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Thymosin beta‑4 improves endothelial 
function and reparative potency of diabetic 
endothelial cells differentiated from patient 
induced pluripotent stem cells
Liping Su1, Xiaocen Kong2, Szejie Loo1, Yu Gao3, Bingli Liu2, Xiaofei Su2, Rinkoo Dalan4, Jianhua Ma2* and 
Lei Ye1*   

Abstract 

Background:  Prior studies show that signature phenotypes of diabetic human induced pluripotent stem cells 
derived endothelial cells (dia-hiPSC-ECs) are disrupted glycine homeostasis, increased senescence, impaired mito-
chondrial function and angiogenic potential as compared with healthy hiPSC-ECs. In the current study, we aimed to 
assess the role of thymosin β-4 (Tb-4) on endothelial function using dia-hiPSC-ECs as disease model of endothelial 
dysfunction.

Methods and results:  Using dia-hiPSC-ECs as models of endothelial dysfunction, we determined the effect of Tb-4 
on cell proliferation, senescence, cyto-protection, protein expression of intercellular adhesion molecule-1 (ICAM-1), 
secretion of endothelin-1 and MMP-1, mitochondrial membrane potential, and cyto-protection in vitro and angio-
genic potential for treatment of ischemic limb disease in a mouse model of type 2 diabetes mellitus (T2DM) in vivo. 
We found that 600 ng/mL Tb4 significantly up-regulated AKT activity and Bcl-XL protein expression, enhanced dia-
hiPSC-EC viability and proliferation, limited senescence, reduced endothelin-1 and MMP-1 secretion, and improved 
reparative potency of dia-hiPSC-ECs for treatment of ischemic limb disease in mice with T2DM. However, Tb4 had no 
effect on improving mitochondrial membrane potential and glycine homeostasis and reducing intercellular adhesion 
molecule-1 protein expression in dia-hiPSC-ECs.

Conclusions:  Tb-4 improves endothelial dysfunction through enhancing hiPSC-EC viability, reducing senescence 
and endothelin-1 production, and improves angiogenic potency in diabetes.
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Introduction
Vascular endothelial cells (ECs) play an important role 
in maintaining cardiovascular homeostasis through 

mediating vascular tone, cell adhesion, the homeostasis 
of clotting, and fibrinolysis [1, 2]. However, hyperglyce-
mia causes endothelial activation, dysfunction, and senes-
cence, all of which constitute molecule and cellular basis 
for both microvascular and macrovascular complications 
in diabetes [3–11]. Previously, we established human 
induced pluripotent stem cells (hiPSCs) derived from 
patients with type 2 diabetes mellitus (T2DM) and differ-
entiated them into endothelial cells (dia-hiPSC-ECs) [12]. 
We identified signature phenotypes in dia-hiPSC-ECs: 
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disrupted glycine homeostasis, reduced cell proliferation, 
increased senescence, and impaired mitochondrial func-
tion and angiogenesis. Treatments to improve endothe-
lial function, cell viability, and angiogenesis and correct 
glycine metabolism may be promising therapeutic targets 
for preventing microvascular and macrovascular compli-
cations in diabetes.

Thymosin β4, a 5  kDa polypeptide, is composed of 
43 amino acids [13]. It is the most abundant member 
of the β-thymosin family in mammalian tissue and is 
regarded as the main G-actin sequestering peptide [13]. 
It is known that Tb4 promotes wound-healing and tis-
sue-repair. It promotes dermal healing [14] and corneal 
wound healing [15] and improves heart function after 
myocardial infarction[16–19]. Tb4 also promotes neuron 
survival and neurite outgrowth of cultured spinal cord 
neurons [20]. In addition, Tb4 also possesses angiogenic 
activity to promote EC migration, tubule formation, and 
angiogenesis [21]. Tb4 also promotes epicardial progeni-
tor cells differentiation into ECs, thereby serving as a 
source of vascular progenitors for coronary vasculogen-
esis and angiogenesis [22].

Currently, there is little information on the role 
of Tb4 on diabetic ECs. Previously, we showed that 
Tb4 improved migration of CD34+/KDR+ circulating 
endothelial progenitor cells (EPCs) from diabetic fatty 
rats [23, 24]. Furthermore, in the current study, we aimed 
to use diabetic-hiPSC-ECs as diabetic EC models to study 
the role of Tb4 on proliferation, viability, senescence, and 
angiogenesis of diabetic ECs.

Methods
Culture and differentiation of hiPSC
Two diabetic hiPSC lines, DP2C8iPS and DP3C6iPS 
cells, were described previously[12, 25]. Both cell lines 
were reprogrammed from dermal fibroblasts of two adult 
patients with T2DM. hiPSCs were cultured in a feeder-
free system with a 1:2 mixture of E8/mTeSR (STEMCELL 
Technologies, Canada) and were passaged every 4–5 days 
with ReleSR (STEMCELL Technologies). The characteri-
zation of both cell lines were described previously [12].

The EC differentiation protocol has been described 
previously by us [25, 26]. The differentiated hiPSC-ECs 
positive for CD31 expression and for both CD31 and 
CD144 expression were collected by fluorescence acti-
vated cell sorting (FACS) and expanded. hiPSC-ECs were 
cultured in EGM2-MV medium (Lonza, Switzerland) 
supplemented with B27, vascular endothelial growth fac-
tor-165 (VEGF), and SB-431542 (SB) [25, 26].

Biological function of Tb4 on diabetic hiPSC‑ECs in vitro
Cell population doubling time of diabetic hiPSC‑ECs
Endothelial cell population doubling time was calculated 
within 7 days post-sorting. Briefly, ECs were cultured in 
6-well plates in EGM which was daily supplemented with 
or without Tb4 protein (Prospec, USA). The medium was 
changed every 2  days. hiPSC-ECs were harvested and 
counted on day 7.

Tube formation
Tube formation were evaluated as described previously 
[25, 26]. Briefly, Tb4 treated or non-treated 2 × 104 cells/
well were seeded in 48-well plate that had been coated 
with Matrigel (Corning, USA) and incubated at 37 °C for 
24 h. Numbers of node, junction, and branches and total 
branches length per magnification (4 ×) were quantified 
using angiogenesis analyzer of Image J.

Hypoxia treatment and lactate dehydrogenase (LDH) assay 
and DNA damage measurement
For assessment of cyto-protection by Tb4 on diabetic 
hiPSC-ECs, 5 × 104 hiPSC-ECs/well were cultured in 
24-well plate. After washing thrice with Dulbecco’s phos-
phate-buffered saline (DPBS), hiPSC-ECs were cultured 
in 400 μL endothelial basal medium (EBM, Lonza) sup-
plemented with or without Tb4 protein and cultured in 
an incubator with hypoxic condition for 24  h: 5% CO2, 
94% N2, and 1% O2 [18].

The supernatant was collected to determine the inten-
sity of LDH fluorescence in the supernatant using the 
Cytotoxicity detection kit (Roche, USA) per manufac-
turer’s instructions [27]. A human DNA fragmentation 
factor subunit beta ELISA kit (Abbexa, USA) was used to 
determine damaged DNA released into the supernatant 
according to manufacturer’s instructions [27].

To assess whether the cyto-protective effect of Tb4 
is mediated by AKT and Bcl-XL, an AKT inhibitor, 
MK-2206 dihydrochloride (MedChemExpress, USA), 
and a Bcl-XL inhibitor, A-1155463  (MedChemExpress, 
USA) at 1  μM each were used. Inhibitors were added 
30  min before 600  ng/mL Tb4 was added into cell cul-
ture medium. The supernatant was collected at 24 h after 
hypoxia treatment to determine the intensity of LDH 
fluorescence.

Endothelin‑1 and MMP‑1 secreted by dia‑hiPSC‑ECs
To determine secreted endothelin-1, a vasoconstric-
tor, and MMP-1, a marker of the senescence associated 
secretory phenotype, supernatant of hiPSC-ECs was col-
lected for Western Blot analysis as described [12]. Mouse 
anti-endothelin-1 (Santa Cruz Biotech., USA) and rab-
bit anti-MMP-1 (Invitrogen, USA) at 1:250 and 1:200 
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dilutions, respectively, were used as primary antibody. 
Goat anti-mouse IgG (Perkin Elmer, USA) or rabbit IgG 
(Cell Signaling, USA) conjugated with horseradish per-
oxidase (HRP) at 1:1000 was used as secondary antibody. 
Endothelin-1 or MMP-1 protein expression was pre-
sented as fold change after comparing with that of DP2-
EC or DP3-EC which was considered as 100%.

Adhesion molecule expressed by dia‑hiPSC‑ECs
Protein expression of ICAM-1 was determined using 
Western Blot as described [12]. Rabbit anti-ICAM-1 (1: 
1000, Cell Signaling, USA) was used as primary antibody 
and goat anti-rabbit IgG conjugated with HRP (1: 4000, 
Cell Signaling, USA) was used as secondary antibody. 
The protein expression level of ICAM was normalized by 
GAPDH and expressed as percentage of GAPDH.

Senescence of ECs
To determine cell senescence, ECs were stained for 
β-galactosidase (β-gal) expression on day 14 post-sort-
ing using a Senescence β-galactosidase staining kit (Cell 
Signaling, USA) as described [12]. Briefly, the total β-gal 
intensity in each picture was calculated using Image J 
and presented as β-gal intensity/cell = total β-gal inten-
sity/cell number in each picture. EC lysates were used to 
assess the protein expression of p21 and p53 using West-
ern Blot as described [12]. Mouse anti-p21, or aniti-p53, 
(both from Santa Cruz Biotech., USA), or rabbit anti-
acetylated p53 (K382) (Ace-p53, R&D Systems, USA) 
primary antibody at 1:200 or 1:1000 dilution was used. 
Goat anti-mouse or rabbit IgG conjugated with HRP 
(Perkin Elmer, USA) at 1:1000 (p21), or 1:4000 (p53), or 
1:2000 (Ace-p53) was used as secondary antibody. The 
protein expression level was normalized by GAPDH and 
expressed as percentage of GAPDH.

Mitochondrial membrane potential of dia‑hiPSC‑ECs
To determine mitochondrial membrane potential, after 
overnight cultured with EGM supplemented with DAPI, 
ECs on day-7 post-sorting were cultured with 1: 1 ratio 
of fresh EGM and JC-1 dye solution (Mitochondria 
staining kit, Sigma Aldrich, USA) for 30 min in an incu-
bator at 37  °C. Then, cells were washed with DPBS and 
cultured in fresh EGM. Images of red fluorescence were 
randomly taken at 50 milli-seconds (ms) at 20× magni-
fication using Olympus IX73 microscope and Cell Sens 
Standard software (Olympus, Japan). The fluorescence 
intensity of each cell was calculated as the overall fluo-
rescence intensity divided by EC number in each image 
using Image J [12]. In addition, mSHMT protein levels 
in DP2-ECs and PD3-ECs were determined using West-
ern Blot as described [12]. Mouse anti-mSHMT (from 

Santa Cruz Biotech., USA) at 1:500 dilution was used as 
primary antibody. Goat anti-mouse IgG conjugated with 
HRP (Perkin Elmer, USA) at 1: 4000 was used as second-
ary antibody. The protein expression level was normal-
ized by GAPDH and expressed as percentage of GAPDH.

Western blot analysis
Total protein was isolated using PhosphoSafe™ Extrac-
tion Reagent (Merck, Germany) and protein concentra-
tion was determined using Bradford reagent (Bio-Rad 
Laboratories, USA) per manufacturer’s instruction [18, 
28]. Western Blot was described previously [28–30]. 
Briefly, proteins were separated on SDS–polyacrylamide 
gel and were transferred onto nitrocellulose membrane. 
After blocking with 5% non-fat milk in Tris-buffered 
saline Tween-20 buffer (25  mM Tris, pH 7.5, 150  mM 
NaCl, and 0.1% Tween-20), the blots were incubated with 
primary antibodies: rabbit anti-glyceraldehyde phosphate 
dehydrogenase (GAPDH) at 1: 5000 dilution; p-AKT 
(S473) at 1: 2000 dilution; AKT at 1: 2000 dilution; Bcl-XL 
at 1: 1000 dilution (all from Cell Signaling, USA). Anti-
rabbit IgG conjugated with HRP (1: 5000 for GAPDH 
and 1: 4000 for the rest) was used to detect the binding 
of antibodies. The binding of the specific antibody was 
detected using the SuperSignal Chemiluminescent Sub-
strate kit (Pierce, USA) and visualized using ChemiDoc™ 
XRS + System (Bio-Rad, USA). The protein expression 
level was normalized by GAPDH and expressed as per-
centage of GAPDH.

Biological function of Tb4 on diabetic hiPSC‑ECs in vivo
Gelatin microsphere manufacturing
Gelatin microspheres were manufactured as described 
with modifications [18, 19]. Briefly, 5  mL of 10% gela-
tin (type A, Sigma-Aldrich, USA) solution at 50  °C was 
added into 45 °C olive, stirred, and cooled to 5 °C. 25 min 
later, chilled (4 °C) acetone was added to the olive oil to 
induce microsphere formation. Then, microspheres were 
collected, washed 5 times to remove the olive oil, air-
dried at 4 °C, and resuspended in chilled (4 °C) 70% etha-
nol containing 1% glutaraldehyde (Sigma-Aldrich, USA) 
to induce cross-linking for 30  min at 4  °C. The mixture 
was neutralized with an equal volume of 0.1  M glycine 
(Sigma-Aldrich, USA). Cross-linked microspheres were 
collected by washing with ethanol solution and air-dried. 
Tb4 (Prospec, USA) was loaded into the microspheres by 
mixing 5 mg microspheres with 5 µL distilled H2O con-
taining 5 µg Tb4.

Mouse model of hind‑limb ischemia (HLI) and treatment
The animal experimental protocol and procedures were 
approved by the Institutional Animal Care and Use 
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Committee of Singapore Health Services Pte Ltd. The 
animal model was developed as previously described [12, 
25]. Briefly, 12-week-old KK.Cg-Ay mice (KK mice, Stock 
No: 002468, Jackson Lab, USA) with diabetes, which 
was confirmed by glucose tolerance test (GTT), were 
included. After overnight fast (about 16  h), mouse will 
be intra-peritoneally injected with 1 g/kg body weight of 
glucose diluted in saline (100  mg/mL) [29]. Blood sam-
ples from the tail vein were collected at 0 (before glucose 
injection), 30, 60, and 120  min after glucose injection. 
Blood glucose concentration were measured using John-
son and Johnson One Touch Ultra 2 Glucose Meter and 
Test Strips (USA).

Mice were anesthetized with 1.5–2% isoflurane. Their 
right hind limbs were shaved and the femoral arteries 
of the right limbs were ligated with 6-0 polypropylene 
sutures [12, 25]. Animals were randomly assigned to 
treatment with 1.2 ×  106 DP2-EC or DP3-EC (the DP2-
EC or DP3-EC group), or with Tb4 treated 1.2  ×  106 
DP2-EC or DP3-EC in 0.1  mL EBMs + 5  mg gelatin 
microspheres loaded with 5  μg Tb4 protein in 0.1  mL 
EBM (the DP2-EC + Tb4 or DP3-EC + Tb4 group), or 
only 0.1  mL EBM (the control group), or 5  mg gelatin 
microspheres loaded with 5  μg Tb4 protein in 0.1  mL 
EBM (the Tb4 group). Each animal group had 6 KK mice. 
Dia-hiPSC-ECs were cultured with (DP2-EC + Tb4 and 
DP3-EC + Tb4 Groups) or without (the DP2-EC and 
DP3-EC Groups) 600  ng/mL Tb4 for 5  days and were 
transplanted on day 7 post-sorting. The hiPSC-ECs, or 
gelatin microspheres, or basal medium were adminis-
tered three days after HLI induction via 4 intramuscular 
injections into the center of the ligated area and the sur-
rounding region along the femoral artery.

Laser doppler imaging
Mice were anesthetized with 1.5–2% isoflurane and their 
hind limbs were shaved. A PeriScan PIM 3 (Perimed, 
Sweden), a laser Doppler imaging system, was used to 
visualize limb perfusion as described [12, 25]. Meas-
urements in the ischemic (right) limb were normalized 
to measurements in the left (non-ischemic) limb and 
expressed as a percentage.

Immunohistochemistry
To identify transplanted hiPSC-ECs, a primary antibody 
specifically against human CD31 (hCD31, mouse anti-
human CD31-Biotin) was used and visualized by mouse 
anti-Biotin-VioBright 515 (both from Miltenyi Biotec, 
Germany) [12]. Fluorescence images were taken with an 
Olympus IX71 fluorescence microscope.

Neovascularization in ischemic limb was determined 
as described [31]. Cryosections were stained for CD31 
expression (rabbit anti-CD31, Abcam, USA), which tar-
gets both human and mouse ECs), to evaluate total ves-
sel density, and smooth muscle actin (SMA) expression 
(Cy3-conjugated mouse anti-SMA antibodies, Sigma-
Aldrich), which targets smooth muscle cells (SMCs), to 
evaluate arteriole density. Vascular structures that were 
positive for CD31 expression and for both CD31 and 
SMA expression were counted for all animals in each 
group.

Statistics
Data are presented as mean ± standard deviation (SD). 
Comparisons among groups were analyzed for signifi-
cance via one-way analysis of variance (ANOVA) with 
the Tukey correction. Comparison between the two 
groups was performed with independent T-test. Analyses 
were performed with SPSS software. A value of p < 0.05 
was considered significant.

Results
Tb4 (600 ng/mL) activates AKT activity and up‑regulates 
Bcl‑XL in dia‑hiPSC‑ECs
It is known that Tb4 is able to activate AKT to enhance 
cell viability. Thus, we first determined a dose dependent 
effect of Tb4 on AKT activation in dia-hiPSC-ECs under 
normoxia. Dia-hiPSC-ECs were cultured with (300, 600, 
and 1000  ng/mL Tb4) or without Tb4. Western blot 
showed that only 600 and 1000 ng/mL Tb4 significantly 
increased AKT activities (Fig. 1A, B). Furthermore, only 
300 and 600  ng/mL Tb4 significantly up-regulated Bcl-
XL protein expression (Fig. 1A, C). Thus, we used 600 ng/
mL Tb4 in the rest experiments, except for hypoxic 
experiment.

Tb4 (600 ng/mL) enhances dia‑hiPSC‑ECs potent for in vitro 
angiogenesis
To determine whether Tb4 could enhance angiogenic 
potent, Tb4 treated or non-treated DP2-ECs and DP3-
ECs were cultured on Matrigel for tube formation assay 
(Fig. 2A). The formation of tubular structures was more 
extensive for Tb4 treated DP2-ECs and DP3-ECs than 
non-treated cells. The numbers of nodes and junc-
tions and the total branching length were significantly 
higher in Tb4 treated DP2-ECs and DP3-ECs than Tb4 
non-treated cells (Fig.  2B, C, E). Although the number 
of branches in Tb4 treated DP2-ECs and DP3-ECs had 
trends to be higher than non-treated ECs, no significant 
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difference was found. (Fig. 2D). These results suggest that 
Tb4 enhanced dia-hiPSC-ECs angiogenic potent in vitro.

Tb4 (600 ng/mL) increases dia‑hiPSC‑EC proliferation 
and reduces senescence
To determine the effect of Tb4 on cell proliferation, dia-
hiPSC-ECs were cultured with 600 ng/mL Tb4. DP2-EC 
and DP3-EC doubling times were significantly reduced 
after cultured in 600  ng/mL Tb4 (Fig.  3A). Consistent 
with this, Western Blot showed that cyclin D2 protein 
expression significantly increased in DP2-ECs and DP3-
ECs after cultured with 600 ng/mL Tb4 (Fig. 3B, C).

A cell senescence assay showed that β-gal protein 
expression significantly decreased in DP2-ECs and DP3-
ECs after cultured with 600  ng/mL Tb4 (Fig.  3D, E). 
Western Blot showed that p21, P53, and Ace-P53 protein 
expression did not change significantly in DP2-ECs and 
DP3-ECs after cultured with 600 ng/mL Tb4 (Fig. 3F–J). 
These results suggest that change of p21 and p53 did not 
contribute to increased dia-hiPSC-EC proliferation and 
decreased senescence.

Tb4 (600 ng/mL) reduces endothelin‑1 and MMP‑1 
secretion
Both endothelin-1 and MMP-1 in supernatant were ana-
lyzed using Western Blot (Fig.  4A–C). Endothelin-1 
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Fig. 1  Dose dependent effect of Tb4 on AKT activity and Bcl-XL protein expression in dia-hiPSC-ECs. A Representative images of Western Blot 
analysis for protein expression of phosphorylated AKT (pAKT), AKT, and Bcl-XL in DP3-ECs as a function of Tb4 dosage. Quantification of pAKT/AKT 
(B) and Bcl-XL (C) in DP3-ECs (n = 3). Values are presented as means ± SD. One-way ANOVA (*p < 0.05; **p < 0.01, vs 0 ng/mL Tb4)

Fig. 2.  600 ng/mL Tb4 enhances angiogenic capapcity of dia-hiPSC-EC in vitro. A Representative images of tube formation of Tb4 treated and 
non-treated DP2-ECs or DP3-ECs on Matrigel. Quantification of numbers of nodes (B), junctions (C), and branches (D) and total branches length (E) 
formed by ECs on Matrigel. (Bar = 500 μm, n = 4). Values are presented as means ± SD. Independent T-test (**p < 0.01; ***p < 0.001)
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protein in supernatant significantly reduced in DP2-EC 
and DP3-EC after treated with 600  ng/mL Tb4. MMP-1, 
a marker that makes up the senescence associated secre-
tory phenotype (SASP) [32–34], also reduced significantly 
in the supernatants of DP2-ECs and DP3-ECs after treated 
with 600 ng/mL. As up-regulated MMP-1 has been seen in 
senescent cells and belongs to the SASP, its reduction indi-
cates that DP2-ECs and DP3-ECs have better viability after 
treated with Tb4.

Tb4 (600 ng/mL) does not reduce ICAM‑1 protein 
expression and improve mSHMT protein expression 
and mitochondrial membrane potential in dia‑hiPSC‑ECs
We found that ICAM-1 protein expression significantly 
up-regulated and mitochondrial membrane potential 
significantly reduced in DP2-ECs and DP3-ECs in a 
previous study [12]. Thus, we measured ICAM-1 pro-
tein expression and mitochondrial membrane poten-
tial in dia-hiPSC-ECs after treated with Tb4. Western 
blot showed that ICAM-1 protein expression level was 
unchanged after treated with 600 ng/mL Tb4 (Fig. 4D, 
E). Similarly, protein expression level of mitochon-
drial serine hydroxymethyltransferase (mSHMT) were 
unchanged in DP2-EC and DP3-ECs after treated with 

Fig. 3.  600 ng/mL Tb4 increases proliferation and reduces senescence in dia-hiPSC-ECs. A dia-hiPSC-EC population doubling time. B 
Representative images of Western Blot analysis for protein expression of Cyclin D2 in dia-hiPSC-ECs. C Quantification of cyclin D2 protein expression. 
D Representative images of β-gal staining (green color) in dia-hiPSC-ECs. E Quantification of β-gal density in dia-hiPSC-ECs. Representative images 
of Western Blot for p21, p53, and acetylated P53 (Ace-P53) protein expressions in DP2-ECs (F) and DP3-ECs (G). Quantification of p21 (H), p53 (I), and 
Ace-P53 (J) protein expression in DP2-ECs and DP3-ECs. (Bar = 50 μm, n = 4). Values are presented as means ± SD. Independent T-test (**p < 0.01; 
***p < 0.001)
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600 ng/mL Tb4 (Fig. 5A, B). JC-1 dye staining showed 
that mitochondrial membrane potential in DP2-EC and 
DP3-ECs was unchanged after treated with 600 ng/mL 
Tb4 (Fig. 5C, D).

Tb4 (600 ng/mL) protects dia‑hiPSC‑EC from hypoxic 
damage
To determine cyto-protection effect of Tb4 on ECs, dia-
hiPSC-ECs were cultured in EBM supplemented with or 
without Tb4 in hypoxic condition for 24  h. Treatment 
with Tb4 (600 and 1000  ng/ mL) significantly reduced 
LDH leakage (Fig. 6A) and DNA damage (Fig. 6B). Nota-
bly, Tb4 significantly upregulated both AKT activity and 
Bcl-XL levels under hypoxic condition up to 3 h in vitro 
(Fig. 6C–E). Furthermore, either AKT or Bcl-XL inhibi-
tor totally blocked cytoprotective effect of Tb4 against 
hypoxia injury (Fig.  6F). Thus, Tb4 appeared to protect 
hiPSC-CMs from hypoxia-induced cellular damage by 
upregulating AKT activity and Bcl-XL protein expression.

Tb4 (600 ng/mL) treated Dia‑hiPSC‑EC improves 
angiogenic potential for treatment of HLI
The potential of Tb4 treated and non-treated dia-hiPSC-
ECs for treatment of ischemic disease was evaluated 
in a mouse model of HLI (Fig.  7A) [25]. Perfusion was 

27.5 ± 10.4% in the control group, 18.3 ± 17.8% in the 
DP2-EC + microsphere group, and 25.5 ± 18.4% in the 
DP3-EC + microsphere group, which were significantly 
lower than those of the DP2-EC + Tb4-microsphere 
group (72.5 ± 16.4%, p < 0.001 vs medium, DP2-EC, 
and DP3-EC groups) and DP3-EC + Tb4-microsphere 
group (65.8 ± 15.0%, p < 0.01 vs medium, DP2-EC, and 
DP3-EC groups) (Fig.  7B). Although Tb4-microsphere 
group increased perfusion to 45 ± 11.8%, no signifi-
cant improvement was achieved as compared with the 
Medium, DP2-EC, and DP3-EC groups and was signifi-
cantly lower than the DP2-EC + Tb4-microsphere group 
(p < 0.05).

Assessments in cryo-sections stained for CD31 
(detecting both hiPSC-EC and mouse EC) and SMA 
(Fig.  8A) indicated that total vessel density was sig-
nificantly higher in the ischemic limbs of animals in 
the DP2-EC + Tb4-microspheres (183.4 ± 15.9) and 
DP3-EC + Tb4-microspheres groups (175.3 ± 16.8) 
than the medium (114.2 ± 5.7, p < 0.001) or or DP2-
EC + microspheres (128.1 ± 17.9, p < 0.001) or DP3-
EC + microspheres (139.5 ± 10.1; p < 0.001 or p < 0.01) 
group (Fig.  8B). Although total vessel density in Tb4 
group (153.6 ± 11.1) was significantly higher than the 
medium (p < 0.001) or the DP2-EC group (p < 0.05), it 
was significantly lower than the DP2-EC + Tb4 group 

Fig. 4.  600 ng/mL Tb4 decreases endothelin-1 and MMP-1 secretion and does not reduce ICAM-1 expression. A Representative images of Western 
Blot analysis for protein expression of endothelin-1 (ET-1) and MMP-1 in supernatant of DP2-ECs and DP3-ECs. Quantification of endothelin-1 
(B) and MMP-1 (C) protein expression. D Representative images of Western Blot analysis for protein expression of ICAM-1 in dia-iPSC-ECs. E 
Quantification of ICAM-1 protein expression (n = 4). Values are presented as means ± SD. Independent T-test (**p < 0.01; ***p < 0.001)
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(p < 0.01). Arteriole densities in the ischemic limbs 
of animals were similar among all 5 groups (Fig.  8A, 
C). Collectively, these observations suggest that Tb4 
treated dia-hiPSC-ECs had better angiogenic potential 
in restoring perfusion and stimulating neovasculariza-
tion in ischemic limb of mouse with diabetes.

Tissue sections stained for the specific hCD31 and 
SMA indicated that the transplanted dia-hiPSC-ECs 
formed capillaries in all animal groups that received 
dia-hiPSC-EC transplantation and some integrated into 
arterioles (Fig. 9). These data suggest that transplanted 
hiPSC-ECs can contribute to capillary and arteriole for-
mation in ischemic limbs of KK mouse.

Discussion
Our previous studies showed that DP2-ECs and DP3-
ECs, which were derived from patients with T2DM, had 
poor cell proliferative capability, increased senescence, 

and impaired mitochondrial function and angiogenic 
potential [12]. These signature phenotypes suggest that 
DP2-ECs and DP3-ECs can be used as disease models 
for studying endothelial dysfunction in diabetes. In the 
current study, we found that Tb4 enhanced dia-hiPSC-
EC viability and proliferation, inhibited senescence, and 
improved reparative potency of dia-hiPSC-ECs for treat-
ment of ischemic limb disease in mice with T2DM.

Studies have shown that Tb4 activates the survival 
kinase AKT through integrin-linked kinase (ILK) [16]. 
AKT is a key regulator of EC survival, proliferation, 
metabolism, and angiogenesis [35, 36], while Vascular 
endothelial growth factor-165 is a potent mitotic factor 
on ECs through PI3K/AKT pathway, which is impor-
tant in mediating EC proliferation, viability, senescence 
and angiogenesis [37]. Thus, convergences of VEGF and 
Tb4 in activating AKT and associated signaling path-
ways may be responsible for increased dia-hiPSC-EC 
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proliferation, reduced EC senescence, enhanced EC sur-
vival under hypoxia, and improved reparative potency of 
dia-hiPSC-ECs.

Activated AKT can subsequently upregulates tran-
scription factors that increase the expression of caspase 
inhibitors, including Bcl-XL, to promote cell survival. 
These results are consistent with our previous studies 
which showed that Tb4 enhanced cardiomyocytes (CMs) 
and mesenchymal stem cell (SMCs) viability and survival 
under hypoxia in vitro and infarcted myocardial in vivo 
[18, 19].

The effect of Tb4 on dia-hiPSC-ECs is dose-dependent 
and a higher Tb4 dosage (600 ng/mL) is required. This is 
consistent with 2 studies showed that 600 or 1000 ng/mL 
Tb4 is needed to exert cyto-protection and increases pro-
liferation on CMs or SMCs [18, 19]. Surprisingly, in vitro, 
a low dose Tb4 (10 ng/mL) was shown to increase migra-
tion and angiogenic factor secretion of primary endothe-
lial progenitor cell (EPC) isolated from Zucker diabetic 
fatty rats [24]. However, transplantation of this low dose 
Tb4 treated EPCs failed to improve left ventricular pump 

function in diabetic rats after MI. This study suggests that 
a higher dosage of Tb4 may be needed to improve thera-
peutic potential of diabetic ECs for treatment of ischemic 
diseases, such as ischemic heart disease or ischemic limb 
disease, especially in diabetes.

In addition, the current study also showed that Tb4 
reduced endothelin-1 and MMP-1 production in dia-
hiPSc-ECs. Endothelin-1 is a potent  vasoconstrictor 
and has been shown to be involved in the development 
of atherosclerosis [38], hypertension[39], microvascular 
dysfunction in diabetes [40], stroke etc. [41]. It is unkown 
through which mechanism that Tb4 reduces endothe-
lin-1 production secreted by dia-hiPSC-ECs and may 
need further exploration. Inhibition of AKT has been 
shown to up-regulate MMP-1 expression in human der-
mal fibroblasts [42]. Our study shows that enhanced 
AKT activity stimulated by Tb4 down-regulates MMP-1 
production. This supports senescence study which 
shows that Tb4 reduces senescence in dia-hiPSC-ECs, as 
MMP-1 is a marker that makes up the SASP.
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It seems that Tb4 has no effect on mitochondrial mem-
brane potential, intercellular adhesion molecule expres-
sion, and glycine homeostasis, as JC-1 dye intensity, 
ICAM-1 and mSHMT protein expression levels were 
unchanged after Tb4 treatment. Our prior study showed 
that mSHMT, not cytoplasmic serine hydroxymethyl-
transferase (cSHMT) and glycine transporter protein 
expression, significantly reduced in dia-hiPSC-ECs, sug-
gesting that mSHMT may be responsible for significantly 

reduced intracellular glycine concentration and dysregu-
lated glycine homeostasis in dia-hiPSC-ECs [12].

The current and previous studies both showed that dia-
betic ECs have poor reparative potency for treatment of 
ischemic limb diseases in either NOD-SCID or diabetic 
mice. This implies that autologous ECs differentiated 
from hiPSCs, which are derived from patients with dia-
betes, are not suitable cell type for treatment of ischemic 
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diseases in patients with diabetes. To achieve therapeu-
tic effect, treatments to improve endothelial function, 
cell viability, and angiogenesis shall be performed. Tb4 
may offer an easy and cost-effect way to improve diabetic 
EC viability and proliferation, inhibit senescence, and 
improve reparative potency.

Tb4 is known to have other beneficial effects in diabe-
tes mouse models. It can improve glucose intolerance, 
reduce insulin resistance [43] and ameliorate hypergly-
cemia induced renal damage [44]. Our study has now 
demonstrated a possible useful effect in peripheral vas-
cular disease and lower- limb ulcers. One limitation of 
the current study is that it is unknown through which 
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mechanism that Tb4 reduces endothelin-1 production 
by dia-hiPSC-ECs and may need further exploration.

Conclusions
600  ng/mL Tb4 improves endothelial dysfunction 
through enhancing dia-hiPSC-EC viability and pro-
liferation, reducing senescence and endothelin-1 and 
MMP-1 secretion, and improving reparative potency of 
dia-hiPSC-ECs for treatment of ischemic limb disease 
in mice with T2DM. These data support to use Tb4 
as a potential drug for treatment of systemic endothe-
lial dysfunction in diabetes with peripheral vascular 
disease.
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