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Mesenchymal stem cell‑based therapy 
and exosomes in COVID‑19: current trends 
and prospects
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Abstract 

Novel coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus-2. The virus 
causes an exaggerated immune response, resulting in a cytokine storm and acute respiratory distress syndrome, the 
leading cause of COVID-19-related mortality and morbidity. So far, no therapies have succeeded in circumventing 
the exacerbated immune response or cytokine storm associated with COVID-19. Mesenchymal stem cells (MSCs), 
through their immunomodulatory and regenerative activities, mostly mediated by their paracrine effect and extracel‑
lular vesicle production, have therapeutic potential in many autoimmune, inflammatory, and degenerative diseases. 
In this paper, we review clinical studies on the use of MSCs for COVID-19 treatment, including the salutary effects of 
MSCs on the pathophysiology of COVID-19 and the immunomodulation of the cytokine storm. Ongoing clinical trial 
designs, cell sources, dose and administration, and populations are summarized, and the paracrine mode of benefit is 
discussed. We also offer suggestions for optimizing MSC-based therapies, including genetic engineering, strategies for 
cell surface modification, nanotechnology applications, and combination therapies.
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Background
The coronavirus disease 2019 (COVID-19) outbreak 
emerged in December 2019 in Wuhan, China, but 
quickly spread worldwide, and the number of cases 
increased exponentially, with devastating effects on the 
global economy and public health. The World Health 
Organization (WHO) designated COVID-19 as a public 

health crisis because of its high morbidity and mortality 
(covid19.who.int). According to the Centers for Disease 
Control and Prevention [1], COVID-19 is characterized 
by high fever, fatigue, loss of taste and smell, respiratory 
symptoms, decreased oxygen saturation, and shortness 
of breath. The causative organism, severe acute respira-
tory syndrome corona virus-2 (SARS-CoV-2), can also 
cause neurological disorders, such as encephalopathy, 
encephalitis, anosmia, ageusia, and Guillain–Barré syn-
drome, and has been found in the cerebrospinal fluid 
[2]. COVID-19 can also affect the cardiovascular sys-
tem, with direct effects on the myocardium and associ-
ated myocarditis that causes acute coronary syndrome 
and myocardial infraction [3]. Some patients suffer from 
venous thromboembolism and coagulopathy, and these 
patients in the intensive care unit (ICU) are typically 

Open Access

*Correspondence:  abdel-latif@uky.edu; ahmed.lotfy@psas.bsu.edu.eg; 
lotfy_bio@hotmail.com
†Mai Abdelgawad and Nourhan Saied Bakry have contributed equally to 
this work
1 Biotechnology and Life Sciences Department, Faculty of Postgraduate 
Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni 
Suef 62511, Egypt
3 Gill Heart Institute and Division of Cardiovascular Medicine, University 
of Kentucky and the Lexington VA Medical Center, Lexington, KY, USA
Full list of author information is available at the end of the article

https://orcid.org/0000-0003-0884-4235
https://orcid.org/0000-0001-8888-2383
https://orcid.org/0000-0002-9270-9855
https://orcid.org/0000-0002-8178-7102
http://orcid.org/0000-0001-9928-0724
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13287-021-02542-z&domain=pdf


Page 2 of 20Abdelgawad et al. Stem Cell Res Ther          (2021) 12:469 

treated with anticoagulation therapy [4–6]. COVID-19 is 
characterized by cytokine storms, and patients are posi-
tive for cytokines, such as monocyte chemoattractant 
protein 1 (MCP1), macrophage inflammatory protein 
(MIP)1α, interleukin (IL)-6, IL-2, IL-7, IL-10, and tumor 
necrosis factor alpha (TNF-α) [7, 8].

There are no approved and effective therapeutics 
against COVID-19, and scientists are grappling with time 
to find effective treatments and vaccines. Cell-induced 
therapies using stem cells, particularly mesenchymal 
stem cells (MSCs), have been a primary target of thera-
peutic studies. Many drugs have been repurposed to 
accelerate drug development [9, 10], while mass vaccina-
tion campaigns are being slowly rolled out [11]. Interest-
ingly, the patient response to treatment and therapeutic 
efficacy has been heterogeneous.

MSCs are self-renewing multipotent stem cells that 
can differentiate into several cell types. They represent 
a promising therapy for several chronic lung diseases 
with high fatality and morbidity rates, such as chronic 
obstructive pulmonary disease (COPD), obstructive 
bronchiolitis, idiopathic pulmonary fibrosis, and acute 
respiratory distress syndrome (ARDS).

Here, we review the use of MSCs as a potential therapy 
for COVID-19, summarizing their role and immunomod-
ulatory effect in response to a cytokine storm. We dis-
cuss completed and ongoing clinical trials and the debate 
over the use of acellular MSC-based products, such as 
exosomes, and their effect on COVID-19 pathophysiol-
ogy. Finally, to improve the chances of treatment success, 
we suggest methods of enhancing the therapeutic efficacy 
of MSCs, such as combination therapies, genetic modifi-
cation and engineering, nanotechnology and nanomate-
rials, and MSC surface modifications.

SARS‑CoV‑2 infection
The novel SARS-CoV-2 [12] shares 79.6% genetic simi-
larity with other human coronaviruses and uses the 
same target receptor, angiotensin-converting enzyme 
2 (ACE 2), for host cell entry [13]. ACE2 is ubiquitously 
expressed, with high levels in the kidneys, esophagus, 
colon, small intestine, heart, and lungs [13, 14]. SARS-
CoV-2 pathophysiology and virulence are linked to its 
structural and nonstructural proteins. SARS-CoV-2 can 
enter type II alveolar cells or other ACE2-expressing 
cells via the spike (S) protein [15]. Following virus–host 
cell membrane fusion, viral RNA is released into the host 
cell, where viral replication, transcription, and transla-
tion occur, followed by the assembly of viral proteins 
and messenger RNAs (mRNAs) into new virions, which 
are then liberated [12, 16]. Upon SARS-CoV-2 infec-
tion, the secreted chemokines induce inflammation of 
the alveolar and capillary epithelia, causing alveolar and 

interstitial edema, eventually impairing pulmonary func-
tion. Pro-inflammatory granulocytes, monocytes, and 
macrophages are produced, with reduction in regulatory 
and anti-inflammatory immune cells. These findings are 
consistent with histological examinations of lung biopsies 
that show signs of ARDS, in addition to liver, kidney, and 
heart damage [13–17].

COVID‑19 and cytokine storms
COVID-19 ARDS is characterized by air exchange dys-
function, edematous changes, secondary infections, and 
a cytokine storm that can cause multiple-organ dysfunc-
tion [13]. There is an increase in leukocytes and inflam-
matory cytokines and chemokines, such as granulocyte 
colony-stimulating factor (G-CSF), granulocyte–mac-
rophage colony-stimulating factor (GM-CSF), IL-1β, IL-1 
receptor type 1 (IL-1RA), Il-7, IL-8, IL-9, IL-10, fibroblast 
growth factor 2 (FGF-2), MCP1, vascular endothelial 
growth factor A (VEGF-A), MIP1-α and MIP1-β, inter-
feron gamma (IFNγ), IFNγ-induced protein 10 (IP10), 
platelet-derived growth factor B (PDGFB), and TNF-α 
[18]. Many drugs have been repurposed for COVID-
19 treatment but with limited success. As the cytokine 
storm is the leading cause of death due to COVID-19, 
immunotherapy seems a favorable treatment option [8]. 
Tocilizumab (Actemra) is an immunotherapeutic that 
inhibits IL-6, which plays an integral role in the cytokine 
storm. However, there is a desperate need for a treat-
ment that can act on a broad range of cytokines [19], and 
stem cell therapy may be a more beneficial therapeutic 
approach to treating COVID-19.

MSCs
In 1966, Friedenstein et al. discovered that fibroblastoids, 
obtained from murine bone marrow (BM), differenti-
ate into osteocytes when subcutaneously transplanted. 
Fibroblastoids have since been named MSCs and have 
regenerative, multilineage differentiation, self-renewal, 
and immunomodulatory properties in vitro and in vivo, 
where they form a reservoir of restorative cells. MSCs 
can migrate to any part of the body, including wound, 
disease, and inflamed sites, where they modulate an 
immune response or differentiate into specific cell types 
[20–24]. MSCs can activate a tissue’s inhabitant stem 
cells to participate in the healing process [25].

Significant advances have been made in MSC isolation, 
culture, characterization, and differentiation for exog-
enous use, due to their low immunogenic profile. MSCs 
can be isolated from peripheral blood, the umbilical 
cord, adipose (AD) tissue, and BM [26–29]. They express 
CD90, CD73, and CD105 but not CD45, CD34, CD14, 
CD11b, CD79α, and human leukocyte antigen (HLA)-DR 
[30]. Under specific conditions, MSCs can be expanded 
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in  vitro and induced to differentiate into diverse cell 
types, such as osteoblasts, chondroblasts, ligamentous 
tissue, neuronal cells, stromal cells, and adipocytes [31].

MSCs have been applied in numerous preclinical and 
clinical studies [21, 22] to determine their safety and 
potential for mitigating inflammatory, degenerative, and 
autoimmune diseases, such as epilepsy, osteoarthritis, 
multiple sclerosis, rheumatoid arthritis, Crohn’s disease, 
inflammatory bowel disease (IBD), systemic lupus ery-
thematosus, type 1 diabetes (T1D), autoimmune hepati-
tis, amyotrophic lateral sclerosis, and corneal epithelial 
stem cell deficiency [32–44].

Immunomodulation
MSCs are considered the only stem cell type with immu-
nomodulatory activity and are, therefore, a primary tar-
get for therapeutic development for autoimmune disease 
and inflammation [44]. MSCs secrete immunomodula-
tors, including chemokines, IL-6 and prostaglandin E2 
(PGE2), hemoxygenase-1, leukocyte inhibitory factor, 
indolamine 2,3-dioxygenase (IDO), and transforming 
growth factor β [45]. MSCs also induce IL-10 expression 
[46]. Human umbilical cord tissue-derived MSCs (hUC-
MSCs) reprogram macrophages and monocytes via cyto-
plasmic organelles (RNA processing bodies [p-bodies]), 
a critical lung inflammatory inhibitor. These p-bodies 
are engulfed by macrophages and monocytes, modulat-
ing transcription and inhibiting T cell activation. Low-
density lipoprotein receptor-related proteins mediate this 
interaction on the surface of macrophages and mono-
cytes while blocking pharmacological inhibitors. These 
findings provide new insight into the inflammatory mod-
ulation of MSCs without long-term engulfment by indi-
rectly inhibiting the T cell response through monocyte 
and macrophage reprogramming by p-bodies [46].

MSCs can migrate to injured and affected tissue. In 
lung injury, ARDS, and sepsis, MSCs migrate to and are 
trapped in the lungs, promoting secretion of antimicro-
bial agents, cytokines, and growth factors [47].

MSCs and ARDS
Many preclinical and clinical studies have illustrated 
the therapeutic potential of MSCs in ARDS [48–53]. In 
a bleomycin-induced lung injury murine model, lung 
cells were protected from injury and fibrosis by migra-
tion of transplanted MSCs to the injury site, where they 
differentiated into lung cells and inhibited inflamma-
tory cytokine production [48]. In a phase 1 clinical study, 
the safety of intravenous (IV) infusion of BM-MSCs in 
moderate-to-severe ARDS patients was validated; how-
ever, further studies are required for therapeutic efficacy 
[52]. MSCs mitigate the cytokine storm via IL-10 and 
IL-1RA induction and TNF-α and neutrophil influx and 

assembly inhibition [50, 54]. MSC-secreted keratino-
cyte growth factor (KGF) induces alveolar epithelial cell 
repair and proliferation via IL-1RA, GM-CSF, and matrix 
metalloproteinase-9 (MMP-9) induction [54–56]. VEGF 
and hepatocyte growth factor (HGF) secreted by MSCs 
reduce endothelial cell permeation [55, 56]. These find-
ings suggest the potential utility of MSCs as treatment 
for COVID-19 ARDS patients. The potential beneficial 
effects are summarized in Fig. 1.

Studies on MSC therapy for COVID‑19
Multiple studies have used MSCs in the COVID-19 set-
ting (Table 1 and Additional file 1). Their therapeutic util-
ity varies by stage of disease:

•	 Mild: mild clinical manifestations
•	 Moderate or common: fever, respiratory symptoms, 

pneumonia on X-ray or computed tomography (CT)
•	 Severe: respiratory distress (respiratory rate 

[RR] ≥ 30/min), oxygen saturation ≤ 93% at rest, or 
arterial partial pressure of oxygen (PaO2)/fraction of 
O2 inspiration (FiO2) ≤ 300 mmHg

•	 Critically ill: respiratory failure needing mechanical 
ventilation, shock, shock with other organ failure, or 
needing ICU monitoring and treatment

One case report described a severely ill patient with 
COVID-19 who suffered clinical deterioration and was 
put on a non-invasive mechanical ventilator despite 
standard therapy. After three doses of 5 × 107 hUC-MSCs 
on 3 separate days, the patient’s symptoms and laboratory 
values improved. The patient was weaned off the venti-
lator 1  day after the second MSC dose. Lymphopenia, 
including CD3, CD4, and CD8 T cell counts, resolved, 
with neutrophilia alleviation, and C-reactive protein 
(CRP), aspartate transaminase (AST), alanine transami-
nase (ALT), d-dimer, and bilirubin levels decreased [57].

A clinical pilot study of 10 COVID-19 patients (7 in 
the treatment group and 3 in the control group) evalu-
ated the therapeutic efficacy of IV MSC administra-
tion. In the treatment group, one patient was critically 
ill, four had severe symptoms, and two were moderate 
cases. After 2–4  days of 106 MSCs/kg administration, 
all symptoms (fever, fatigue, hypoxia, dyspnea) resolved. 
CRP levels decreased, oxygen saturation and lympho-
cytes increased, and cell types that mediate the cytokine 
storm (CXCR3+CD4+ T cells, CXCR3+CD8+ T cells, and 
CXCR3+ natural killer [NK] cells) markedly decreased in 
the critically ill patient. Regulatory T cells and dendritic 
cells increased in the critically ill and severely ill patients. 
No early or delayed adverse events (AEs) were detected. 
There was a significant drop in pro-inflammatory TNF-α 
and a significant build-up in IL-10 in the severely ill 
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patients compared with the control group. The proposed 
mechanism of action was the overexpression of trophic 
anti-inflammatory factors transforming growth factor 
beta (TGF-β), HGF, LIF, GAL, NOA1, FGF, VEGF, EGF, 
BDNF, and NGF. Observed overexpression of SPC and 
SPA may indicate MSC differentiation to alveolar type 
II cells [58]. This study suggested the safety and poten-
tial efficacy of MSCs as COVID-19 treatment. However, 
the results were primarily based on the single criti-
cally ill patient, so further clinical studies are needed for 
validation.

In a study on the safety and efficacy of hUC-MSCs as 
severe COVID-19 treatment, patients were divided into 
two groups: control (standard treatment; n = 29) and 
treatment (standard treatment + single IV dose of 2 × 106 
hUC-MSCs/kg; n = 12). The treatment group mani-
fested neither progression from severe to critical dis-
ease nor 28-day mortality, whereas four patients in the 
control group progressed to critical disease and 10.34% 
of the patients died within 28 days. The treatment group 

exhibited more rapid improvement in clinical symptoms 
of dyspnea, weakness, and hypoxemia compared with the 
control group but only in patients < 65  years old. Labo-
ratory values of CRP, oxygen saturation, IL-6, and lym-
phocytes (significant between-group differences were 
detected) and CT further substantiated the therapeutic 
efficacy of MSCs, and clinical improvement in the treat-
ment group was significant by day 7 [59]. No AEs were 
reported in the treatment group [59]. However, there 
were between-group differences in demographics and 
patient characteristics. In addition, the relatively small 
sample size might have limited the generalizability of 
results. Although the time to clinical improvement in 
the treatment group was significant, the 28-day mortality 
rate did not differ significantly.

Another study explored the safety and efficacy of hUC-
MSCs for moderate and severe COVID-19 treatment in 
18 patients: control (standard treatment; n = 1) and treat-
ment (standard treatment + 3 × 107 hUC-MSCs/infusion 
on days 0, 3, and 6; n = 9) groups. In the treatment group, 

Fig. 1  The immunomodulatory role of MSCs in COVID-19. Schematic showing the cytokine storm produced as a consequence of SARS-CoV-2 
infection with clarification of the immunomodulatory role of the administrated MSCs in the inflamed lung tissue. The cytokine storm is formed 
via inflammatory signaling and cytokines and chemokines recruitment. Also, macrophages, dendritic cells and monocytes are activated, 
leading to severe inflammation, and tissue dysfunction. After MSCs administration, MSCs migrate to the affected tissue and significant 
secretions of immunomodulatory biomolecules, and cytokines are observed. MSCs can be employed to reduce the produced inflammation via 
contact-dependent process and paracrine factors’ secretion
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mild infusion-related AEs, including fever and flushing, 
were observed in two patients and transient hypoxia in 
one patient. Mechanical ventilation was needed in one 
patient in the treatment group versus four patients in the 
control group; however, the difference was not signifi-
cant. No mortality rate was recorded, but inflammatory 
cytokines reduced. These results prove that IV infusion 
of MSCs may be safe for moderate and severe COVID-
19 treatment [60]. Interestingly, patients with higher IL-6 
levels benefited more from hUC-MSC infusion, indicat-
ing that a more severe inflammatory environment trig-
gers the MSC immunomodulatory response [60]. MSC 
activity was believed to occur by reducing inflammatory 
cytokines; however, a between-group comparison of their 
levels would have significantly affected the results.

Lanzoni et  al. investigated the safety and therapeu-
tic efficacy of hUC-MSCs in 24 COVID-19 patients (12 
patients each in the control and treatment groups). In 
each group, three patients displayed mild-to-moderate 
ARDS, and nine displayed moderate-to-severe ARDS. 
In the treatment group, patients were given two IV infu-
sions of 100 ± 20 × 106 hUC‐MSCs at days 0 and 3 plus 
standard treatment. No treatment-related AEs in terms 
of infusion-related reactions within the first 6  h, car-
diac arrest or death within 24 h, or any other AEs were 
documented. There was a significant reduction in patient 
mortality, event-free survival, and time to recovery in the 
treatment group compared with the control group. A sig-
nificant drop in the level of inflammatory cytokines and 
growth factors between days 0 and 6 further confirmed 
and justified the results. Therefore, hUC-MSCs are safe 
and effective in COVID-19 treatment [61].

A pilot, single-arm trial in 16 patients with severe and 
critically severe COVID-19 was performed. After four 
rounds of hUC-MSC transplantation, patients showed 
increased oxygen saturation, no allergic reactions, and 
cytokine storm improvement, demonstrating the safety 
and feasibility of hUC-MSCs in severe COVID-19 treat-
ment [62].

In summary, monitoring of COVID-19 severity and 
recovery after MSC administration (Table  1) indicated 
that MSCs can ameliorate COVID-19 severity and 
patients can be weaned off the ventilator.

Ongoing clinical trials of MSC therapy for COVID‑19
There are more than 55 ongoing clinical trials to assess 
the therapeutic efficacy and safety of MSCs in COVID-
19 (clinicaltrial.gov; Table  2 and Additional file  2) [63]. 
The majority of the trials are between phases 1 and 2, 
and few are in phase 3 [63]. The primary focus is severe 
COVID-19 because of high mortality and the emergence 
of promising treatments to decrease disease severity 
and mortality rates; moderate stage cases are also under 

study [63]. Most include male and female patients aged 
18  years and older, primarily between 50 and 80  years 
old, while some include children and teenagers as well, 
and a few are limited to a specific age range [63]. Some 
of the trials have a low sample size (5–10 patients), while 
others have low-to-moderate (16–50 patients) or moder-
ate (50–100 patients) sample sizes, which may not reflect 
the true impact of MSC therapy. However, trials using a 
large sample size (100–400 patients) may clearly reflect 
the effect of MSC therapy [63].

The MSC dose (3–25 × 106 cells/kg) varies widely. 
More than 14 trials have injected 1 million cells/kg, while 
others have injected 0.5–3, 25–90, or 100–400 million 
cells/kg [63]. The number of administrated doses varies 
between one and five; the majority of trials have adminis-
tered one to three doses: 13 trials, a single dose; 14 trials, 
two doses; 11 trials, three doses; 6 trials, four doses; and 
3 trials, five doses [63].

The administration route in most trials is IV to mini-
mize invasiveness, while optimizing cell retention and 
observable migration to the affected area [64]. A few tri-
als have used intramuscular (IM) administration, while 
others have used inhalation and jet nebulization. MSCs 
have been sourced from the BM, umbilical cord, AD tis-
sue, dental pulp, and pooled olfactory mucosa [63]. Many 
trials have used hUC-MSCs, particularly from Wharton’s 
jelly (WJ-MSCs) [63]; the most common MSC sources 
in descending order are the umbilical cord, BM, and AD 
tissue [63]. The vast majority of the MSCs used are allo-
geneic, while few are from autologous sources [63]. It is 
unclear which source is superior in COVID patients. The 
autologous source has the benefits of source availability 
and the absence of immune rejection and ethical con-
troversy, although it is difficult to obtain a large number 
of cells, it is not helpful in emergencies, and it needs a 
biopsy, which exposes patients to risk. In contrast, the 
allogeneic source has the benefits of high cell availabil-
ity, high-consistency materials, high patient throughput, 
no need for biopsy, and commercial availability [65]. A 
meta-analysis by McIntyre et al. suggests that the alloge-
neic source provides desirable outcomes compared with 
other cell sources (autologous, xenogeneic, or syngeneic). 
Therefore, allogeneic MSC sources might be promising 
in COVID-19 [66]. hUC-MSCs express the least major 
histocompatibility complex (MHC)-I, so using them as 
an allogeneic source does not cause an immune response 
[64, 67–69]. The umbilical cord is extremely rich in MSCs 
[68], is easily obtained, and is otherwise considered med-
ical waste. It is, therefore, free of ethical concerns, unlike 
embryonic stem cells. Accordingly, hUC-MSCs represent 
a prospective source for MSCs to be exploited in cell-
based therapy [64, 67, 70, 71].
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Several of the trials use MSCs due to their safety, effi-
cacy, and potential for disease amelioration, boosting 
the immune system via immune cell reprogramming 
and relieving symptoms. Their differentiation ability and 
regenerative capacity also contribute to disease amelio-
ration. MSCs migrate to damaged tissues, induce tissue 
repair, and exhibit an antiapoptotic effect without AEs.

MSC‑derived exosomes and COVID‑19
Despite the enormous success of MSCs in alleviating dis-
eases, there are concerns regarding their safety, therapeu-
tic efficacy, durability, and scalability [57, 58, 72]. Their 
therapeutic potential is primarily due to their secreted 
extracellular vesicles (EVs) [73]. EVs secreted from dif-
ferent cell sources are considered important messengers 
in intercellular communication as they transfer bioac-
tive lipids, proteins, and nucleic acids. EVs include (1) 
exosomes, with a diameter of 40–150  nm, which are 
released into the extracellular environment when mul-
tivesicular bodies fuse with the cell membrane, and (2) 
microvesicles, with a diameter of 150–1000 nm, develop-
ing from direct budding of the plasma membrane. MSC-
derived exosomes have several advantages: exosomes 
avoid MSCs’ AEs, are nanoparticles with the ability to 
penetrate the blood–brain barrier, and avoid potential 
pulmonary embolism related to MSC transplantation. 
MSC-derived exosomes contain many bioactive mol-
ecules, such as lipids, proteins, mRNAs, long-noncoding 
RNAs, microRNAs, and mitochondrial DNA [74, 75]. 
MSC-derived exosomes exert anti-inflammatory and 
immunomodulatory effects in preclinical studies on myo-
cardial infarction (MI), ischemia, cancer, lung injury, etc. 
[76, 77]. Exosomes exceed MSCs in sustainability and 
scalability as they are more stable than MSCs [25, 78]. 
However, their tumorigenic potential is debatable, as 
some studies support their tumor promotion potential, 
whereas others support their tumor inhibitory potential 
[79]. Preclinical and clinical studies have demonstrated 
the effects of exosomes in reducing cytokine storm com-
plications, such as alveolar inflammation, edema, and 
epithelial tissue regeneration in inflammatory diseases, 
such as ARDS, asthma, COPD, and acute lung injury 
(ALI) [25, 80–86]. Therefore, clinical trials may start to 
use MSC-derived exosomes to attenuate the cytokine 
storm in severe COVID-19.

There are some challenges in using exosomes. First, 
they modulate the immune response toward tolerance 
and homeostasis [87–90]. This response is desirable in 
non-infectious diseases, such as graft-versus-host dis-
ease, and are beneficial in infectious diseases, such as 
influenza [84, 91–93]. However, other viruses or bacteria 
might not respond in the same manner, because uncon-
strained replication may occur [87]. Second, MSCs are 

heterogeneous, and MSC-derived exosomes show het-
erogeneity. Variability is observed between different 
sources, such as the BM and AD tissue [94], or even in 
the same population or from the same source but differ-
ent donors [95]. BM-MSC-derived EVs from different 
donors exhibit different cytokine contents, which affects 
their potency [87, 91]. AEs also can differ; for instance, 
AD-MSC-derived EVs show more thrombogenic markers 
and more significant thrombogenic potential than BM-
MSC-derived EVs [96]. This AE may pose a significant 
risk in COVID-19 as these patients are already at risk 
of thrombosis [97]. Therefore, an immortalized clonal 
MSC-derived EV line should be created to avoid potency 
variations and standardize the therapy [87].

A nonrandomized prospective study assessed the safety 
and efficacy of a BM-MSC-derived exosomal agent (Exo-
Flo) in 24 moderate-to-severe and severe COVID-19 
patients. The patients were injected with 15 mL of ExoFlo 
and monitored for 14  days post-injection. No AEs were 
observed in the first 72 h post-injection. The majority of 
patients clinically recovered with improved oxygenation. 
Laboratory values of absolute neutrophil count, CRP, fer-
ritin, and d-dimer decreased, while lymphocyte counts 
increased. This study demonstrated the potential safety 
and efficacy of BM-MSC-derived exosomes, which may 
be a promising therapeutic approach for COVID-19 [86].

However, the International Society for Cellular and 
Gene Therapies (ISCT) and the International Society for 
Extracellular Vesicles (ISEV) highlighted some issues with 
ExoFlo, such as insufficient data about Food and Drug 
Administration (FDA) approval, biological characteris-
tics compared with other products, characterization, cell 
source evidence, and accurate dose (concentration/mL), 
and with the study, such as missing electrocardiogram 
(ECG) and pulse oximetry data. In addition, the ISCT 
and the ISEV questioned how events that occurred more 
than 72  h post-injection could certainly be unrelated to 
the exosomal agent [98]. Sengupta et  al. [86] reported 
that ExoFlo is prepared by FDA-approved manufacturing 
facilities that meet current good manufacturing practice 
(cGMP) guidelines. They also provided light scatter and 
fluorescence data to confirm ExoFlo’s characterization. 
Proteomic analysis revealed the presence of proteins with 
immunoregulatory, cell migration, angiogenesis, cell dif-
ferentiation, and apoptosis regulation functions. In addi-
tion, the dose of ExoFlo was 15 mL, with a concentration 
of ~ 40 million cells/mL. The authors also confirmed that 
the patients’ vital signs, oxygen saturation, and ECG were 
regularly monitored post-injection for 14 days [99].
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Future approaches to enhancing MSC potency 
for COVID‑19 treatment
MSC coating
Despite the ability of MSCs to migrate to injury sites, the 
amount of engraftment is relatively low. For instance, 
only 1% of infused MSCs were found at the MI site in rats 
4 h after infusion [100]. For MSCs to migrate to injured 
tissue, the tissue must first chemoattract MSCs from the 
blood circulation, which depends on several MSC surface 
markers, including L-selectin, CD44, CD24, CD49a–f, 
CD29, CD18, intercellular adhesion molecule (ICAM)-1, 
ICAM-2, and vascular cell adhesion molecule (VCAM)-
1, and their interaction with specific target tissue markers 
[101].

Studies on cell surface modification of MSCs have 
shown promise in preclinical models [102]. Coating 
MSCs with sialyl Lewis X (SLeX), an essential media-
tor found on the leukocyte cell surface involved in leu-
kocyte migration to inflamed tissues, is the first step in 
the migration process. Biotin-avidin technology can also 
be used to supply hMSCs with biotinylated lipid vesicles 
to facilitate linking to streptavidin–SLeX and increase 
migration toward the P-selectin substrate [103]. Similarly, 
in  vivo, SLeX-engineered MSCs demonstrate enhanced 
migration to the inflamed endothelium compared with 
naive MSCs [104].

Another method of MSC coating is through antibod-
ies targeted to antigens expressed in target sites. An 
in vitro study evaluated the migration of ICAM-1–MSCs 
to human umbilical vein endothelial cells (HUVECs) and 
detected enhanced binding. The binding intensified when 
HUVECs were pretreated with TNF-α to stimulate ICAM 
expression (105). An in vivo study used anti-VCAM-1 to 
coat MSCs before infusion in an experimental colitis and 
inflammatory bowel disease model. Increased migra-
tion of anti-VCAM-1-coated MSCs to injury sites was 
observed, with no AEs on MSC characteristics, morphol-
ogy, or viability [106, 107]. Therefore, MSC surface modi-
fications can be a promising strategy for enhancing their 
therapeutic efficacy in COVID-19.

Finally, strategies using biodegradable/biocompatible 
MSC coatings have proven beneficial in MSC retention 
in cardiac tissue and could be modified to enhance their 
retention in lung tissue after IV administration [98, 108].

Genetically modified MSCs
Several studies have used genetically modified MSCs 
to enhance the expression of a specific therapeutic pro-
tein or deliver therapy aimed at a specific disease [109]. 
Genetic modification of MSCs can be performed via 
viral vector or nonviral delivery. In viral vector delivery, 
insertional mutagenesis, immunogenicity, and limited 

carrying capacity are the main concerns. These con-
cerns are minimal in nonviral delivery, which includes 
liposomes, plasmids, and miniplasmids; however, this 
approach has low transfection ability and transitory 
transgene expression (110). Due to MSC tropism in can-
cer tissues, several preclinical studies have investigated 
the possibility of using genetically engineered MSCs to 
target diverse types of cancer [111–113]. In a murine 
xenograft melanoma model, tumor growth reduced fol-
lowing local transplantation of INF-β-transduced hMSCs 
[114]. Similarly, MSCs were engineered to express TNF-
related apoptosis-inducing ligand (TRAIL), which can 
induce apoptosis in cancer cells but not in healthy cells, 
and were proven efficacious in some preclinical studies 
[115, 116].

Genetically modified MSCs have also been tested in 
other diseases, such as Alzheimer’s disease [117], neuro-
degenerative diseases [118], acute cardiovascular diseases 
[119], spinal cord injury [120], and systemic lupus erythe-
matosus [121]. Lotfy et al. [36] reported that the immu-
nomodulatory and neuroprotective effects of genetically 
modified MSCs can could be enhanced in vivo by geneti-
cally modulating important inflammatory targets, such as 
INF-β and sphingosine kinase-1 (SPK1) [122, 123].

Several studies have assessed genetically modified 
MSCs in ARDS and radiation-induced lung injury. ACE2 
has protective activity against severe acute lung injury 
[124]. ACE2-overexpressing hUC-MSCs played a more 
therapeutic anti-inflammatory role than unmodified 
MSCs in murine lung injury models [124, 125]. KGF 
plays a substantial role in lung epithelial cell repair and 
proliferation, and angiopoietin-1 sustains endothelial 
maturation and permeability [50, 126]. Both KGF-MSCs 
and angiopeotin-1-MSCs showed enhanced pulmonary 
vascular permeability and modulated pulmonary inflam-
mation. There was a significant reduction in inflamma-
tory mediators, including Cxcl2, IL-6, IL-1β, IFNγ, and 
TNF-α, in angiopoietin-1-MSCs compared with native 
MSCs. In another study, MSCs overexpressed decorin, a 
natural compound that attenuates fibrosis by inhibiting 
collagen-1, α-smooth muscle actin (α-SMA), and TGF-β1 
[127].

More preclinical studies are required to implement 
genetic modification of MSCs to make them more potent 
therapeutic agents for COVID-19 treatment.

MSCs and nanotechnology
Nanotechnology can be exploited to improve the thera-
peutic efficacy and enhance the delivery of MSCs in 
COVID-19 in order to augment their therapeutic effects, 
ameliorate symptoms, and decrease mortality. Since 
the cytokine storm represents a significant risk for 
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COVID-19 patients, there is an urgent need to inhibit it. 
Metcalfe et  al. suggested that nanosynthetic stem cells 
(LIFNano) could inhibit and modulate the cytokine storm 
seen in COVID-19 [72]. LIFNano carries leukemia inhib-
itory factor (LIF) with 1000 times more potency than the 
soluble LIF released from MSCs. Quinton et al. demon-
strated that endogenous LIF plays a crucial role in lung 
protection in acute lung injury [128]. LIFNano showed 
a therapeutic effect in a multiple sclerosis experimental 
animal model [129]. Therefore, LIFNano represents an 
alternative to MSC therapy because of its high volume 
and ability to inhibit the cytokine storm and repair dam-
aged lung tissue [72].

Valizadeh et  al. revealed that the nanocurcumin ame-
liorates the cytokine storm and decreases the expression 
and secretion of IL-6 and IL-1β but not IL-18 and TNF-α 
in both serum and supernatant [130].

Nanocarriers have a wide range of applications and 
represent a delivery platform for drugs, vaccines, and 
cells because of their sustained release, selectivity, and 
specificity. Chitosan plays a substantial role in drug deliv-
ery into lung tissue in infectious diseases as it is a bio-
degradable, biocompatible, and safe polymer. It acts as 
a pulmonary particulate carrier for drugs because of its 
mucoadhesive effect and its ability to locate into the spe-
cific site, as well as its permeation [131]. Therefore, com-
bining MSCs with chitosan hydrogel could enhance their 
therapeutic efficacy, permeation, adhesion, and targeting. 
Mehta et  al. predicted that polysaccharide nanoparti-
cles, nanotheranostics, and mesoporous silica nanoparti-
cles would be promising targeted nanocarriers and drug 
delivery systems in COVID-19. Therefore, their combina-
tion with MSCs might pave the way for a new COVID-
19 treatment [132]. Some nanomaterials display antiviral 
efficacy, such as gold nanoparticles and heparan sulfate 
proteoglycan (HSPG) [133]. Therefore, combining MSCs 
with nanomaterials that exhibit antiviral activity might 
duplicate and enhance their therapeutic efficacy.

MSC preconditioning
MSCs can also be preconditioned with other compounds 
to synergize their effect or enhance the overall outcome 
for COVID-19 patients. For instance, MSCs can be pre-
conditioned with vitamin D, which acts as a strong 
immunomodulator [134]. Since MSCs might undergo 
apoptosis after transplantation, pretreatment with anti-
oxidants might help protect them. Mohammadi et  al. 
demonstrated that astaxanthin (ATX), a potent antioxi-
dant, plays a protective and supportive role for AD-MSCs 
by overcoming oxidative stress; decreasing hydrogen 
peroxide, which induces cell apoptosis; and enhancing 
the expression of native cell antioxidants, such as heme 

oxygenase-1 (HO-1) and reduced nicotinamide adenine 
dinucleotide phosphate (NADPH) quinine oxidoreduc-
tase 1 (NQO1). Similar approaches could help protect 
MSCs and enhance their viability in harsh conditions 
and, hence, improve their therapeutic efficacy in COVID-
19 [135]. Interestingly, selenium is considered an anti-
oxidant with a low toxicity profile and antiviral property. 
Therefore, selenium could be used, either in regular form 
or preferably in its nanoform as nanoselenium (nanoSe) 
[136], in combination with MSCs to ameliorate COVID-
19 symptoms.

Conclusion
SARS-CoV-2 emerged in Wuhan, China, and has become 
a life-threatening virus, causing the COVID-19 pandemic 
with significant morbidity and fatality rates. MSCs are 
the most commonly used stem cells in clinical trials, with 
validated safety, can migrate to sites of tissue injury, and 
can ameliorate the COVID-19-associated cytokine storm 
via their paracrine immunomodulatory effect. In fact, 
multiple studies are underway exploring the therapeu-
tic efficacy of MSCs in patients with moderate-to-severe 
COVID-19. A cell-free approach, such as using MSC-
derived exosomes, promises similar therapeutic efficacy 
with fewer AEs. Future studies designed to enhance MSC 
therapy in COVID-19 can take advantage of advances in 
nanotechnology and cell surface and genetic modifica-
tions of MSCs to enhance their retention, survival, and 
immunomodulatory effects and to further improve their 
therapeutic efficacy in COVID-19.
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