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Abstract
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Novel coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus-2. The virus
causes an exaggerated immune response, resulting in a cytokine storm and acute respiratory distress syndrome, the
leading cause of COVID-19-related mortality and morbidity. So far, no therapies have succeeded in circumventing

the exacerbated immune response or cytokine storm associated with COVID-19. Mesenchymal stem cells (MSCs),
through their immunomodulatory and regenerative activities, mostly mediated by their paracrine effect and extracel-
lular vesicle production, have therapeutic potential in many autoimmune, inflammatory, and degenerative diseases.
In this paper, we review clinical studies on the use of MSCs for COVID-19 treatment, including the salutary effects of
MSCs on the pathophysiology of COVID-19 and the immunomodulation of the cytokine storm. Ongoing clinical trial
designs, cell sources, dose and administration, and populations are summarized, and the paracrine mode of benefit is
discussed. We also offer suggestions for optimizing MSC-based therapies, including genetic engineering, strategies for
cell surface modification, nanotechnology applications, and combination therapies.
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Background

The coronavirus disease 2019 (COVID-19) outbreak
emerged in December 2019 in Wuhan, China, but
quickly spread worldwide, and the number of cases
increased exponentially, with devastating effects on the
global economy and public health. The World Health
Organization (WHO) designated COVID-19 as a public
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health crisis because of its high morbidity and mortality
(covid19.who.int). According to the Centers for Disease
Control and Prevention [1], COVID-19 is characterized
by high fever, fatigue, loss of taste and smell, respiratory
symptoms, decreased oxygen saturation, and shortness
of breath. The causative organism, severe acute respira-
tory syndrome corona virus-2 (SARS-CoV-2), can also
cause neurological disorders, such as encephalopathy,
encephalitis, anosmia, ageusia, and Guillain—Barré syn-
drome, and has been found in the cerebrospinal fluid
[2]. COVID-19 can also affect the cardiovascular sys-
tem, with direct effects on the myocardium and associ-
ated myocarditis that causes acute coronary syndrome
and myocardial infraction [3]. Some patients suffer from
venous thromboembolism and coagulopathy, and these
patients in the intensive care unit (ICU) are typically

©The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or

other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativeco
mmons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.


https://orcid.org/0000-0003-0884-4235
https://orcid.org/0000-0001-8888-2383
https://orcid.org/0000-0002-9270-9855
https://orcid.org/0000-0002-8178-7102
http://orcid.org/0000-0001-9928-0724
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13287-021-02542-z&domain=pdf

Abdelgawad et al. Stem Cell Res Ther (2021) 12:469

treated with anticoagulation therapy [4—6]. COVID-19 is
characterized by cytokine storms, and patients are posi-
tive for cytokines, such as monocyte chemoattractant
protein 1 (MCP1), macrophage inflammatory protein
(MIP)1aq, interleukin (IL)-6, IL-2, IL-7, IL-10, and tumor
necrosis factor alpha (TNF-a) [7, 8].

There are no approved and effective therapeutics
against COVID-19, and scientists are grappling with time
to find effective treatments and vaccines. Cell-induced
therapies using stem cells, particularly mesenchymal
stem cells (MSCs), have been a primary target of thera-
peutic studies. Many drugs have been repurposed to
accelerate drug development [9, 10], while mass vaccina-
tion campaigns are being slowly rolled out [11]. Interest-
ingly, the patient response to treatment and therapeutic
efficacy has been heterogeneous.

MSCs are self-renewing multipotent stem cells that
can differentiate into several cell types. They represent
a promising therapy for several chronic lung diseases
with high fatality and morbidity rates, such as chronic
obstructive pulmonary disease (COPD), obstructive
bronchiolitis, idiopathic pulmonary fibrosis, and acute
respiratory distress syndrome (ARDS).

Here, we review the use of MSCs as a potential therapy
for COVID-19, summarizing their role and immunomod-
ulatory effect in response to a cytokine storm. We dis-
cuss completed and ongoing clinical trials and the debate
over the use of acellular MSC-based products, such as
exosomes, and their effect on COVID-19 pathophysiol-
ogy. Finally, to improve the chances of treatment success,
we suggest methods of enhancing the therapeutic efficacy
of MSCs, such as combination therapies, genetic modifi-
cation and engineering, nanotechnology and nanomate-
rials, and MSC surface modifications.

SARS-CoV-2 infection

The novel SARS-CoV-2 [12] shares 79.6% genetic simi-
larity with other human coronaviruses and uses the
same target receptor, angiotensin-converting enzyme
2 (ACE 2), for host cell entry [13]. ACE2 is ubiquitously
expressed, with high levels in the kidneys, esophagus,
colon, small intestine, heart, and lungs [13, 14]. SARS-
CoV-2 pathophysiology and virulence are linked to its
structural and nonstructural proteins. SARS-CoV-2 can
enter type II alveolar cells or other ACE2-expressing
cells via the spike (S) protein [15]. Following virus—host
cell membrane fusion, viral RNA is released into the host
cell, where viral replication, transcription, and transla-
tion occur, followed by the assembly of viral proteins
and messenger RNAs (mRNAs) into new virions, which
are then liberated [12, 16]. Upon SARS-CoV-2 infec-
tion, the secreted chemokines induce inflammation of
the alveolar and capillary epithelia, causing alveolar and
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interstitial edema, eventually impairing pulmonary func-
tion. Pro-inflammatory granulocytes, monocytes, and
macrophages are produced, with reduction in regulatory
and anti-inflammatory immune cells. These findings are
consistent with histological examinations of lung biopsies
that show signs of ARDS, in addition to liver, kidney, and
heart damage [13-17].

COVID-19 and cytokine storms

COVID-19 ARDS is characterized by air exchange dys-
function, edematous changes, secondary infections, and
a cytokine storm that can cause multiple-organ dysfunc-
tion [13]. There is an increase in leukocytes and inflam-
matory cytokines and chemokines, such as granulocyte
colony-stimulating factor (G-CSF), granulocyte-mac-
rophage colony-stimulating factor (GM-CSF), IL-1p, IL-1
receptor type 1 (IL-1RA), 11-7, IL-8, IL-9, IL-10, fibroblast
growth factor 2 (FGF-2), MCP1, vascular endothelial
growth factor A (VEGF-A), MIP1-a and MIP1-B, inter-
feron gamma (IFNy), IFNy-induced protein 10 (IP10),
platelet-derived growth factor B (PDGFB), and TNF-a
[18]. Many drugs have been repurposed for COVID-
19 treatment but with limited success. As the cytokine
storm is the leading cause of death due to COVID-19,
immunotherapy seems a favorable treatment option [8].
Tocilizumab (Actemra) is an immunotherapeutic that
inhibits IL-6, which plays an integral role in the cytokine
storm. However, there is a desperate need for a treat-
ment that can act on a broad range of cytokines [19], and
stem cell therapy may be a more beneficial therapeutic
approach to treating COVID-19.

MSCs

In 1966, Friedenstein et al. discovered that fibroblastoids,
obtained from murine bone marrow (BM), differenti-
ate into osteocytes when subcutaneously transplanted.
Fibroblastoids have since been named MSCs and have
regenerative, multilineage differentiation, self-renewal,
and immunomodulatory properties in vitro and in vivo,
where they form a reservoir of restorative cells. MSCs
can migrate to any part of the body, including wound,
disease, and inflamed sites, where they modulate an
immune response or differentiate into specific cell types
[20-24]. MSCs can activate a tissue’s inhabitant stem
cells to participate in the healing process [25].

Significant advances have been made in MSC isolation,
culture, characterization, and differentiation for exog-
enous use, due to their low immunogenic profile. MSCs
can be isolated from peripheral blood, the umbilical
cord, adipose (AD) tissue, and BM [26—29]. They express
CD90, CD73, and CD105 but not CD45, CD34, CD14,
CD11b, CD79a, and human leukocyte antigen (HLA)-DR
[30]. Under specific conditions, MSCs can be expanded
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in vitro and induced to differentiate into diverse cell
types, such as osteoblasts, chondroblasts, ligamentous
tissue, neuronal cells, stromal cells, and adipocytes [31].

MSCs have been applied in numerous preclinical and
clinical studies [21, 22] to determine their safety and
potential for mitigating inflammatory, degenerative, and
autoimmune diseases, such as epilepsy, osteoarthritis,
multiple sclerosis, rheumatoid arthritis, Crohn’s disease,
inflammatory bowel disease (IBD), systemic lupus ery-
thematosus, type 1 diabetes (T1D), autoimmune hepati-
tis, amyotrophic lateral sclerosis, and corneal epithelial
stem cell deficiency [32—-44].

Immunomodulation

MSC:s are considered the only stem cell type with immu-
nomodulatory activity and are, therefore, a primary tar-
get for therapeutic development for autoimmune disease
and inflammation [44]. MSCs secrete immunomodula-
tors, including chemokines, IL-6 and prostaglandin E2
(PGE2), hemoxygenase-1, leukocyte inhibitory factor,
indolamine 2,3-dioxygenase (IDO), and transforming
growth factor B [45]. MSCs also induce IL-10 expression
[46]. Human umbilical cord tissue-derived MSCs (hUC-
MSCs) reprogram macrophages and monocytes via cyto-
plasmic organelles (RNA processing bodies [p-bodies]),
a critical lung inflammatory inhibitor. These p-bodies
are engulfed by macrophages and monocytes, modulat-
ing transcription and inhibiting T cell activation. Low-
density lipoprotein receptor-related proteins mediate this
interaction on the surface of macrophages and mono-
cytes while blocking pharmacological inhibitors. These
findings provide new insight into the inflammatory mod-
ulation of MSCs without long-term engulfment by indi-
rectly inhibiting the T cell response through monocyte
and macrophage reprogramming by p-bodies [46].

MSCs can migrate to injured and affected tissue. In
lung injury, ARDS, and sepsis, MSCs migrate to and are
trapped in the lungs, promoting secretion of antimicro-
bial agents, cytokines, and growth factors [47].

MSCs and ARDS

Many preclinical and clinical studies have illustrated
the therapeutic potential of MSCs in ARDS [48-53]. In
a bleomycin-induced lung injury murine model, lung
cells were protected from injury and fibrosis by migra-
tion of transplanted MSCs to the injury site, where they
differentiated into lung cells and inhibited inflamma-
tory cytokine production [48]. In a phase 1 clinical study,
the safety of intravenous (IV) infusion of BM-MSCs in
moderate-to-severe ARDS patients was validated; how-
ever, further studies are required for therapeutic efficacy
[52]. MSCs mitigate the cytokine storm via IL-10 and
IL-1RA induction and TNF-a and neutrophil influx and
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assembly inhibition [50, 54]. MSC-secreted keratino-
cyte growth factor (KGF) induces alveolar epithelial cell
repair and proliferation via IL-1RA, GM-CSF, and matrix
metalloproteinase-9 (MMP-9) induction [54—56]. VEGF
and hepatocyte growth factor (HGF) secreted by MSCs
reduce endothelial cell permeation [55, 56]. These find-
ings suggest the potential utility of MSCs as treatment
for COVID-19 ARDS patients. The potential beneficial
effects are summarized in Fig. 1.

Studies on MSC therapy for COVID-19

Multiple studies have used MSCs in the COVID-19 set-
ting (Table 1 and Additional file 1). Their therapeutic util-
ity varies by stage of disease:

+ Mild: mild clinical manifestations

+ Moderate or common: fever, respiratory symptoms,
pneumonia on X-ray or computed tomography (CT)

o Severe: respiratory distress (respiratory rate
[RR] > 30/min), oxygen saturation <93% at rest, or
arterial partial pressure of oxygen (PaO,)/fraction of
O, inspiration (FiO,) <300 mmHg

+ Critically ill: respiratory failure needing mechanical
ventilation, shock, shock with other organ failure, or
needing ICU monitoring and treatment

One case report described a severely ill patient with
COVID-19 who suffered clinical deterioration and was
put on a non-invasive mechanical ventilator despite
standard therapy. After three doses of 5 x 10" hUC-MSCs
on 3 separate days, the patient’s symptoms and laboratory
values improved. The patient was weaned off the venti-
lator 1 day after the second MSC dose. Lymphopenia,
including CD3, CD4, and CD8 T cell counts, resolved,
with neutrophilia alleviation, and C-reactive protein
(CRP), aspartate transaminase (AST), alanine transami-
nase (ALT), d-dimer, and bilirubin levels decreased [57].

A clinical pilot study of 10 COVID-19 patients (7 in
the treatment group and 3 in the control group) evalu-
ated the therapeutic efficacy of IV MSC administra-
tion. In the treatment group, one patient was critically
ill, four had severe symptoms, and two were moderate
cases. After 2—4 days of 10° MSCs/kg administration,
all symptoms (fever, fatigue, hypoxia, dyspnea) resolved.
CRP levels decreased, oxygen saturation and lympho-
cytes increased, and cell types that mediate the cytokine
storm (CXCR3TCD4" T cells, CXCR3TCDS8™" T cells, and
CXCR3™ natural killer [NK] cells) markedly decreased in
the critically ill patient. Regulatory T cells and dendritic
cells increased in the critically ill and severely ill patients.
No early or delayed adverse events (AEs) were detected.
There was a significant drop in pro-inflammatory TNF-a
and a significant build-up in IL-10 in the severely ill
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Fig. 1 The immunomodulatory role of MSCs in COVID-19. Schematic showing the cytokine storm produced as a consequence of SARS-CoV-2
infection with clarification of the immunomodulatory role of the administrated MSCs in the inflamed lung tissue. The cytokine storm is formed
via inflammatory signaling and cytokines and chemokines recruitment. Also, macrophages, dendritic cells and monocytes are activated,
leading to severe inflammation, and tissue dysfunction. After MSCs administration, MSCs migrate to the affected tissue and significant
secretions of immunomodulatory biomolecules, and cytokines are observed. MSCs can be employed to reduce the produced inflammation via
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patients compared with the control group. The proposed
mechanism of action was the overexpression of trophic
anti-inflammatory factors transforming growth factor
beta (TGF-f), HGF, LIF, GAL, NOA1, FGF, VEGEF, EGF,
BDNEF, and NGF. Observed overexpression of SPC and
SPA may indicate MSC differentiation to alveolar type
IT cells [58]. This study suggested the safety and poten-
tial efficacy of MSCs as COVID-19 treatment. However,
the results were primarily based on the single criti-
cally ill patient, so further clinical studies are needed for
validation.

In a study on the safety and efficacy of hUC-MSCs as
severe COVID-19 treatment, patients were divided into
two groups: control (standard treatment; n=29) and
treatment (standard treatment + single IV dose of 2 x 10°
hUC-MSCs/kg; n=12). The treatment group mani-
fested neither progression from severe to critical dis-
ease nor 28-day mortality, whereas four patients in the
control group progressed to critical disease and 10.34%
of the patients died within 28 days. The treatment group

exhibited more rapid improvement in clinical symptoms
of dyspnea, weakness, and hypoxemia compared with the
control group but only in patients <65 years old. Labo-
ratory values of CRP, oxygen saturation, IL-6, and lym-
phocytes (significant between-group differences were
detected) and CT further substantiated the therapeutic
efficacy of MSCs, and clinical improvement in the treat-
ment group was significant by day 7 [59]. No AEs were
reported in the treatment group [59]. However, there
were between-group differences in demographics and
patient characteristics. In addition, the relatively small
sample size might have limited the generalizability of
results. Although the time to clinical improvement in
the treatment group was significant, the 28-day mortality
rate did not differ significantly.

Another study explored the safety and efficacy of hUC-
MSCs for moderate and severe COVID-19 treatment in
18 patients: control (standard treatment; #=1) and treat-
ment (standard treatment+ 3 x 10 hUC-MSCs/infusion
on days 0, 3, and 6; #=9) groups. In the treatment group,
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mild infusion-related AEs, including fever and flushing,
were observed in two patients and transient hypoxia in
one patient. Mechanical ventilation was needed in one
patient in the treatment group versus four patients in the
control group; however, the difference was not signifi-
cant. No mortality rate was recorded, but inflammatory
cytokines reduced. These results prove that IV infusion
of MSCs may be safe for moderate and severe COVID-
19 treatment [60]. Interestingly, patients with higher IL-6
levels benefited more from hUC-MSC infusion, indicat-
ing that a more severe inflammatory environment trig-
gers the MSC immunomodulatory response [60]. MSC
activity was believed to occur by reducing inflammatory
cytokines; however, a between-group comparison of their
levels would have significantly affected the results.

Lanzoni et al. investigated the safety and therapeu-
tic efficacy of hUC-MSCs in 24 COVID-19 patients (12
patients each in the control and treatment groups). In
each group, three patients displayed mild-to-moderate
ARDS, and nine displayed moderate-to-severe ARDS.
In the treatment group, patients were given two IV infu-
sions of 100420 x 10° hUC-MSCs at days 0 and 3 plus
standard treatment. No treatment-related AEs in terms
of infusion-related reactions within the first 6 h, car-
diac arrest or death within 24 h, or any other AEs were
documented. There was a significant reduction in patient
mortality, event-free survival, and time to recovery in the
treatment group compared with the control group. A sig-
nificant drop in the level of inflammatory cytokines and
growth factors between days 0 and 6 further confirmed
and justified the results. Therefore, hUC-MSCs are safe
and effective in COVID-19 treatment [61].

A pilot, single-arm trial in 16 patients with severe and
critically severe COVID-19 was performed. After four
rounds of hUC-MSC transplantation, patients showed
increased oxygen saturation, no allergic reactions, and
cytokine storm improvement, demonstrating the safety
and feasibility of hUC-MSCs in severe COVID-19 treat-
ment [62].

In summary, monitoring of COVID-19 severity and
recovery after MSC administration (Table 1) indicated
that MSCs can ameliorate COVID-19 severity and
patients can be weaned off the ventilator.

Ongoing clinical trials of MSC therapy for COVID-19
There are more than 55 ongoing clinical trials to assess
the therapeutic efficacy and safety of MSCs in COVID-
19 (clinicaltrial.gov; Table 2 and Additional file 2) [63].
The majority of the trials are between phases 1 and 2,
and few are in phase 3 [63]. The primary focus is severe
COVID-19 because of high mortality and the emergence
of promising treatments to decrease disease severity
and mortality rates; moderate stage cases are also under
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study [63]. Most include male and female patients aged
18 years and older, primarily between 50 and 80 years
old, while some include children and teenagers as well,
and a few are limited to a specific age range [63]. Some
of the trials have a low sample size (5-10 patients), while
others have low-to-moderate (16—50 patients) or moder-
ate (50—100 patients) sample sizes, which may not reflect
the true impact of MSC therapy. However, trials using a
large sample size (100—400 patients) may clearly reflect
the effect of MSC therapy [63].

The MSC dose (3-25x 10° cells/kg) varies widely.
More than 14 trials have injected 1 million cells/kg, while
others have injected 0.5-3, 25-90, or 100-400 million
cells/kg [63]. The number of administrated doses varies
between one and five; the majority of trials have adminis-
tered one to three doses: 13 trials, a single dose; 14 trials,
two doses; 11 trials, three doses; 6 trials, four doses; and
3 trials, five doses [63].

The administration route in most trials is IV to mini-
mize invasiveness, while optimizing cell retention and
observable migration to the affected area [64]. A few tri-
als have used intramuscular (IM) administration, while
others have used inhalation and jet nebulization. MSCs
have been sourced from the BM, umbilical cord, AD tis-
sue, dental pulp, and pooled olfactory mucosa [63]. Many
trials have used hUC-MSC:s, particularly from Wharton’s
jelly (W]J-MSCs) [63]; the most common MSC sources
in descending order are the umbilical cord, BM, and AD
tissue [63]. The vast majority of the MSCs used are allo-
geneic, while few are from autologous sources [63]. It is
unclear which source is superior in COVID patients. The
autologous source has the benefits of source availability
and the absence of immune rejection and ethical con-
troversy, although it is difficult to obtain a large number
of cells, it is not helpful in emergencies, and it needs a
biopsy, which exposes patients to risk. In contrast, the
allogeneic source has the benefits of high cell availabil-
ity, high-consistency materials, high patient throughput,
no need for biopsy, and commercial availability [65]. A
meta-analysis by Mclntyre et al. suggests that the alloge-
neic source provides desirable outcomes compared with
other cell sources (autologous, xenogeneic, or syngeneic).
Therefore, allogeneic MSC sources might be promising
in COVID-19 [66]. hUC-MSCs express the least major
histocompatibility complex (MHC)-I, so using them as
an allogeneic source does not cause an immune response
[64, 67—69]. The umbilical cord is extremely rich in MSCs
[68], is easily obtained, and is otherwise considered med-
ical waste. It is, therefore, free of ethical concerns, unlike
embryonic stem cells. Accordingly, hUC-MSCs represent
a prospective source for MSCs to be exploited in cell-
based therapy [64, 67, 70, 71].
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Several of the trials use MSCs due to their safety, effi-
cacy, and potential for disease amelioration, boosting
the immune system via immune cell reprogramming
and relieving symptoms. Their differentiation ability and
regenerative capacity also contribute to disease amelio-
ration. MSCs migrate to damaged tissues, induce tissue
repair, and exhibit an antiapoptotic effect without AEs.

MSC-derived exosomes and COVID-19

Despite the enormous success of MSCs in alleviating dis-
eases, there are concerns regarding their safety, therapeu-
tic efficacy, durability, and scalability [57, 58, 72]. Their
therapeutic potential is primarily due to their secreted
extracellular vesicles (EVs) [73]. EVs secreted from dif-
ferent cell sources are considered important messengers
in intercellular communication as they transfer bioac-
tive lipids, proteins, and nucleic acids. EVs include (1)
exosomes, with a diameter of 40-150 nm, which are
released into the extracellular environment when mul-
tivesicular bodies fuse with the cell membrane, and (2)
microvesicles, with a diameter of 150-1000 nm, develop-
ing from direct budding of the plasma membrane. MSC-
derived exosomes have several advantages: exosomes
avoid MSCs’ AEs, are nanoparticles with the ability to
penetrate the blood—brain barrier, and avoid potential
pulmonary embolism related to MSC transplantation.
MSC-derived exosomes contain many bioactive mol-
ecules, such as lipids, proteins, mRNAs, long-noncoding
RNAs, microRNAs, and mitochondrial DNA [74, 75].
MSC-derived exosomes exert anti-inflammatory and
immunomodulatory effects in preclinical studies on myo-
cardial infarction (MI), ischemia, cancer, lung injury, etc.
[76, 77]. Exosomes exceed MSCs in sustainability and
scalability as they are more stable than MSCs [25, 78].
However, their tumorigenic potential is debatable, as
some studies support their tumor promotion potential,
whereas others support their tumor inhibitory potential
[79]. Preclinical and clinical studies have demonstrated
the effects of exosomes in reducing cytokine storm com-
plications, such as alveolar inflammation, edema, and
epithelial tissue regeneration in inflammatory diseases,
such as ARDS, asthma, COPD, and acute lung injury
(ALI) [25, 80-86]. Therefore, clinical trials may start to
use MSC-derived exosomes to attenuate the cytokine
storm in severe COVID-19.

There are some challenges in using exosomes. First,
they modulate the immune response toward tolerance
and homeostasis [87-90]. This response is desirable in
non-infectious diseases, such as graft-versus-host dis-
ease, and are beneficial in infectious diseases, such as
influenza [84, 91-93]. However, other viruses or bacteria
might not respond in the same manner, because uncon-
strained replication may occur [87]. Second, MSCs are
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heterogeneous, and MSC-derived exosomes show het-
erogeneity. Variability is observed between different
sources, such as the BM and AD tissue [94], or even in
the same population or from the same source but differ-
ent donors [95]. BM-MSC-derived EVs from different
donors exhibit different cytokine contents, which affects
their potency [87, 91]. AEs also can differ; for instance,
AD-MSC-derived EVs show more thrombogenic markers
and more significant thrombogenic potential than BM-
MSC-derived EVs [96]. This AE may pose a significant
risk in COVID-19 as these patients are already at risk
of thrombosis [97]. Therefore, an immortalized clonal
MSC-derived EV line should be created to avoid potency
variations and standardize the therapy [87].

A nonrandomized prospective study assessed the safety
and efficacy of a BM-MSC-derived exosomal agent (Exo-
Flo) in 24 moderate-to-severe and severe COVID-19
patients. The patients were injected with 15 mL of ExoFlo
and monitored for 14 days post-injection. No AEs were
observed in the first 72 h post-injection. The majority of
patients clinically recovered with improved oxygenation.
Laboratory values of absolute neutrophil count, CRP, fer-
ritin, and d-dimer decreased, while lymphocyte counts
increased. This study demonstrated the potential safety
and efficacy of BM-MSC-derived exosomes, which may
be a promising therapeutic approach for COVID-19 [86].

However, the International Society for Cellular and
Gene Therapies (ISCT) and the International Society for
Extracellular Vesicles (ISEV) highlighted some issues with
ExoFlo, such as insufficient data about Food and Drug
Administration (FDA) approval, biological characteris-
tics compared with other products, characterization, cell
source evidence, and accurate dose (concentration/mL),
and with the study, such as missing electrocardiogram
(ECG) and pulse oximetry data. In addition, the ISCT
and the ISEV questioned how events that occurred more
than 72 h post-injection could certainly be unrelated to
the exosomal agent [98]. Sengupta et al. [86] reported
that ExoFlo is prepared by FDA-approved manufacturing
facilities that meet current good manufacturing practice
(cGMP) guidelines. They also provided light scatter and
fluorescence data to confirm ExoFlo’s characterization.
Proteomic analysis revealed the presence of proteins with
immunoregulatory, cell migration, angiogenesis, cell dif-
ferentiation, and apoptosis regulation functions. In addi-
tion, the dose of ExoFlo was 15 mL, with a concentration
of ~ 40 million cells/mL. The authors also confirmed that
the patients’ vital signs, oxygen saturation, and ECG were
regularly monitored post-injection for 14 days [99].
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Future approaches to enhancing MSC potency

for COVID-19 treatment

MSC coating

Despite the ability of MSCs to migrate to injury sites, the
amount of engraftment is relatively low. For instance,
only 1% of infused MSCs were found at the MI site in rats
4 h after infusion [100]. For MSCs to migrate to injured
tissue, the tissue must first chemoattract MSCs from the
blood circulation, which depends on several MSC surface
markers, including L-selectin, CD44, CD24, CD49a-f,
CD29, CD18, intercellular adhesion molecule ICAM)-1,
ICAM-2, and vascular cell adhesion molecule (VCAM)-
1, and their interaction with specific target tissue markers
[101].

Studies on cell surface modification of MSCs have
shown promise in preclinical models [102]. Coating
MSCs with sialyl Lewis X (SLeX), an essential media-
tor found on the leukocyte cell surface involved in leu-
kocyte migration to inflamed tissues, is the first step in
the migration process. Biotin-avidin technology can also
be used to supply hMSCs with biotinylated lipid vesicles
to facilitate linking to streptavidin—SLeX and increase
migration toward the P-selectin substrate [103]. Similarly,
in vivo, SLeX-engineered MSCs demonstrate enhanced
migration to the inflamed endothelium compared with
naive MSCs [104].

Another method of MSC coating is through antibod-
ies targeted to antigens expressed in target sites. An
in vitro study evaluated the migration of ICAM-1-MSCs
to human umbilical vein endothelial cells (HUVECs) and
detected enhanced binding. The binding intensified when
HUVECs were pretreated with TNF-« to stimulate ICAM
expression (105). An in vivo study used anti-VCAM-1 to
coat MSCs before infusion in an experimental colitis and
inflammatory bowel disease model. Increased migra-
tion of anti-VCAM-1-coated MSCs to injury sites was
observed, with no AEs on MSC characteristics, morphol-
ogy, or viability [106, 107]. Therefore, MSC surface modi-
fications can be a promising strategy for enhancing their
therapeutic efficacy in COVID-19.

Finally, strategies using biodegradable/biocompatible
MSC coatings have proven beneficial in MSC retention
in cardiac tissue and could be modified to enhance their
retention in lung tissue after IV administration [98, 108].

Genetically modified MSCs

Several studies have used genetically modified MSCs
to enhance the expression of a specific therapeutic pro-
tein or deliver therapy aimed at a specific disease [109].
Genetic modification of MSCs can be performed via
viral vector or nonviral delivery. In viral vector delivery,
insertional mutagenesis, immunogenicity, and limited
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carrying capacity are the main concerns. These con-
cerns are minimal in nonviral delivery, which includes
liposomes, plasmids, and miniplasmids; however, this
approach has low transfection ability and transitory
transgene expression (110). Due to MSC tropism in can-
cer tissues, several preclinical studies have investigated
the possibility of using genetically engineered MSCs to
target diverse types of cancer [111-113]. In a murine
xenograft melanoma model, tumor growth reduced fol-
lowing local transplantation of INF-3-transduced hMSCs
[114]. Similarly, MSCs were engineered to express TNE-
related apoptosis-inducing ligand (TRAIL), which can
induce apoptosis in cancer cells but not in healthy cells,
and were proven efficacious in some preclinical studies
[115, 116].

Genetically modified MSCs have also been tested in
other diseases, such as Alzheimer’s disease [117], neuro-
degenerative diseases [118], acute cardiovascular diseases
[119], spinal cord injury [120], and systemic lupus erythe-
matosus [121]. Lotfy et al. [36] reported that the immu-
nomodulatory and neuroprotective effects of genetically
modified MSCs can could be enhanced in vivo by geneti-
cally modulating important inflammatory targets, such as
INF-B and sphingosine kinase-1 (SPK1) [122, 123].

Several studies have assessed genetically modified
MSCs in ARDS and radiation-induced lung injury. ACE2
has protective activity against severe acute lung injury
[124]. ACE2-overexpressing hUC-MSCs played a more
therapeutic anti-inflammatory role than unmodified
MSCs in murine lung injury models [124, 125]. KGF
plays a substantial role in lung epithelial cell repair and
proliferation, and angiopoietin-1 sustains endothelial
maturation and permeability [50, 126]. Both KGF-MSCs
and angiopeotin-1-MSCs showed enhanced pulmonary
vascular permeability and modulated pulmonary inflam-
mation. There was a significant reduction in inflamma-
tory mediators, including Cxcl2, IL-6, IL-1p, IFNy, and
TNEF-a, in angiopoietin-1-MSCs compared with native
MSCs. In another study, MSCs overexpressed decorin, a
natural compound that attenuates fibrosis by inhibiting
collagen-1, a-smooth muscle actin (a-SMA), and TGF-$1
[127].

More preclinical studies are required to implement
genetic modification of MSCs to make them more potent
therapeutic agents for COVID-19 treatment.

MSCs and nanotechnology

Nanotechnology can be exploited to improve the thera-
peutic efficacy and enhance the delivery of MSCs in
COVID-19 in order to augment their therapeutic effects,
ameliorate symptoms, and decrease mortality. Since
the cytokine storm represents a significant risk for
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COVID-19 patients, there is an urgent need to inhibit it.
Metcalfe et al. suggested that nanosynthetic stem cells
(LIFNano) could inhibit and modulate the cytokine storm
seen in COVID-19 [72]. LIFNano carries leukemia inhib-
itory factor (LIF) with 1000 times more potency than the
soluble LIF released from MSCs. Quinton et al. demon-
strated that endogenous LIF plays a crucial role in lung
protection in acute lung injury [128]. LIFNano showed
a therapeutic effect in a multiple sclerosis experimental
animal model [129]. Therefore, LIFNano represents an
alternative to MSC therapy because of its high volume
and ability to inhibit the cytokine storm and repair dam-
aged lung tissue [72].

Valizadeh et al. revealed that the nanocurcumin ame-
liorates the cytokine storm and decreases the expression
and secretion of IL-6 and IL-1p but not IL-18 and TNF-a
in both serum and supernatant [130].

Nanocarriers have a wide range of applications and
represent a delivery platform for drugs, vaccines, and
cells because of their sustained release, selectivity, and
specificity. Chitosan plays a substantial role in drug deliv-
ery into lung tissue in infectious diseases as it is a bio-
degradable, biocompatible, and safe polymer. It acts as
a pulmonary particulate carrier for drugs because of its
mucoadhesive effect and its ability to locate into the spe-
cific site, as well as its permeation [131]. Therefore, com-
bining MSCs with chitosan hydrogel could enhance their
therapeutic efficacy, permeation, adhesion, and targeting.
Mehta et al. predicted that polysaccharide nanoparti-
cles, nanotheranostics, and mesoporous silica nanoparti-
cles would be promising targeted nanocarriers and drug
delivery systems in COVID-19. Therefore, their combina-
tion with MSCs might pave the way for a new COVID-
19 treatment [132]. Some nanomaterials display antiviral
efficacy, such as gold nanoparticles and heparan sulfate
proteoglycan (HSPG) [133]. Therefore, combining MSCs
with nanomaterials that exhibit antiviral activity might
duplicate and enhance their therapeutic efficacy.

MSC preconditioning

MSC:s can also be preconditioned with other compounds
to synergize their effect or enhance the overall outcome
for COVID-19 patients. For instance, MSCs can be pre-
conditioned with vitamin D, which acts as a strong
immunomodulator [134]. Since MSCs might undergo
apoptosis after transplantation, pretreatment with anti-
oxidants might help protect them. Mohammadi et al.
demonstrated that astaxanthin (ATX), a potent antioxi-
dant, plays a protective and supportive role for AD-MSCs
by overcoming oxidative stress; decreasing hydrogen
peroxide, which induces cell apoptosis; and enhancing
the expression of native cell antioxidants, such as heme
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oxygenase-1 (HO-1) and reduced nicotinamide adenine
dinucleotide phosphate (NADPH) quinine oxidoreduc-
tase 1 (NQOL1). Similar approaches could help protect
MSCs and enhance their viability in harsh conditions
and, hence, improve their therapeutic efficacy in COVID-
19 [135]. Interestingly, selenium is considered an anti-
oxidant with a low toxicity profile and antiviral property.
Therefore, selenium could be used, either in regular form
or preferably in its nanoform as nanoselenium (nanoSe)
[136], in combination with MSCs to ameliorate COVID-
19 symptoms.

Conclusion

SARS-CoV-2 emerged in Wuhan, China, and has become
a life-threatening virus, causing the COVID-19 pandemic
with significant morbidity and fatality rates. MSCs are
the most commonly used stem cells in clinical trials, with
validated safety, can migrate to sites of tissue injury, and
can ameliorate the COVID-19-associated cytokine storm
via their paracrine immunomodulatory effect. In fact,
multiple studies are underway exploring the therapeu-
tic efficacy of MSCs in patients with moderate-to-severe
COVID-19. A cell-free approach, such as using MSC-
derived exosomes, promises similar therapeutic efficacy
with fewer AEs. Future studies designed to enhance MSC
therapy in COVID-19 can take advantage of advances in
nanotechnology and cell surface and genetic modifica-
tions of MSCs to enhance their retention, survival, and
immunomodulatory effects and to further improve their
therapeutic efficacy in COVID-19.
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