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Abstract 

Background:  Optic neuritis (ON) is frequently encountered in multiple sclerosis, neuromyelitis optica spectrum 
disorder, anti-myelin oligodendrocyte glycoprotein associated disease, and other systemic autoimmune disorders. The 
hallmarks are an abnormal optic nerve and inflammatory demyelination; episodes of optic neuritis tend to be recur-
rent, and particularly for neuromyelitis optica spectrum disorder, may result in permanent vision loss.

Main Body:  Mesenchymal stem cell (MSC) therapy is a promising approach that results in remyelination, neuropro-
tection of axons, and has demonstrated success in clinical studies in other neuro-degenerative diseases and in animal 
models of ON. However, cell transplantation has significant disadvantages and complications. Cell-free approaches 
utilizing extracellular vesicles (EVs) produced by MSCs exhibit anti-inflammatory and neuroprotective effects in multi-
ple animal models of neuro-degenerative diseases and in rodent models of multiple sclerosis (MS). EVs have potential 
to be an effective cell-free therapy in optic neuritis because of their anti-inflammatory and remyelination stimulating 
properties, ability to cross the blood brain barrier, and ability to be safely administered without immunosuppression.

Conclusion:  We review the potential application of MSC EVs as an emerging treatment strategy for optic neuritis by 
reviewing studies in multiple sclerosis and related disorders, and in neurodegeneration, and discuss the challenges 
and potential rewards of clinical translation of EVs including cell targeting, carrying of therapeutic microRNAs, and 
prolonging delivery for treatment of optic neuritis.
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Background
Clinical scope of optic neuritis
Optic neuritis (ON) is an inflammatory condition of the 
optic nerve often associated with central nervous sys-
tem demyelinating disorders including multiple sclerosis 
(MS), neuromyelitis optica spectrum disorder (NMOSD), 
anti-myelin oligodendrocyte glycoprotein associated dis-
ease (MOGAD), as well as other systemic autoimmune 
disorders [1]. ON is characterized by inflammation and 
demyelination of the optic nerve and inner retinal dam-
age [2].

The presence of antibodies targeting the water channel 
aquaporin 4 in patients with NMOSD and myelin oligo-
dendrocyte glycoprotein in MOGAD are distinguishing 
features from MS [3]. The incidence of ON has been esti-
mated in large population studies. In a nationwide data-
base of 44 million people in South Korea, the incidence 
was 1.04 per 100,000 children, and 3.29 per 100,000 from 
2010 to 2016 [4]. In the adult population, it was 5.36 
per 100,000 in a hospital discharge database in Spain 
from 2008 to 2012 [5], and 3.7 per 100,000 in the United 
Kingdom Health Improvement Network from January 
1, 1995, to September 1, 2019. Patients with ON had a 

significantly higher rate of incident MS (hazard ratio, 
284.97; 95% confidence intervals, 167.85–483.81) [6].

Optic neuritis is a clinical diagnosis based on vision 
loss, optic nerve dysfunction, and absence of symptoms 
suggesting alternative forms of optic neuropathy. Mag-
netic resonance imaging typically shows enhancement 
of the impacted optic nerve segment, and visual evoked 
potentials demonstrate prolonged latency [7]. In up to 
25% of MS patients, ON is the initial inflammatory event 
[8–10]. Approximately 50% experience ON during the 
course of their disease [9].

Symptoms of eye pain and blurred vision may worsen 
over the first few days to 2 weeks, and then gradually 
improve. Some recover within a month, but recovery 
could take up to a year. In a 6-month followup of 278 
patients in Optic Neuritis Treatment Trial [11] with 
baseline visual acuity of > 20/50, all improved at least one 
line of visual acuity, and all except six improved at least 
three lines [12]. However, the quality of vision, including 
color or depth perception and contrast sensitivity, may be 
reduced due to optic nerve demyelination [13, 14]. Vision 
loss from ON in neuromyelitis optica spectrum disor-
der is usually more severe than MS-associated ON, with 
larger scotomas, and bilateral vision loss is common. The 
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risk of long term loss of vision is significantly greater than 
in MS, with approximately 20–30% functionally blind in 
the affected eye [15, 16]. Anti-myelin oligodendrocyte 
glycoprotein associated disease is also associated with 
significant bilateral visual impairment, but marked ON-
related papillitis and long term loss of vision occurs less 
frequently than in NMOSD [17].

Pathophysiology of ON
Hallmarks of ON pathology in the acute phase are optic 
nerve abnormalities and inflammatory demyelination. 
Predominant T-, B-, and glial cell activation within the 
nerve increases pro-inflammatory cytokines [18]. Inflam-
mation caused by activated microglia, monocyte-derived 
macrophages, and CD4- and CD8 + T cells results in 
reactive gliosis, demyelination, and axonal death [19]. 
Pro-inflammatory cytokines and cytotoxic factors target 
myelin-producing oligodendrocytes (OLGs), and oli-
godendrocyte precursor cells (OPCs), causing apopto-
sis [20–22], exacerbating axonal demyelination [23–28]. 
Mature OLGs that survive demyelination are unable to 
produce new myelin sheaths. Remyelination therefore 
requires migration and regeneration of oligodendrocytes 
from OPCs [29, 30]. These acute inflammatory lesions 
of the afferent visual pathway cause retrograde degen-
eration of retinal ganglion cells (RGCs) [31, 32]. Retinal 
nerve fiber layer (RNFL), and inner retinal layer thinning 
[33, 34] are quantified by optical coherence tomography 
(OCT). The extent of retinal thinning predicts the disease 
outcomes [35].

Jin et al. studied the time course of glial activation and 
its correlation to axon loss in the optic nerve and found 
that RGC loss was associated with reduced post-synap-
tic proteins and neurite projections, persistent micro-
glia, and astroglia activation in the inner retina with 
high levels of iNOS (inducible nitric oxide synthase), IL 
(interleukin)-1α, TNF (tumor necrosis factor)-α, and C1q 
(complement component 1q) [23]. Hence, development 
of therapeutic agents should focus on anti-inflammatory, 
anti-apoptotic, and remyelinating properties to achieve 
neuroprotection and neuro-regeneration in the optic 
nerve and retina.

Main text
Available and current treatment

1.	 Steroids

High dose intravenous steroids are frequently used for 
treatment of MS-associated ON, based upon results of 
the now 30-year old Optic Neuritis Treatment Trial [11]. 

However, there did not appear to be a long-term benefit 
from a single course of intravenous steroid treatment, 
and those treated with oral steroids had worse outcomes 
vs intravenous steroids or no treatment at all.

2.	 Chemotherapy and autologous hematopoietic stem 
cell transplant

A major focus of research in MS and related neurologi-
cal disorders is immunosuppression using chemotherapy 
and immune-depleting antibodies, followed by autolo-
gous hematopoietic stem cell transplant (aHSCT) [36]. 
The rationale is that MS is driven by inflammatory T cells 
that enter and infiltrate the central nervous system (CNS) 
and then recirculate in the cerebrospinal fluid (CSF) [37]. 
Harris et al. investigated T cell clones in the intrathecal 
compartment in active relapsing remitting MS and found 
that aHSCT removed most of them, establishing a new 
immune repertoire in both intrathecal and peripheral 
blood compartments. However, there have been signifi-
cant complications that limit this therapy [38].

3.	 Immune reconstitution therapy

Up to 80% of NMOSD patients have circulating autoan-
tibodies targeting aquaporin-4 (AQP4-IgG) on astrocytes 
[39]. Monoclonal antibodies that target complement 
(eculizumab), CD19 (inebilizumab), and interleukin-6 
receptor (satralizumab) have been shown effective to pre-
vent attacks in NMOSD in Phase III trials [40], and are a 
major focus of research and ongoing clinical studies.

The rationale behind anti-complement therapy is the 
activation of complement in subjects with NMOSD and 
MOGAD [41, 42]. For eculizumab, the largest study was 
of 143 patients, showing a significant decrease in rate of 
relapse [43]. IL6 is a proinflammatory cytokine increased 
in NMSOD, and the target of satralizumab. In Phase II 
studies, satralizumab decreased the rate of relapse [44]. 
Inebilizumab depletes circulating B cells, and is undergo-
ing Phase II/III trials [45]. The outcomes of major trials 
of these agents have been extensively reviewed elsewhere 
[40].

Limitations and gaps in existing therapies
Steroids are limited by systemic effects, and oral ster-
oids increased the risk of recurrence of ON [11]. In 
hematopoietic stem cell transplant, a primary concern 
is secondary autoimmune disease (2ndAD), typically 
autoimmune cytopenia, idiopathic thrombocytopenic 
purpura, autoimmune hemolytic anemia, hypo- or 
hyperthyroidism [46], and myasthenia gravis. 2ndADs 
were attributed to allogenic imbalances contextualized 



Page 4 of 15Aneesh et al. Stem Cell Research & Therapy          (2021) 12:594 

by graft versus host disease, viral infections, and chronic 
immunosuppression [46]. Alping et  al. compared the 
monoclonal antibody alemtuzumab, aHSCT, and a refer-
ence group of non-induction therapies between 2008 and 
2017 [47]. The mortality rate of aHSCT was comparable 
to the reference group and was lower than that in previ-
ous reports, but there was increased infection and thy-
roid disease vs the reference group. A potential limitation 
of the study includes the lack of a longitudinal compo-
nent as outcomes were only measured up to 3 years after 
treatment [48].

Monoclonal antibodies have been approved by the 
FDA and are safe. The main risk of eculizumab is infec-
tion by Neisseria meningitidis, with vaccination now 
required to prevent meningitis. There are practical con-
siderations with all of the agents, including the need for 
tightly scheduled and frequent infusions, as well as cost. 
The estimated yearly cost of eculizumab in the USA is 
$710,000. The cost of the other agents is about ½ or less 
that of eculizumab [49].

Due to the recurrent nature of the illness, the lack of 
long term benefit of steroids, changing nature of the 
disease with increasing recognition of NMSOD and 
MOGAD, and occurrence of residual damage to the optic 
nerve, therapeutic alternatives are needed for ON [18]. In 
particular, there is a need for agents that can assist with 
regeneration, and restoring neurological and visual func-
tion. Accordingly, in this review we will focus on mes-
enchymal stem cells and their secreted EVs (exosomes), 
which have the advantages of autologous treatment, 
fewer side effects, potential for regeneration of lost neu-
rons, and preservation of vision, and projected lower cost 
than existing therapies.

Mesenchymal stem cells

1.	 General considerations in MS and related disorders:

To promote neuroprotection in ON, attenuation of 
the inflammatory response, and neuroprotection of glial 
cells (OLGs, OPCs, astrocytes) and RGCs are key. MSC 
therapy is a promising approach to reducing the severity 
of MS-ON by triggering remyelination [50]. MSCs also 
suppress activation of T-, B-, dendritic, and NK (natural 
killer) cells [51–54]. It is important to note, however, that 
most of these studies have been performed in mouse EAE 
and are not necessarily extrapolatable to other models. 
Their immunomodulatory properties have been demon-
strated in animal models of MS, with intravenous admin-
istration of MSCs in EAE mice inhibiting T-cell responses 
and improving clinical scores [55]. Subsequent studies 
further demonstrated that MSCs decrease production 
of inflammatory cytokines, reduce axonal loss, attenuate 

demyelination, and improve functional recovery in EAE 
mice and rats when administered prior to disease onset 
[56–58]. However, all studies in EAE found that while 
MSCs were able to migrate into the central nervous sys-
tem via intravenous injection, they did not differentiate 
into neural phenotypes. Methods for delivering MSCs for 
MS-ON currently include intravitreal and systemic injec-
tion and intranasal delivery.

2.	 MSCs and optic neuritis:

(i) Intravitreal administration: An intravitreal injection 
of MSCs is feasible as a means to reach the dysfunctional 
retinal ganglion cells. Injection of MSCs into the vitreous 
in a rodent model rescued the retina from ischemic dam-
age by suppression of apoptosis, preserved autophagy, 
and attenuation of inflammation and vascular permeabil-
ity [59–61]. Intravitreally transplanted MSCs may also 
function by donating functional mitochondria to retinal 
ganglion cells [62]. Similarly, neural stem cell-based fac-
tors, glial derived neurotrophic factor (GNTF) or ciliary 
neurotrophic factor (CNTF), synergistically protected 
injured RGCs from cell death in an optic nerve crush 
model [63]. The main drawback of this approach is that 
the MSCs did not enter the optic nerve [64].

(ii) Parenteral administration: A recent animal study 
in mice with EAE showed promising results with MSCs 
for treatment of ON. Mice received 106 cells intraperi-
toneally. There was significantly lower motor-sensory 
impairment, improved pattern electroretinogram, and 
preserved retinal nerve fiber layer. Increased expression 
of Abca1, a cholesterol efflux regulatory protein, and 
reduced HIF-1 were present, although the functional 
roles of these gene expression alterations were not exam-
ined, leaving the mechanism of improvement still uncer-
tain [65].

In a Phase IIa open label study, intravenous administra-
tion of autologous MSCs (mean dose of 1.6 × 106 cells/kg) 
improved visual function in MS patients with optic neu-
ritis. Visual acuity, visual evoked response latency and 
optic nerve area improved, and retinal nerve fiber layer 
was preserved. This study lacked a control group and 
could not differentiate between treatment and the natu-
ral course of the disease [66]. In an observational study 
of 15 patients with NMOSD, 108 autologous MSCs were 
given intravenously, and T2 or gadolinium-enhancing T1 
lesions decreased in the optic nerve. Visual acuity, reti-
nal nerve fiber layer thickness, and optic nerve diameter 
increased [67].

(iii) Intranasal administration: Intranasal administra-
tion of stem cells and other drugs bypasses the blood 
brain barrier, enabling non-invasive delivery to the 
optic nerve and brain [68]. While there are not yet any 
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studies of intranasal MSCs in ON, there are promising 
results from pre-clinical studies in other neurodegenera-
tive diseases. Bone-marrow MSCs preconditioned with 
fasudil suppressed immune response in a mouse model 
of Parkinson’s disease, decreasing dopaminergic neu-
ron loss and improving motor function. MSCs migrated 
to hippocampus and substantia nigra for up to 1 month 
after intranasal administration [69]. Improved migratory 
ability of MSCs following intranasal administration was 
also noted in a study of cerebral ischemia in mice. The 
co-delivery of MSCs and insulin growth factor (IGF-1) 
resulted increased neurogenesis and angiogenesis in the 
ischemic region, leading to improved functional recovery 
[70]. Other examples of intranasal MSC administration 
include in models of neonatal stroke, encephalopathy of 
prematurity, Alzheimer’s disease and EAE [71–74].

Validating this approach for ON is that intranasal 
administration of MSC secretome to mice with EAE-
induced ON attenuated inflammation, demyelination, 
and RGC loss [75–77]. ST266, given intranasally to EAE 
mice resulted in decreased vision loss, inflammation, and 
demyelination. ST266 is derived from amnion-derived 
multipotent progenitor cells, a subpopulation of amnion 
epithelial cells grown in serum free media. The concen-
tration of proteins in ST266 ranges from the pg/mL to 
ng/mL range, and total concentration of secretome pro-
teins is about 100  μg/mL [78]. Filtered ST266 with ele-
ments < 50kD did not have significant effects in the retina; 
the effects could be due, at least in part, to the presence of 
EVs in the mixture (see below). There was localized accu-
mulation of ST266 in the retina and optic nerve, and sig-
nificant neuroprotection of RGCs [79]. Intranasal ST266 
in mice with optic nerve crush rescued RGCs, decreased 
demyelination, and provided neuroprotection for up to 
10 days [80]. The exact routes of transport of drugs after 
intranasal administration still remain under investigation 
[81]. ST266 is currently in Phase I trials via intranasal 
administration in patients with intraocular hypertension 
who have not yet developed optic nerve damage [49].

Use of MSCs is limited by their cellular senescence 
[82], possibility of malignant transformation in long-term 
culture [83], and low survival rate in tissues [84]. Most 
mesenchymal stem effects are paracrine, likely mediated 
by extracellular vesicles (EVs) [85–87]. Administration 
of MSCs or their secretome, which demonstrate neu-
roprotective properties [88], suggests EVs can serve an 
alternative cell-free strategy for restoring axons and their 
myelination [72].

Mesenchymal stem cell‑derived extracellular vesicles (EVs)
EVs secreted by living cells mainly include exosomes 
(50–150 nm diameter) and microvesicles (100–1000 nm) 

[89]. MSCs are amongst the largest cellular producers of 
EVs [90]. Although originally believed to be mediators 
of cellular homeostasis by secreting cellular waste [91], 
recent studies have highlighted important roles of EVs in 
intracellular communication and as modulators of cellu-
lar immunity, cancer biology, and regeneration [91, 92]. 
The EV membrane’s lipid bilayer is a subset of the plasma 
membrane [93]. EVs contain messenger RNA (mRNA), 
microRNA (miRNA), cytosolic, and trans-membrane 
proteins [94]. Exosomes are the smallest subset of EVs 
and play a significant role in the transfer of biomolecules 
such as RNA, proteins, enzymes, and lipids in physiologi-
cal and pathological conditions [95, 96].

A defining characteristic of exosomes is their endoso-
mal origin [97]. Exosome production starts with reverse 
membrane invagination and processing in multivesicu-
lar bodies (MVBs), followed by release into the intercel-
lular fluid when MVBs fuse with the cell membrane. All 
exosomes share a common set of proteins, tetraspanins 
(CD9, CD63, CD81), Alix, and TSG101, but also contain 
cargo reflective of the parent cell [96, 98]. When endo-
cytosed by effector cells, EVs trigger cellular responses 
reflective of their cell of origin [99, 100].

As a cell-free therapy, EVs have potentially significantly 
greater safety and specificity compared to stem cells 
[101], can be safely administered cross-species without 
immunosuppression [102–104], and are efficient small 
molecule carriers that can deliver anti-inflammatory 
agents [105–107]. EVs can pass through the blood brain 
barrier [105], making them suitable for CNS treatment. 
MSC-EV stability, biocompatibility, and low toxicity 
make them a favorable direction for research in drug 
delivery and precision medicine. However, challenges 
exist in large-scale exosome production, isolation, and 
storage stability [108]. Below we will cover recent find-
ings on the neuroprotective role of MSC-derived EVs 
and discuss the plausibility of MSC-EVs as a translation-
ally relevant cell-free therapy for MS- and related disease 
induced ON.

Therapeutic effects of EVs in neurodegenerative diseases
Neuronal EVs, including those secreted by oligodendro-
cytes, are involved in signaling between neural circuits to 
promote development and function by increasing neu-
rogenesis, synaptogenesis, and network activity [109]. 
Microglia-derived EVs promote production of ceramide 
and sphingosine to enhance excitatory neurotransmis-
sion, which supports physiological modulation of synap-
tic activity by microglia [110, 111]. Astroglial (astrocyte) 
EVs play key roles in regulating extracellular glutamate 
levels and modulating synaptic activation. MSC-derived 
EVs are involved in a wide variety of physiological pro-
cesses including inhibiting natural killer cells, B cells, 
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and mitogen activated T cells [112, 113], moderating 
microglia and macrophage polarization [114, 115], and 
reducing oxidative stress [116]. They also function in 
tissue regeneration and myelin membrane biogenesis 
[117–121]. While EVs derived from various types of 
neuronal cells have been studied as possible therapy for 
CNS diseases, they are applied as drug carriers or must 
be genetically modified to induce desired effects in target 
cells [106, 122]. In contrast, MSC-EVs’ inherent roles in 
immune modulation, neuroprotection, and anti-inflam-
matory mechanisms make them an ideal choice for the 
treatment of ON and other neurodegenerative disorders. 
The relative efficacy of these EVs derived from different 
cell types remains a significant knowledge gap in the field.

Intranasally administered EVs have shown promising 
results in rodent models of Alzheimer Disease, and other 
models of neurodegeneration [123–126]. Other studies 
found intranasal administration of EVs reduced neuro-
inflammation and neurodegeneration in models of MS 
[106], Parkinson’s Disease [127], and prevented cognitive 
dysfunction in a model of status epilepticus [128]. Bone 
marrow human MSC-derived exosomes were given intra-
nasally to 5XFAD transgenic mice in a model of Alzhei-
mer Disease, and saw decreased amounts of Aβ plaques 
and increased memory. To localize the exosomes in the 
brain, the investigators stained used a fluorescent label of 
the exosome membrane. Immunohistochemistry showed 

high fluorescence in the pre-frontal cortex of treated 
mice 24  h post-treatment, demonstrating the ability of 
exosomes to reach the CNS via intranasal administra-
tion [123]. EVs have been administered into the vitreous 
to access the retina, but no studies have been performed 
yet with intranasal administration directly targeting the 
optic nerve [104, 129, 130]. Novel methods of modify-
ing surface receptors and contents of EVs to better target 
and protect the retina and optic nerve are currently being 
developed, which will be discussed below, and present 
a promising outlook for the application of EVs for the 
treatment of ON.

Mechanisms of MSC‑EV activity relevant to ON

1.	 Anti-inflammation

Increasing evidence suggests that EVs attenuate neuro-
inflammation through regulating T-cells, macrophages, 
astrocytes, and microglia [131–137]. Studies on MSC-
EVs in MS and neurodegenerative disease models are 
summarized in Table  1. MSC-EVs improved functional 
outcome and decreased levels of neuroinflammation and 
demyelination by reducing pro-inflammatory cytokines 
as well as CD4 + T cells infiltrating the spinal cord in 
EAE mice [132, 138]. EVs suppressed T-cell proliferation 

Table 1  MSC-EVs as potential therapy for MS, and related neurodegenerative diseases

CTGF, Connective tissue growth factor; EAE, Experimental animal encephalomyelitis; MCAO, Middle cerebral artery occlusion; MS, Multiple sclerosis; ONC, Optic nerve 
crush; TMEV-IDD, Theiler’s murine encephalomyelitis virus induced demyelinating disease

Disease Model Administration Molecular mechanism Effect References

MS EAE Rat Intravenous Regulated polarization of microglia 
M1-M2

Attenuated demyelination and 
decreased inflammation

[141]

EAE Mice Intravenous Reduced T-cell proliferation and 
increased regulatory T-cell activity 
through anti-inflammatory cytokines

Improved functional outcomes and 
clinical score, reduced demyelination

[138]

EAE Mice Intravenous Induced anti-inflammatory TH-2 
cytokines and TGF-β

Modulated immune response and 
induced peripheral tolerance

[132]

TMEV-IDD Mice Intravenous Decreased Th-1/Th-17 cytokines Improved motor deficits [131]

Alzheimer APP/PS1 Mice Intravenous Inhibited astrocyte activation, 
decreased pro-inflammatory and 
increased anti-inflammatory cytokines

Alleviated plaque deposition and Aβ 
accumulation, improving cognitive 
function

[148]

3xTg Mice Intranasal Regulated polarization of microglia 
M1-M2

Neuroprotective effects, increased 
dendritic spine density

[143]

Status Epilepticus Pilocarpine Mice Intranasal Decreased glutamatergic and GABAe-
rgic neurons, regulation of pro/anti-
inflammatory cytokines

Neuroprotective effects, preserved 
cognitive and memory function

[128]

Stroke MCAO Rats Intravenous miR-133b regulated CTGF in astrocytes, 
increasing axonal plasticity

Induced functional recovery [149]

Glaucoma ONC Mice Intravitreal Improved retinal ganglion cell survival, 
downregulated cis-p tau

Improved cognitive visual behavior [150]

ONC Rats Intravitreal Modulated inflammatory response 
through miR-based mechanisms

Neuroprotection of retinal ganglion 
cells

[130]
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and induction of regulatory T cells (Tregs), whose dele-
tion or mutation play an important role in the pathogen-
esis of EAE [138, 139].

As the resident immune cells of the CNS, microglia 
play an important role in initiating and attenuating neu-
roinflammation. Mounting evidence suggests the role 
of MSC-EVs in mediating immunomodulatory effects 
by regulating microglial activity and promoting a shift 
in microglial phenotypes from M1 (pro-inflammatory) 
to M2 (anti-inflammatory) [131, 136, 140]. For exam-
ple, MSC-EVs administered intravenously to EAE mice 
improved symptoms, attenuated demyelination, and 
decreased neuroinflammation by regulating polarization 
of microglia between M1 and M2 phenotypes [141]. In a 
murine model of Alzheimer’s disease, MSC-EVs inhibited 
the activation of microglia through transfer of micro-
RNAs-467f and -466q, decreasing expression of pro-
inflammatory cytokines [142]. Intranasal administration 
of MSC-EVs to a 3xTg mice model of Alzheimer’s dis-
ease reduced pro-inflammatory cytokine secretion from 
microglia, while enhancing the secretion of anti-inflam-
matory cytokine IL‐10 [143].

2.	 Axon remyelination and MSC-EVs

In MS and related disorders, activated immune cells 
in inflammatory lesions damage myelin-producing 
oligodendrocytes, causing demyelination. Several 
studies have shown MSC-EVs’ ability to protect and 
promote the development of OLGs and their precursor 
cells throughout the course of the disease. EAE mice 
injected with MSC-EVs had improved motor function 
and decreased demyelination in the spinal cord. EVs 
also promoted differentiation of OLG precursor cells 
into mature OLGs [144]. But this study has signifi-
cant limitations. There was large variability in onset of 
EAE, with significant sex differences in the onset and 
response to treatment. The neuroprotective effects 
of MSC-EVs on oligodendrocytes were also reported 
in models of ischemic brain injury. MSC-EVs boosted 

remyelination and increased mature oligodendro-
cyte and neuronal cell counts, leading to significantly 
improved learning ability in mice with perinatal brain 
injuries [10]. Mice exposed to hypoxia were injected 
with EVs which attenuated demyelination, increased 
proliferation of endothelial cells, and increased the 
number of mature OLGs [145]. The neuroprotective 
effects of the EVs were largely attributed to their abil-
ity to modulate activation of microglia and astrocytes. 
In TMEV-IDD (TMEV-induced demyelinating disease) 
mice, MSC-EVs reduced brain atrophy, and cytokine 
levels [131].

It is important to note that most of these studies are 
limited by inability to track the effects of EVs over an 
extended period, and more importantly, that EVs typi-
cally do not last long in tissues [10, 103, 131, 141–143]. 
Thus, the temporal sequence of improvement is difficult 
to assess. Fluorescent tracking of EVs after intravenous 
injection found that the administered EVs collected 
largely in the spleen and liver in as little as two hours, 
and no significant amounts remained in the CNS after a 
week [131, 138].

Analysis of cytokine levels from the in  vivo studies 
is also limited, as mRNA expression was analyzed in 
total tissue lysates, not allowing conclusions about their 
cellular source [138, 143, 145, 146]. More research on 
uptake and distribution of EVs in disease models will 
allow better understanding of their full potential, limi-
tations and explain discrepancies between in  vivo and 
in vitro results [139, 142].

There also is a need to develop EVs formulations that 
possess extended periods of uptake into tissues. Initial 
studies by our group in bone regeneration using EVs 
tethered to hydrogels have shown the ability to produce 
an extended-release formulation [147]. More discus-
sion of the means to prolong delivery of EVs appears 
below.

3.	 MicroRNA mediated EV functionality

Table 2  MicroRNAs in MS and demyelination animal models

miRNA Disease Model Effect in Diseased Model References

miR-21 Pediatric Multiple Sclerosis Increased levels in white matter [154]

miR-219 Demyelinating model CNS myelination and remyelination after injury, overexpression promotes early 
oligodendrocyte maturation

[155]

miR-219 Multiple Sclerosis Necessary for production of myelinating oligodendrocytes [156]

miR-146 Multiple Sclerosis (EAE Model) Crossed the Blood Brain Barrier and significantly improved functional recovery [157]

miR-197 Pediatric Multiple Sclerosis Essential for maintaining T-cell count in patients treated with IFN-beta [154]

miR-200c Pediatric Multiple Sclerosis Increased levels in white matter [154]

miR-326a Multiple Sclerosis Increased levels in T-cell derived EVs in MS patients [158]



Page 8 of 15Aneesh et al. Stem Cell Research & Therapy          (2021) 12:594 

The pathology of MS is influenced by histone modifi-
cations and gene regulation by microRNAs (miRNA) 
[151]. Thus, microRNAs are emerging as important 
mediators in MS and related disorders (Table  2) [152, 
153]. Although exosomes carry proteins, mRNAs, and 
other non-coding RNAs, microRNAs are among the 
most important components of exosomes that mediate 
changes in cellular signaling. Exosomes can play a role 
as carriers of miRNAs to therapeutically regulate MS 
pathology. Additionally, overexpression of proteins that 
modulate exosomal miRNA gene expression profiles have 
the potential to improve therapeutic effects of exosomes 
[108].

MicroRNAs mediate post-transcriptional gene silenc-
ing and are involved in cellular activities including prolif-
eration, differentiation, and migration, as well as disease 
initiation and disease progression. MicroRNA appears to 
mediate most EV effects [159] by three known mecha-
nisms: [1] Binding the 3’UTR of their target mRNA, 
silencing the gene and blocking translation, [2] Transla-
tional repression by cleaving and degrading mRNA, [3] 
De-adenylation and degradation of mRNAs [160]. The 
miRNA processing endonuclease Dicer is a member of 
the ribonuclease III family that functions in the RNA 
interference pathway to cleave long double stranded RNA 
molecules into small RNAs including miRNA and siRNA 
[161, 162]. Dicer1 is essential to the miRNA pathway and 
Dicer2 facilitates the siRNA pathway [161]. Dicer cleaves 
the precursor miRNA (pre-miRNA) hairpins at the stem-
loop boundary, generating mature miRNA [162]. ADi-
cer knockout mice (ADicerKO) lack effective miRNA 
processing in adipose tissue. EVs from ADicerKO mice 
exhibited significant alterations in 422 EV miRNAs [163].

MicroRNA-219 promoted oligodendrocyte maturation 
and regeneration in the EAE model [155]. Its gene targets 
were oligodendrocyte inhibitors including Nfia, Nfib, 
and Lingo1 in OPCs. Similar findings have been found in 
an animal model of Krabbe’s disease [164]. MicroRNA-
125a-3p was upregulated in MS patients and in OPCs 
from the spinal cord of EAE mice; blocking this micro-
RNA accelerated remyelination [165]. Similarly, increased 
levels of miR-27a were found in OPCs from MS patients 
and in animal models of demyelination [166]. Studies on 
microRNAs in MS and related disorders are summarized 
in Table 2. MicroRNA regulation of OPCs is an emerging 
field with significant implications for design of treatment 
strategies in MS. In addition to viral transfection [165], 
another means to deliver microRNAs is via EVs.

Modification of EVs for targeted delivery and functionality
Regardless of the route of administration, EVs are highly 
promiscuous and tend to enter the first cells they encoun-
ter. This can limit the ability of EVs to reach cells that are 

further from the site of administration. The surface of 
EVs can be modified to carry ligands to take advantage of 
the presence of specific receptors on the cell surface for 
targeting and thereby deliver the EVs to the desired cell 
types. The first use of this methodology was engineering 
EVs from dendritic cells to express neuron-specific rabies 
viral glycoprotein peptide, to bind the acetylcholine 
receptor on neurons [167]. EVs conjugated to a monoclo-
nal antibody against GAP43 targeted delivery of querce-
tin to ischemic neurons [168]. Another example was T7, 
a transferrin receptor-binding peptide attached to the 
EV surface, which resulted in targeting of gliomas [169]. 
With respect to MS specifically, carboxylic acid-function-
alized LJM-3064 aptamer was covalently conjugated to 
amine groups on the EV surface, which resulted in pro-
liferation of OLGs in vitro. In mice, these EVs suppressed 
inflammatory response and decreased demyelination 
[170]. Targeting of EVs, while an exciting technology, 
still faces significant technical hurdles. Chemical modi-
fications of surface proteins and addition of monoclonal 
antibodies can alter endocytosis of EVs [171, 172].

An alternate approach is genetic modification, where 
the EV surface is modified using a lentiviral carried plas-
mid for transfection of the parent cells, as we and others 
previously reported [173–175]. With the genetic modi-
fication, a stable cell line of, e.g., MSCs, can be created, 
from which EVs of predictable composition and proper-
ties can easily be obtained [147].

Functionally engineered EVs (FEEs), where EVs are 
modified to carry proteins or specific miRNAs, are also 
emerging as a potential nano-therapeutic tool in the 
brain. In several different models, EVs overexpressing 
the miR17-92 cluster enhanced function and myelina-
tion [176, 177]. There are few studies available on the 
efficacy of functionally engineered MSC-EVs in EAE. 
Experiments have involved EAE mice with engineered 
EVs derived from phagocytes. In Zhuang et  al.’s study, 
macrophage-derived EVs were complexed with the 
anti-inflammatory drug curcumin, and administered 
intranasally to EAE mice [106]. The EV-curcumin com-
plex significantly reduced neural inflammation and dis-
ease severity score by lowering the number of activated 
inflammatory microglial cells (CD45.2 + IL-1β +). Engi-
neered BV-2 microglia released EVs containing IL-4, an 
anti-inflammatory cytokine, which targeted phagocytes 
through the overexpression of Mfg-8 on its surface [122]. 
A single injection of the EVs in EAE mice reduced neu-
roinflammation, improved clinical score, and attenuated 
tissue damage by up-regulating anti-inflammatory mark-
ers. Engineered extracellular vesicles from HEK 293  T 
cells overexpressing miR-219a-5p increased oligoden-
drocyte precursor cell differentiation and severity of EAE 
[178].
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Prolonging EV delivery
With a short half-life in tissues, one of the biggest chal-
lenges in developing EVs for therapeutics is to enhance 
their residence in the tissues. Loading of EVs into hydro-
gels for sustained release has been attempted in several 
organ systems. Hydrogels increase the efficacy of EVs by 
concentrating them in a single area. Li et al. encapsulated 
miR-26a-enriched MSC EVs in a biodegradable hydrogel 
made of thiol-modified hyaluronan (HA), heparin (HP), 
gelatin, and polyethylene glycol (PEG) and implanted 
them into calvarial defects in mice [179]. The hydro-
gel complex provided a controlled release of the miR-
enhanced EVs, successfully integrated with the host bone 
marrow cells, and sustained an upregulation of miR-
26a expression, leading to greater vascularization, bone 
regeneration, and complete repair of the calvarial bone 
defect. Other research groups have delivered EVs in a 
number of different biomaterials to target various disease 
models (Table 3). With the conjugated systems, sustained 
release of EVs was maintained for 14–36 days [180, 181]. 
The longer period of time and improved integration of 
EVs lead to significantly higher levels of wound healing, 
tissue repair, and blood perfusion, as well as decreased 
inflammation and apoptosis.

Natural and synthetic hydrogels allow for precise con-
trol of the types of materials, its shape, and the timing 
and level of its degradability. Coupled with its ability to 
enhance the therapeutic effects of exosomes, hydrogel-
EV systems have strong potential for clinical application.

MSC‑EVs: comparison to MSCs and challenges for clinical 
translation
Compared to the MSCs from which they are derived, EVs 
have shorter lifespan  and  thus need for multiple injec-
tions [103, 130]. MSCs can be injected or placed at the 
site of action, and while they may not integrate into the 
tissue, they may remain intact for a longer period of time. 
For example, after injection of CD + 34 MSCs into the 
vitreous, the cells were found to have migrated into the 

retinal vasculature after about 4 months [184]. However, 
immunosuppression is needed to maintain the survival of 
the stem cells [185].

MSCs also have a migratory capacity [186], while 
for EVs studies of migration within tissues still remain 
incomplete. We found that MSC-EVs injected into the 
vitreous did not penetrate any deeper than the outer 
plexiform layer. (This is not, however, a disadvantage for 
access to inner retina and retinal ganglion cells) [103]. 
MSCs and EVs have different considerations for long 
term storage. Storage at low temperature (− 80 °C) may 
affect the stability of EVs [187]. Lyophilization or use of 
cryoprotective agents may mitigate these problems. With 
MSCs, cryopreservation may also impair their function 
[188]. Recent reviews have discussed these issues and 
novel means to preserve MSC function [189].

A major challenge with EVs is the accuracy of the meth-
ods in measuring the quantity and purity of exosomes. 
The different methods for quantitation of amount of EVs 
and their purity, as well as preparation methods, have 
been reviewed thoroughly elsewhere [190]. For regula-
tory approval, assuring purified preparations is essential. 
EV production requires culturing the parent cell line, 
harvesting EVs from conditioned media, and separation/
purification of contaminants. Large scale consistent pro-
duction necessitates use of a bioreactor, to facilitate cell 
cultivation and continuous medium collection [191]. 
Good manufacturing practice will be essential for large 
scale production of EVs [192].

Conclusions
Demyelinating optic neuritis is a classic presentation 
of multiple sclerosis and related conditions including 
neuromyelitis optica spectrum disorder and anti-mye-
lin oligodendrocyte glycoprotein associated disease. 
ON pathology is marked by an abnormal optic nerve 
and inflammatory demyelination. Clinical research 
has revealed efficacy of immunosuppressive treatment 

Table 3  EV-hydrogel delivery systems

ADSC: Adipose tissue-derived mesenchymal stem cells; GMSC: Gingival mesenchymal stem cells; PMSC: Placental mesenchymal stem cells; UMSC: Umbilical cord-
derived mesenchymal stem cells

Type of EV Hydrogel Material Application References

BMSC-EV Thiol-modified hyaluronan, heparin, gelatin, and polyethylene glycol Increased levels in white matter [179]

HMSC-EVs Photoinduced imine crosslinking hydrogel Cartilage regeneration and repair [180]

ADSC-EVs Pluronic F127, oxidative hyaluronic acid, and Poly-ε-L-lysine Chronic diabetic wound healing [181]

UMSC-EVs Silk fibroin hydrogel Aging-induced vascular dysfunction [182]

PMSC-EVs Chitosan hydrogel Hindlimb Ischemia [133]

GMSC-EVs Chitosan and silk-based hydrogel Diabetic wound healing [183]

UMSC-EVs PA-GHRPS and NapFF peptide hydrogel Myocardial infarction [182]
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and monoclonal antibodies targeting different inflam-
matory pathways. However, achieving neuroprotec-
tion of glial cells and RGCs and remyelination are 
needed. Mesenchymal stem cell therapy is a promising 
approach that results in anti-inflammatory effects and 
remyelination and has shown success in some small 
clinical studies. The main limitation of MSC therapy for 
ON is the difficulty of reaching the site of pathology in 
the optic nerve and retina. This necessitates investiga-
tion of a cell-free approach that utilizes the paracrine 
effects of EVs produced by MSCs, which have the abil-
ity to cross the blood–brain barrier. EVs have poten-
tial to be an effective cell-free therapy because of their 
increased specificity and ability to be safely adminis-
tered without immunosuppression. EV cellular uptake 
can be enhanced through genetic engineering of their 
parental cells. MSC-EVs decreased inflammation and 
enhanced remyelination in animal models of MS. Fur-
ther investigation has found the significant role played 
by microRNA in the mediation and progression of MS. 
Overexpressing specific miRs promoted remyelination. 
Delivery of engineered EVs can be prolonged through a 
robust hydrogel-EV system, which sustains delivery of 
EVs to the target site. Further exploration of the poten-
tial for EVs enhanced through miRNA modification, 
functional engineering, and engineered hydrogel-EV 
systems is necessary to develop effective clinical trans-
lation for MS and related diseases related ON.
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