conditions where
BM-FBS and AT-FBS FL were used. For UCB cells ex-
panded in BM-HPL and AT-HPL conditions, the posi-
tive peak is not as high or intense as observed for the
FBS conditions. Concerning the UCB cells expanded
with a FL of UCM MSC, the positive peak is the smallest

of all co-cultures, being smaller and less intense for the
UCM-HPL condition than the UCM-FBS condition, re-
sembling the behavior observed with HSPC expanded
under feeder-free conditions (NO FL). In order to depict
the more primitive stem/progenitor content of the UCB
HSPC after culture, the immunophenotypic analysis in-
cluded the assessment of CD34 and CD90 surface
markers, as the subpopulation containing more primitive
cells is characterized by its simultaneous expression (i.e.,

Fig. 2 Viability and fold increase in total nucleated cells of expanded umbilical cord blood-derived hematopoietic stem and progenitor cells after
7 days of co-culture with mesenchymal stromal cells from different sources. AT, adipose tissue; BM, bone marrow; FBS, fetal bovine serum; FI, fold
increase; FL, feeder layer; HPL, human platelet lysate; TNC, total nucleated cells; UCM, umbilical cord matrix. Values are presented as mean ± SEM.
n = 3 for all conditions, with exception of ‘NO FL’: n = 2. **p < 0.01; *p < 0.05

Fig. 3 Representative immunophenotypic profile of hematopoietic stem/progenitor cells (HSPC) before and after a 7-day expansion in a co-
culture system with mesenchymal stromal cells (MSC) from three different sources (bone marrow, umbilical cord matrix and adipose tissue).
Populations are gated on live cells. AT, adipose tissue; BM, bone marrow; FBS, fetal bovine serum; FL, feeder layer; HPL, human platelet lysate; SSC,
side scatter; UCM, umbilical cord matrix
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CD34+CD90+ cells). While BM and AT FL were able to
maintain a similar percentage of this specific subpopula-
tion of more primitive UCB HSPC, the UCM FL seems
to have yielded a smaller percentage. Nonetheless, for all
MSC sources studied, the percentage of this subpopula-
tion showed a tendency to be inferior when MSC-HPL
were used in the co-culture system: 3.2 ± 1.7% (BM-
FBS) vs 2.0 ± 1.0% (BM-HPL); 2.9 ± 1.1% (AT-FBS) vs
2.3 ± 0.6% (AT-HPL); 1.5 ± 0.3% (UCM-FBS) vs 0.9 ±
0.3% (UCM-HPL); and 0.6 ± 0.3% (NO FL). Another
subpopulation of interest that was assessed were the

proT cells (i.e., progenitor T cells), defined as cells that
co-express the surface markers CD34 and CD7 (i.e.,
CD34+CD7+ cells). For the proT cell subpopulation, the
immunophenotypic analysis showed the same pattern
observed in the subpopulation containing more primitive
cells. Of notice, the difference between HPL and FBS
conditions is also evident for the proT cell subpopula-
tion, as UCB HSPC that were co-cultured with BM-FBS
resulted in an increase of more than 50% on the expres-
sion of both CD34 and CD7 markers, when compared to
BM-HPL: 32.1 ± 2.9% vs 19.3 ± 3.2% (p < 0.01). Co-

Fig. 4 Quantitative characterization of the hematopoietic stem/progenitor cell (HSPC) populations after a 7-day expansion in a co-culture system
with mesenchymal stromal cells from different sources. a Percentage of hematopoietic stem/progenitor (CD34+ cells), more primitive
(CD34+CD90+) and progenitor T cells (CD34+CD7+) before and after expansion. b Fold increase of hematopoietic stem/progenitor (CD34+ cells),
more primitive (CD34+CD90+) and progenitor T cells (CD34+CD7+) after expansion. c Percentage of cell populations with myeloid potential before
and after expansion. AT, adipose tissue; BM, bone marrow; FBS, fetal bovine serum; FI, fold increase; FL, feeder layer; HPL, human platelet lysate;
UCM, umbilical cord matrix. n = 3 for all conditions, with exception of ‘NO FL’: n = 2. Values are presented as mean ± SEM. **p < 0.01; *p < 0.05
(statistical significance is only showed for FBS conditions)
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cultures using the other MSC sources followed the same
tendency: 33.4 ± 4.2% (AT-FBS) vs 20.2 ± 1.0% (AT-
HPL); 8.9 ± 0.7% (UCM-FBS) vs 4.1 ± 0.9% (UCM-
HPL); and 10.1 ± 3.8% (NO FL) (Fig. 4a; Fig. 5b). Expan-
sion levels of the aforementioned subpopulations
(CD34+, CD34+CD90+ and CD34+CD7+), expressed as
FI, followed the tendency observed for cell population
content (in percentage) (Fig. 4b).
In all cultures, the differentiative potential of the

expanded UCB cells was mainly shifted towards the
myeloid lineage (Fig. 4c). A high expression of CD33,
a myeloid-specific receptor, was observed on non-
expanded cells (day 0), but also on expanded cells re-
gardless of the MSC source used in the co-culture
system, as well as on the control without FL. None-
theless, UCB cells expanded over MSC-HPL seem to
show a slight decrease of this marker compared to
MSC-FBS conditions. CD14+ cells (monocytic poten-
tial) were also present on day 7 (11.0–16.4%), without
any obvious differences between UCB cells expanded
over MSC-FBS or MSC-HPL within each MSC
source. On the other hand, UCB cells expanded with-
out FL showed a residual population with monocytic
potential (1.3 ± 0.2%). Conversely, hematopoietic cells
expanded under feeder-free conditions (NO FL) dis-
played a considerable population (10.7 ± 4.9%) of
CD41α+ cells (megakaryocytic potential) whereas the
CD41α+ population varied between 2.2 and 3.5% in
the co-cultures. CD15+ cells (granulocytic potential)
were also present among the expanded UCB cells and
its percentage varied according to the MSC source
used to establish the FL (6.3-11.5%), with no evident
influence of culture medium used; UCB cells ex-
panded under feeder-free conditions (control) com-
prised a population of 8.0 ± 1.0% CD15+ cells.

UCB expanded cells maintain their clonogenic potential
regardless of the MSC tissue source and culture
conditions
Besides immunophenotyping, we performed two differ-
ent assays to identify the presence of primitive cells and
the clonogenic potential of the progenitor cells: the
cobblestone area-forming cells (CAFC) assay and the
colony-forming unit (CFU) assay, respectively. By using
our co-culture expansion system, we verified that, re-
gardless of the MSC source used to expand the UCB
cells, all of them allowed a FI in the number of CAFC of
expanded UCB cells (Fig. 6a). There seemed to a be a
tendency for a FL of BM or AT MSC to allow for a
slight increase in the FI, as the mean ranged from 3.4 to
6.3, while the mean FI of CAFC of the expanded cells
ranged between 2.4-3.1 when a FL of UCM MSC was
used. However, no statistical significance was found
among MSC sources. UCB cells expanded without a FL
(NO FL) presented the smallest mean FI of CAFC (1.1 ±
1.1).
Regarding the clonogenic potential, assessed through

the CFU assay, as expected, the number of total CFU ob-
tained per 105 HSPC was superior for UCB cells before
expansion, on day 0 (2.5 × 104 ± 1.0 × 103), than after
expansion (Fig. 6b). After the 7-day expansion in the co-
culture system, even though the CFU values obtained
with BM-MSC and UCM-MSC slightly differed between
them, overall the number of total CFU was similar for
UCB cells expanded in any of the MSC sources, ranging
from 1.2 × 104 ± 1.9 × 103 (UCM-HPL condition) to 1.5
× 104 ± 1.2 × 103 (BM-FBS condition). The culture
medium in which MSC were established did not seem to
have impact on the CFU total number produced by the
UCB cells. Interestingly, cells expanded without a MSC
FL (NO FL) seemed to show a higher number of total

Fig. 5 Comparison of CD34 and CD34/CD7 expression by expanded umbilical cord blood (UCB) cells after 7 days of co-culture with mesenchymal
stromal cells (MSC) from different sources previously established using different medium supplementation (fetal bovine (FBS) or human platelet
lysate (HPL)). a Histogram overlay of CD34 expression by expanded UCB cells co-cultured with MSC feeder layers from different tissue sources
that were previously established with FBS- or HPL-supplemented medium (representative UCB donor). b Dot plot overlay of CD34 and CD7 co-
expression by expanded UCB cells co-cultured with MSC feeder layers from the same tissue source that were previously established with FBS- or
HPL-supplemented medium (representative UCB donor). AT, adipose tissue; BM, bone marrow; FBS, fetal bovine serum; HPL, human platelet
lysate; UCM, umbilical cord matrix
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CFU (1.6 × 104 ± 2.5 × 103) than the ones expanded
with a MSC FL. We also looked in detail to the type of
CFU produced (Fig. 6c), namely erythroid burst-forming
unit (BFU-E), colony-forming unit granulocyte-
monocyte (CFU-GM) or multilineage colony-forming
unit (CFU-Mix). For non-expanded cells (UCB cells on
day 0), we verified that half of the colonies presented
were committed to the myeloid lineage, as 51.5 ± 0.5%
of the colonies were CFU-GM, but there was also some
erythroid potential, seen not only by the percentage of
BFU-E (4.0 ± 0.7%) but also CFU-Mix (44.5 ± 0.5%). For
the UCB cells expanded in a co-culture system, regard-
less of the MSC source used, we observed a shift in the
type of colonies produced, as the great majority (> 70%)
were CFU-GM colonies. The erythroid potential was re-
duced, as less than 1% of the colonies were BFU-E, with
the remaining colonies being CFU-Mix. Interestingly, for
the conditions where UCB cells were expanded with
MSC-HPL, the percentage of CFU-GM colonies showed
a tendency to be slightly greater when compared with
MSC-FBS conditions: 83.8 ± 4,1% (BM-HPL) vs 75.1 ±
4.1% (BM-FBS) and 84.2 ± 5.5% (AT-HPL) vs 79.6 ±
4.1% (AT-FBS). For the UCM MSC source, similar re-
sults were found 85.7 ± 4.1% (UCM-HPL) vs 84.5 ± 3.0%
(UCM-FBS). Of notice, UCB cells that were expanded
with NO FL presented percentages of CFU-GM and
CFU-Mix very similar to the non-expanded cells on day
0, with a reduction in the percentage of BFU-E.
In terms of FI of total CFU, which considers the afore-

mentioned results and the expansion potential of our ex-
pansion systems, we verified that it follows the pattern
observed for FI in TNC (Fig. 2). Specifically, UCB cells
expanded over a FL of BM or AT MSC presented the
highest FI in total CFU (~40x), while the results ob-
tained with a FL of UCM MSC were significantly lower
(~25x). No significant differences were observed regard-
ing the establishment of the MSC sources with FBS- or
HPL-supplementation (Fig. 6d). The influence of the
MSC source on the expansion potential of UCB cells in
what concerns each CFU type (BFU-E, CFU-GM, CFU-
Mix) obtained was also explored (Fig. 6e). In co-cultures
with MSC, the highest FI was observed for the CFU-
GM, followed by the CFU-Mix and lastly the BFU-E. Al-
though with small differences, BM and AT MSC FL re-
sulted in similar FI of each CFU type for the expanded

UCB cells, higher than the ones obtained with UCM
MSC. Regarding the culture medium used in the MSC
expansion, no influence in the FI of each CFU type
seems to exist. On the other hand, expansion of HSPC
without a MSC FL allowed for a substantial FI of CFU-
Mix, which was very similar with the FI of CFU-GM, in
opposition to what was observed for the MSC
conditions.

Discussion
Wide application of umbilical cord blood (UCB)
hematopoietic stem/progenitor cells (HSPC) to treat ma-
lignant and non-malignant diseases in a hematological
context, specifically adult patients, is hampered by the
low cell quantity in a single unit. While great efforts are
being made to overcome this hurdle, expanding UCB
HSPC ex vivo with the support of a bone marrow (BM)
mesenchymal stromal cell (MSC) feeder layer (FL) is a
relevant and commonly used strategy. Indeed, in 2012,
the results of a phase I/II clinical trial where 31 patients
with hematologic cancers received transplants of two
UCB units, one of which containing HSPC expanded
ex vivo in a co-culture system with BM MSC, were pub-
lished [13]. Since transplantation of both UCB units
proved to be safe and effective, significantly improving
the engraftment compared to unmanipulated UCB only,
the study moved to a phase III clinical trial. The study is
now completed, but the results were not yet published
(ClinicalTrials.gov Identifier: NCT01854567). Despite
the encouragement and great advances that these clinical
trials present to the field, they also mirror the need for
optimization of these co-culture systems. Culture period
is one of the topics that should be optimized. By doing a
2-week expansion of the UCB cells in the co-culture sys-
tem with MSC, a medium change over the first week is
demanded, which entails a superior cost of reagents,
time, and handling. Our expansion protocol was de-
signed to last one week without any media changes or
handling in between, making it a more efficient system.
Additionally, our expansion system, originally estab-
lished with BM MSC, has its cytokine cocktail optimized
for the maximum expansion without compromising the
maintenance of HSPC [12], reducing overall cost of
goods. Regarding the two main outputs evaluated in the
translation of an expansion protocol to a clinical trial,

(See figure on previous page.)
Fig. 6 Cobblestone area-forming cells (CAFC) and colony-forming unit (CFU) produced by hematopoietic stem/progenitor cells (HSPC) before
and after a 7-day expansion in a co-culture system with mesenchymal stromal cells (MSC) from different sources. a Fold increase of CAFC. b Total
CFU obtained per 105 UCB cells. c Percentage of each CFU type (BFU-E, CFU-GM, CFU-Mix) produced. d Fold increase of total CFU. e Fold
increase of each CFU type (BFU-E, CFU-GM, CFU-Mix). AT, adipose tissue; BFU-E, erythroid burst-forming unit; BM, bone marrow; CFU-GM, colony-
forming unit granulocyte-monocyte; CFU-Mix, multilineage colony-forming unit; FBS, fetal bovine serum; FI, fold increase; FL, feeder layer; HPL,
human platelet lysate; UCM, umbilical cord matrix. n = 3 for all conditions, with exception of ‘NO FL’: n = 2. Values are presented as mean ± SEM.
**p < 0.01; *p < 0.05; #p < 0.01 vs BM-FBS, UCM-FBS, UCM-HPL, AT-FBS and p < 0.05 vs BM-HPL, AT-HPL
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i.e., the fold increase (FI) of total nucleated cells (TNC)
and CD34+ cells, the authors were able to reach a FI of
12.2 in TNC, while the CD34+ cell fraction had a FI of
30.1, after 14 days. In our study, by using a BM MSC FL
in co-culture with the UCB HSPC, we were able to ob-
tain a FI of 73.8 and 51.5, respectively, after 7 days. This
increase can easily be explained not only by our opti-
mized co-culture system, but also due to the starting cell
product: in this clinical trial [13] mononucleated UCB
cells were used, while we started with a highly purified
population of UCB CD34+ cells.
In this clinical trial, off-the-shelf BM-derived MSC iso-

lated using fetal bovine serum (FBS) were used to pre-
pare the FL for the co-culture system. However, MSC
isolated from the BM present some disadvantages re-
lated to the source per se, since BM collection is a very
invasive procedure that entails risks for the donors. In
addition, BM collection is not done as frequently as per-
ipheral blood stem cell mobilization and collection, thus
decreasing the availability of this source. While the ma-
jority of expansion studies use BM MSC derived from
the iliac crest of the hip bone (from HSPC donors in a
hematopoietic cell transplantation (HCT) context), BM
samples can also be obtained from routine bone surger-
ies, namely from knee surgery. However, these medical
interventions are normally associated with elderly pa-
tients, and it is well known that a decrease in MSC func-
tionality, as well as in the number of passages they are
able to withstand, is correlated with an increase in donor
age [35]. Thus, although hematopoiesis occurs in the
BM and from the physiological point of view the use of
BM MSC would be the rational choice, alternative
sources are required to ease clinical translation. Fortu-
nately, there are other sources of MSC readily available,
namely adipose tissue (AT) and umbilical cord matrix
(UCM), which are commonly discarded as medical
waste. Either of these MSC sources can be collected to
isolate off-the-shelf MSC, in a similar way to what is
done with BM-derived MSC. Direct comparison of using
MSC from different sources, namely BM, UCM, and AT,
have already been explored in different areas, such as
treatment of graft-vs-host disease (GVHD) [36] and im-
mune cell suppression capacity [37]. However, to our
best knowledge, no study has performed a comprehen-
sive comparison of the hematopoietic support provided
by different sources of MSC to an enriched population
of UCB HSPC.
In our study, we directly compared how three different

sources of MSC—BM, UCM, and AT—influenced the
expansion of UCB-derived CD34+ cells. This highly
enriched population was isolated from cryopreserved
mononuclear cells (MNC) of UCB samples. By using
cryopreserved samples, we are replicating what is now-
adays commonly performed in a clinical setting, since

UCB transplants are routinely performed with cryopre-
served UCB units. Moreover, since the goal is to create
an expansion product that can surpass the cell number
issue of a single unit, studies than can achieve so by
using cryopreserved samples are closer to reality. Add-
itionally, we went further by exploring a serum-free
(SF)/xenogeneic-free (XF) co-culture system, i.e., we
compared the expansion capacity and cell profile of ex-
panded UCB cells over a MSC FL previously established
using either FBS or fibrinogen-depleted human platelet
lysate (HPL).
By using a FL of MSC that were previously expanded

in culture medium supplemented with FBS (BM-FBS,
UCM-FBS, AT-FBS) in our co-culture systems, we were
able to verify that after seven days of expansion a FI
TNC of more than 70 or 80 for BM and AT, respect-
ively, was achieved. Although one could speculate that
the tendency for a higher expansion capacity obtained
with AT would be accompanied by a loss of
hematopoietic progenitors, the immunophenotypic ana-
lysis showed the maintenance of a high population (>
65%) of hematopoietic progenitors (CD34+ cells) for
both BM and AT sources. Concerning the fraction of ex-
panded hematopoietic cells that suffered a loss of their
CD34 expression, a shift towards the myeloid lineage
was primarily observed (i.e., expression of CD14, CD15,
CD33 and CD41α), as previously described by our group
[10]. This behavior was substantiated by a higher per-
centage of CFU-GM in the co-culture system, regardless
of the MSC FL source used. The absence of a FL during
ex vivo expansion originated similar percentages of
CFU-Mix and CFU-GM. This disparity regarding differ-
ent CFU populations between expansion systems with
and without a MSC FL has been previously observed by
our group [12]. Interestingly, a small population that
contains more primitive cells (CD34+CD90+ cells) [38]
was also kept in both BM-FBS and AT-FBS conditions,
which is aligned with the tendency for higher CAFC-
producing capacity observed for these conditions. The
CAFC assay is a variant of the long-term culture-
initiating cells (LTC-IC) assay that does not require cell
replating. In our study, it was used to characterize the
more primitive compartment of our expanded HSPC
population, as this in vitro assay has been proposed as a
valid surrogate measurement of hematopoietic reconsti-
tution potential [39]. Our expansion protocol also ex-
panded a particular subpopulation of progenitors that
simultaneously express CD34 and CD7, classically de-
fined as proT cells, i.e., progenitor cells with ability to
homing the thymus and differentiate into T cells [40].
The expansion of this particular subpopulation is very
promising, because not only the myeloid progenitors are
being expanded in our co-culture system (as in most
ex vivo expansion protocols), but also these precursors
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of the lymphoid lineage, which are candidates for adop-
tive T cell therapies [41]. Also, the significant presence
of proT cells in our expanded population pool will con-
tribute towards improving the recovery of a potential
HCT patient, who inevitably is immunocompromised
after treatment. An expanded product with such progen-
itors capable of a faster lymphopoiesis is critical to re-
duce HCT-related mortality [42, 43]. Both BM-FBS and
AT-FBS FL allowed a percentage doubling for this par-
ticular UCB cell population after the expansion protocol.
Importantly, and as seen in our previous work of 2010
[10], the presence of a MSC FL showed to be essential
for the expansion of proT cells, as in the feeder-free sys-
tem the percentage of this population was inferior to
non-expanded cells. Of note, a population of
CD34-CD7+ cells was also present and expanded using
any of the MSC FL. While this expanded population can
be differentiated into natural killer and dendritic cells
[44] that can be used in cellular immunotherapy, a small
percentage of this population has been reported to be
able to engraft the thymus in vivo [40], resulting in a
broader redefinition of proT cells and suggesting that
this population in our expansion system can also be of
interest. On the other hand, using a UCM-FBS FL re-
sulted in a lower FI TNC (50) that was also accompanied
by a decrease in the progenitor populations seen through
CD34+ expression (< 50%). Understandably, this decrease
in the progenitor populations is also reflected on specific
subpopulations, such as proT cells. Although present,
the percentage of this population was smaller than be-
fore expansion. Compared to the adult sources, UCM
MSC appear to provide less hematopoietic support in
the conditions of our study, shown by the reduced ex-
pansion capacity and also progenitor population main-
tenance. Of notice, UCM MSC FL were subjected to a
higher Mitomycin-C concentration in the growth-arrest
treatment compared to their adult counterparts (5 vs
0.5 μg/mL) due to the higher in vitro proliferation cap-
acity of these cells [23]. Mitomycin-C has been com-
monly employed to inhibit MSC proliferation, as an
alternative to irradiation, for multiple assays (e.g., immu-
nomodulatory [45–47], FL for embryonic stem cells [48],
induced pluripotent stem cells [49], as well as for HSPC
[50, 51]), and the concentration used varies in a 0.5–
50 μg/mL range. Importantly, it has been previously ac-
knowledged that different cells might present an intrin-
sic sensitivity to this antibiotic and thus a dose-response
curve to this agent has to be established for each cell
type of interest [52]. In this context, a previous study
demonstrated the higher efficiency of using Mitomycin-
C concentrations of 4–8 μg/mL compared to a 0–2 μg/
mL range to growth-arrest human UCM MSC in vitro
[33]. Although a possible influence of Mitomycin-C can-
not be ruled out, the lower performance of UCM MSC

FL in supporting UCB HSPC observed in our study fol-
lows the trend present in the field. Other groups have
demonstrated an inferior hematopoietic support associ-
ated to UCM MSC FL, which was shown using
Mitomycin-C-treated [50, 51], irradiated [53], and non-
inactivated [54] FL.
Despite the fact that MSC have been mostly cultured

with FBS-containing media in clinical trials, the risks as-
sociated with the usage of this culture medium supple-
ment are well known, namely the risk of xeno-
immunization against bovine antigens and the transmis-
sion of pathogens. Ethical issues associated with FBS col-
lection, limited availability, and batch-to-batch variability
are also concerns to be considered [28]. In the 1980s,
HPL successfully started to be used as an alternative to
FBS in the culture of several cell lines and is currently
used in the manufacturing of MSC for clinical trials [55,
56]. This supplement is rich in potent bioactive media-
tors, including various chemokines and growth factors
[57]. Current HPL formulations are fibrinogen-depleted
(not requiring porcine heparin supplementation) and
can be gamma irradiated to reduce pathogen content,
which highly reduces the risk of transmission of human
diseases by known or unknown viruses. In an attempt to
make a product more closely available for clinical pur-
poses, we decided to also establish a MSC FL expanded
without the use of animal derived components, by using
medium supplemented with fibrinogen-depleted HPL.
Interestingly, we noticed that the expansion capacity of
HSPC was not affected by the change of MSC expansion
medium, as the FI TNC was similar for both FBS and
HPL conditions within each source. However, a signifi-
cant decrease in the percentage of CD34+ cells between
FBS/HPL conditions within each MSC source was ob-
served for all MSC sources, suggesting a shift from
hematopoietic progenitors to more differentiated cells
when MSC were expanded with HPL. It is worth men-
tioning that all differences observed resulted from an
adaptation process, as MSC had been isolated with
medium supplemented with FBS and first expanded with
this medium. Interestingly, previous studies have re-
ported that although HPL-supplemented medium im-
proved the proliferation capacity of MSC in expansion,
their immunosuppressive properties were inhibited in
comparison to MSC expanded with FBS-supplemented
medium. Namely, MSC expanded with fibrinogen-rich
HPL showed a reduced capacity to prevent T- and NK-
cell proliferation [58, 59]. Importantly, another study has
shown that fibrinogen depletion from HPL can partially
restore MSC immunomodulatory capacities [60]. Here,
we could verify that the hematopoietic support provided
by MSC can be modulated by the environment in which
MSC grow and the source itself is not the only import-
ant factor. Considering our results and the absence of
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comparative studies concerning the hematopoietic sup-
portive capacity of MSC cultured with HPL, further
studies are needed.
Few studies exploring the hematopoietic support given

by a FL of AT MSC exist. Without using exogenous cy-
tokines, comparable levels of UCB HSPC expansion were
attained when using a BM MSC FL or an AT MSC FL.
Curiously, CD7+ cell percentage was significantly higher
using the AT FL, while the CD34+ cell percentage was
significantly enhanced using a BM FL [20]. Compared to
BM MSC FL, a FL of AT MSC, either from mice or hu-
man, favored granulocyte differentiation from peripheral
blood stem cells (CD34+ cells) and the growth of pro-
genitor cells in vitro to a higher extent. It was suggested
that this better support could be attributed to chemo-
kine CXCL12, a critical regulator of hematopoiesis,
found to be expressed threefold higher in AT MSC than
BM MSC [61, 62], even though less than 1% of genes
were found to be differentially expressed between AT
and BM MSC [63]. By seeding UCB MNC upon an AT
MSC FL and making successive removals of non-
adherent cells, Andreeva and colleagues [64] were able
to verify that AT MSC enabled the selection of function-
ally active CD34+ HSPC at normoxia (20% O2) and hyp-
oxia levels (5% O2) after 7 days of expansion. Even
though they used an interesting strategy to enrich
CD34+ cells during culture, their expansion levels were
quite low (6-10x) compared to our FI of CD34+ cells
(60x), which can easily be explained by their lack of ex-
ogenous cytokines besides using an expansion system
that still relies on FBS usage.
UCM MSC, namely Wharton’s jelly MSC, have also

been studied regarding hematopoietic support to UCB
CD34+ cells. In order to simulate the growth of HSPC
in vivo, Zhao and collaborators [24] studied the influ-
ence of oxygen percentage in the co-culture system
without adding any cytokines, finding out that normoxia
values enhanced FI of TNC (3x), CD34+ cells and CFU.
Although hypoxia levels of 1% O2 did not allow the ex-
pansion of TNC, they were able to maintain a higher
percentage of CD34+ cells. By changing the expansion
medium from H5100 medium to StemSpan medium
supplemented with SCF, FLT3-L, and TPO cytokines,
this group attained a higher FI in TNC (>300x), as well
as in CD34+ cells (90x) [65]. Although similar to our co-
culture system, we were able to maintain a higher per-
centage of CD34+ cell population, despite the lower FI
in this population. Nevertheless, these differences could
be explained by their higher period of expansion (10
days). When Klein and colleagues [54] directly compared
MSC from amnion, chorion, and Wharton’s jelly to BM
MSC, they verified that a FL of the latter source was sig-
nificantly superior in expanding UCB CD34+ cells. Al-
though their approach was different, as they started the

expansion with unfractioned MNC cultured in medium
supplemented with FBS over 14 days, BM MSC were
shown to be a better source over UCM MSC, which is
coherent with our results.
Overall, HSPC ex vivo expansion through co-culture

with MSC can be influenced by multiple experimental
variables. Whether by using different expansion media,
oxygen levels or starting HSPC population, as well as
usage of exogenous cytokines, the resulting expansion
outcome will inevitably vary. While MSC donor variabil-
ity could also be considered an important experimental
parameter, its impact on the robustness of co-culture
HSPC expansions can be controlled. Similar to the
manufacturing model for Alofisel, an approved expanded
AT MSC-based cell therapy, we expect that a cell bank
produced from a single donor will be able to provide in-
numerous cell doses for MSC FL production. Addition-
ally, by introducing AT as an alternative MSC source,
donor availability for co-culture expansions will be sig-
nificantly improved. Both these points will facilitate the
definition of MSC donor acceptance criteria, contribut-
ing towards process standardization and current good
manufacturing practices (GMP) compliance.
Ultimately, by aiming at the production of clinical-

grade expanded UCB HSPC, we envision exploring the
scalability of the co-culture system using AT MSC to
evaluate the feasibility of attaining numbers with clinical
significance. Our co-culture system is currently limited
to a 2D surface and performed in static conditions.
Translating the co-culture setting into a 3D environment
(e.g., using a scaffold for MSC anchorage) and develop-
ing a bioreactor to introduce dynamic flow could help
improve its scalability and overall viability in producing
a potential approved cell-based product. At the same
time, it would be important to investigate and clarify the
differences and/or similarities behind the supportive
hematopoietic capacity of each MSC source at a cellular
level. If they could be tracked to individual cell features
(e.g., MSC-derived soluble cytokines, extracellular vesi-
cles, adhesion molecules, extracellular matrix molecules,
or other [66]), we could potentiate their effect by bio-
engineering it in a novel expansion system.

Conclusions
The capacity of mesenchymal stromal cells (MSC) de-
rived from different sources (bone marrow (BM), umbil-
ical cord matrix (UCM), and adipose tissue (AT)) to
support the expansion/maintenance of umbilical cord
blood (UCB) hematopoietic stem/progenitor cells
(HSPC) was directly compared in this study. Our results
showed that UCB CD34+-enriched cells were better ex-
panded, while preserving the stem/progenitor content,
over a feeder layer (FL) of MSC derived from AT. Of
note, in addition to myeloid committed cells (e.g.,
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CD33+, CD14+, CD41α+ and CD15+ cells), a substantial
population of progenitor T cells (CD34+CD7+ cells) was
also maintained and expanded. On the other hand, the
expansion capacity of UCB cells was significantly de-
creased when expanded over a UCM-derived MSC FL.
We went further by exploring if MSC FL established
using serum-free (SF)/xenogeneic-free (XF) conditions,
i.e., using fibrinogen-depleted human platelet lysate
(HPL) instead of fetal bovine serum (FBS), would impact
the already established SF co-culture system. While the
expansion capacity was not affected by this alteration,
we noticed a shift from hematopoietic progenitors to
more differentiated cells. Still, further studies are needed
to fully understand the impact of using HPL (instead of
the commonly used FBS) in MSC FL establishment in
what concerns its ability to support human HSPC
in vitro.
Overall, our study provides important insights con-

cerning the possibility of expanding UCB HSPC in a co-
culture system with MSC, derived from other more ac-
cessible sources than BM and in a SF/XF context, paving
the way towards clinical translation. Also, the developed
protocols used herein show a high compatibility with
current good manufacturing practices (GMP), since few
adjustments would be needed, including the use of the
CliniMACS platform (for CD34+ cell purification) and
the incorporation of a clinical-grade XF hematopoietic
expansion medium until a suitable fully chemically de-
fined version can be adopted.
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