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Abstract 

Stroke is the second leading cause globally that leads to severe disability and death. Stem cell therapy has been 
developed over the recent years to treat stroke and diminish the mortality and disability rate of brain injuries. Acu‑
puncture, which can activate endogenous recovery via physical stimuli, has been applied to enhance the recovery 
and rehabilitation of stroke patients. Attempts have been made to combine stem cell therapy and acupuncture to 
treat stroke patients and have shown the promising results. This prospective review will look into the possible mecha‑
nisms of stem cell therapy and acupuncture and intend to undercover the potential benefit of the combined therapy. 
It intends to bridge the modern emerging stem cell therapy and traditional acupuncture at cellular and molecular 
levels and to demonstrate the potential benefit to improve clinical outcomes.
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Background
Stroke is the second leading cause of mortality and dis-
ability of adults all over the world, which caused 5.5 mil-
lion deaths globally in 2016 [1]. In adults, ischemic stroke 
represents about 87% of stroke cases [2]. The pathophysi-
ologic processes of brain neural tissue death and vaso-
genic edema occurring in ischemic stroke result from 
exposing the brain to reduced oxygen levels (hypoxia) 
and/or blood supply (ischemia), and the secondary exci-
totoxicity and oxidative stress in the acute phase, fol-
lowing the apoptosis and inflammatory damage in the 
subacute phase, resulting in dyskinesia, aphasia, sensory 

disturbances, ataxia sequelae symptoms, or even death 
[3, 4].

Current treatments for stroke mainly focus on neuro-
protection and recanalizing obstructed cerebral blood 
vessels, which include hypothermia and the administra-
tion of antithrombotic, antiplatelet, and antihypertensive 
drugs for ischemic brain damage caused by an embolism 
(Fig.  1) [5–7]. Although these treatments could partly 
prevent brain injury progression through reduction of 
metabolic demands, suppression of excitotoxicity, and 
free radical activity [8], the 6-h rescue time window lim-
its the efficiency, and none of the treatments can pro-
mote neuro-regeneration, which aims to replace the dead 
neurons and to rebuild a functional neuronal network in 
order to contribute to behavioral improvements [9, 10].

In the last two decades, stem cells, with their capability 
to self-renew and differentiate into multiple cell deriva-
tives, have shed light on treating stroke [5]. A wide variety 
of different stem cell types have been used in experi-
mental and clinical studies in a variety of applications, 
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including cell replacement, activation of endogenous 
neurogenesis and angiogenesis, neuroprotection, and 
modulation of inflammation and immune responses for 
the regeneration of the lost cells and enhancement of 
neurogenesis to improve long-term recovery [11–13].

Acupuncture has been used in stroke management for 
more than thousands of years in China. Random con-
trolled clinical trials showed that acupuncture ameliorate 
post-stroke paralysis, ataxia, shoulder pain, aphasia, and 
dysphagia, promoting rehabilitation and reducing fatality 
rates [14–19].

An overview of stem cell therapy and acupuncture 
for stroke treatment and the mechanisms behind their 
effects will be summarized in this review, which aims to 
explore their intrinsically cooperative therapeutic effects. 
Clinical trials using cell-based therapies and acupuncture 
for stroke patients will be evaluated and a series of cel-
lular products currently under development will be high-
lighted. Finally, we will discuss the benefit and possibility 
of developing a new stroke therapeutic strategy comb-
ing implantation of functional cells and acupuncture as 

a potential complementary therapy to other conventional 
treatments. The administration protocol for clinical stem 
cell therapy, for example the cell dose or administration 
route of the therapy, is not the focus of this study due to 
the lack of sufficient clinical data  for  randomized con-
trolled trials (RCTs).

Stem cell therapy for ischemic stroke
Studies of stem cell therapy for ischemic stroke have 
mostly focused on two different mechanisms: (1) replace-
ment of damaged neural cells and tissues and (2) parac-
rine functional effects including immunomodulation, 
pro-angiogenesis, and neuroprotective and neurotrophic 
functions [20, 21]. Broadly, embryonic stem cells (totipo-
tent stem cells), fetal stem cells (mainly the fetal brain or 
spinal cord derived-neural stem cells), adult stem cells 
(tissue-specific stem cells, such as mesenchymal stem 
cells), and induced pluripotent stem cells (genetically 
engineered stem cells) are the most preclinically and clin-
ically tested cell types in the ischemic stroke regenerative 

Fig. 1  Current therapy for ischemic stroke. Antithrombotic medication will be given to an acute phase patient within hours post-stroke, together 
with neuroprotective agents and hypothermia treatment to diminish neural cell death and to prevent further inflammatory damage. Stem cell 
therapy is applied in the chronic phase for the purpose of neuro-restorations in multiple clinical trials. BBB blood–brain barrier, BDNF brain-derived 
neurotrophic factor, EPO erythropoietin, ROS reactive oxygen species
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therapy. The clinical trials of cell therapy for stoke are 
summarized in the Additional file 1.

Cell types in stroke cytotherapy (Table 1)
Embryonic stem cells (ESCs) are derived from the inner 
cell mass of the blastocyst and are characterized by self-
renewal and the ability to differentiate into cell deriva-
tives of all three germ layers. In particular, clinically 
relevant neural lineage cells, such as cortical neurons, 
motor neurons, astrocytes, oligodendrocytes, and other 
neural cell types, have successfully been derived from 
human ESCs [21–23]. However, ethical concerns and 
tumorigenesis are the major obstructs hindering the 
ESCs from entering human clinical trials.

Induced pluripotent stem cells (iPSCs) are repro-
gramed from somatic cells, such as fibroblasts, into a 
stem cell state with self-renewal capacity and pluripo-
tency similar to ESCs. However, unlike ESCs, iPSCs can 
bypass certain ethical issues and can be used to derive 
patient-specific cells, which can lower the risk of immune 
rejection [24]. There has been extensive research on 
robust protocols to generate neuronal and glial lineages 
from human iPSCs [25–27]. iPSCs has been recognized 
as one of the best regenerative medicine resources if the 
tumorigenesis risk could be removed or under control.

Neural stem cells (NSCs) sources can be endogenous 
or exogenous. Cells used to generate endogenous NSCs 
are adult NSCs located in the subventricular zone, the 
hippocampal dentate gyrus, and the olfactory bulb [11]. 
Previously, studies have shown that a limited number 
of endogenous NSCs can be activated and recruited to 
an infarcted area to promote neuro-regeneration [28]. 
Exogenous NSCs are derived from exogenous pluri-
potent stem cells (as discussed above in the ESCs and 
iPSCs sections), bone marrow-derived multipotent stem 
cells, or isolated from fetal and adult nervous systems 
[29–31]. Preclinical and clinical trials of commercial-
ized engineered NSC lines, such as NSI-566 (human fetal 

spinal cord-derived NSC line) from Neuralstem Inc and 
CTX cell line (immortalized NSC line from brain fron-
tal cortex tissue by c-mycERTAM technique) from ReNeu-
ron Ltd., have reported promising outcomes for treating 
stroke [32, 33].

Mesenchymal stem cells (MSCs) are multipotent stem 
cells that can be derived from a wide range of tissues, 
commonly including umbilical cord blood, umbilical 
cord, placenta, bone marrow, and adipose tissues. They 
are a mixture of multi-cell populations with origin tissue-
specific properties but share a similar phenotype and 
a plastic adherent proliferation pattern [34]. Although 
MSCs have been shown to differentiate into neural line-
ages in some studies, the neural regeneration mechanism 
behind this differentiation has mainly been attributed to 
trophic effects of angiogenesis, neurogenesis, as well as 
modulating the host immune response [35].

Other cell types: Perinatal tissues have become one 
of the major stem or progenitor cell sources, which are 
abundant and without ethical concerns [36, 37]. Mono-
nuclear cells (MNCs) isolated from umbilical cord blood 
(UCB), comprising a mixture of more than three sub-
populations of hematological stem cells (HSCs), endothe-
lial progenitor cells (EPCs), and MSCs, have also shown 
some positive effects for ischemic stroke therapy in ani-
mal models and human clinical trials [38–41]. EPCs can 
differentiate into mature endothelial cells, which exert 
pro-angiogenesis effects and have been observed migrat-
ing to the boundary zones of ischemic infarcted areas of 
Sprague–Dawley rat brains when intravenously adminis-
tered within 24-h post-middle cerebral artery occlusion 
(MCAO). EPCs were found to incorporate into blood 
vessels in ischemic tissues [42], indicating their potential 
for use in stroke cell therapies [43].

Therapeutic mechanism of stem cell therapy
In the early stage of cerebral ischemia, the main cause of 
the destruction of brain tissues is a cascade of damage 

Table 1  Clinical trials of stem cell-based therapies to treat ischemic stroke

NRG neural regeneration, PE paracrine effect

IV, intravenous; IA, intraarterial; IT, intrathecal; IP, intraperitoneal; MSCs, mesenchymal stem cells; NSCs, neural stem cells; iPSCs, induced pluripotent stem cells; iNSCs, 
immortalized NSCs

Cell type Advantage Disadvantage Administration Route Implantation windows References

MSCs Abundant, Low ethical con‑
cern, Low immunogenicity, 
Multi-paracrine effects

No neural cell or tissue 
regeneration ability

All available route (IV, IA, 
IT, IP)

Acute phase, Less than 6 
months

[50–52]

NSCs Neural cell replacement, 
Neural tissue regeneration

Limited sources and expan‑
sion ability, 
Ethical concern

Intracerebral Chronic phase, Not earlier 
than 1 month

[35, 53]

iPSCs/iNSCs Sufficient neural cells, No 
ethical concern, Paracrine 
effects

Genetically modified, Tumori‑
genesis risk, Immunogenicity

NRG—Intracerebral
PE—any route

NRG—chronic phase, PE—
acute phase

[36, 54]
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due to anoxic depolarization, excitotoxicity, oxidative 
stress, and necrosis. Protecting cells in the peri-infarct 
area from excitotoxicity and oxidative stress is of the 
highest priorities for the treatment in the early-stage  of 
ischemic brain injury [44].

Antioxidation and ionic homeostasis
MSCs possess a great potential for treating early-stage 
ischemic brain injury because of their paracrine func-
tions, tolerance, and adaptive capacity to the brain 
ischemic and hypoxia microenvironment. Kaneko et  al. 
demonstrated a successful combinatorial treatment of 
hypothermia and MSCs for neuron protection in  vitro 
and proposed the delta opioid pathway is a therapeutic 
mechanism of the  stem cell therapy, which maintains 
ionic homeostasis and endogenous neuroprotection [45].

The mechanisms of stem cell paracrine functions in 
antioxidative  properties have been studied by analyzing 
the antioxidant defense and scavenging effects of stem 
cell-conditioned media. Modulating the signaling path-
way AKT/pAKT and ERK1/2/pERK, activating the anti-
oxidant proteins (such as Keap1, Nrf2, and HO-1), and 
releasing the neurotrophic factors NGF and BDNF have 
been reported from different in vitro studies [46, 47]. Lee 
et al. also discovered that oxidative stress and glial activa-
tion level decreased in rats with Alzheimer’s disease after 
receiving hUCB-MSC implantation, which resulted in 
learning and memory function improvement [48].

Pathological membrane hyperpolarization prevents 
correct functioning of the electron transport chain, 
resulting in mitochondrial failure, which is one of the 
major steps leading to BBB dysfunction, focal vascu-
lar destruction, and progressive neural cell death in the 
acute stages of ischemic stroke. Intercellular mitochon-
drial transfer has been identified as an important mech-
anism of tissue regeneration by providing a means to 
improve metabolism in damaged cells [49]. Boukelmoune 
et  al. found the NSCs that uptake the labeled MSCs’ 
mitochondria have more intact mitochondrial mem-
branes and better mitochondria function in a co-culture 
system that contains neurotoxic factors, which suggests 
that the transferring of mitochondria exerts additional 
cell recovery benefits beyond the direct uptake of intact 
organelles [50].

Immunomodulation
MSCs have been demonstrated to be able to systemically 
suppress over-responsive immune reactions by modu-
lating the production of  pro- or anti-inflammatory fac-
tors and the activity of immune cells. IFN-γ and IL-1 
are crucial pro-inflammatory factors that can activate 
MSC immune‐suppressive effects [51, 52]. The immu-
nomodulatory effects of MSCs, via regulating T cell, B 

cell, dendritic cell, and natural killer (NK) cell activity, 
have been shown to prevent deleterious autoimmun-
ity in ischemic tissues [53, 54]. The MSCs implanted in 
the acute phase have been found to reduce the size of 
necrotic area and maintain motor functions through 
downregulating M1 macrophage/microglia activation 
and decreasing infiltration of γδ T cells, while increas-
ing the presence of CD4 + Tregs and Treg-associated 
cytokines, which play a neuroprotective role via secretion 
of anti-inflammatory cytokines like IL-10 [55, 56].

Another major mechanism by which MSCs modulate 
the immune response is establishing negative-feedback 
loops to suppress inflammatory activity and promote tis-
sue regeneration. MSCs can activate M2 macrophages to 
produce anti-inflammatory cytokines IL-10 and perform 
phagocytic activity by producing cyclooxygenase 2 and 
indoleamine 2,3-dioxygenase, therefore, reducing neu-
trophil immersion and diminishing further damage to the 
injured tissue [57].

Promoting vascular remodeling
BBB plays a pivotal role in maintaining the homeostasis 
of central nervous system (CNS) as a protective semi-
permeable shelter, regulating the exchange of substances 
between the circulating blood and the brain [58]. The 
loss of BBB integrity is associated with worse stroke out-
comes, leading to vasogenic edema, brain swelling, and 
even cerebral hemorrhage [59].

Implantation of MSCs and/or EPCs could aid in the 
reconstruction of astrocytic end-feet and tight junc-
tions, via the secretion of proangiogenic growth factors, 
including vascular endothelial growth factor (VEGF), 
basic fibroblast growth factor (FGF-2), and transforming 
growth factor-beta (TGF-β), attenuation of immune cell 
infiltration, MMP9 downregulation, and VEGF-A signal-
ing pathway modulation effects, to restore the integrity of 
BBB and the functional recovery of the cerebral vascula-
ture at the acute phase of ischemic stroke [60–62].

Pro‑angiogenesis
A key factor for neural regeneration and the restora-
tion of cerebral function in stroke tissues in the  post-
acute phase is revascularization of the necrotic zone and 
penumbra. Although both MSCs and EPCs produce nec-
essary angiogenic factors, such as those in the FGF and 
VEGF families, MSCs are not directly involved in vas-
culature reconstruction like EPCs, but perform immu-
nomodulation in the infarct region [63, 64]. Kang et  al. 
revealed that pericytes coverage ratio is associated with 
angiogenesis with the use of a biomimetic vasculogenic 
model, which suggests that replenished multi-functional 
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cells play a crucial role in balancing the immune response 
and revascularization in ischemic stroke therapy [65].

Impaired neural tissue replacement
Gliosis and gliotic scars enclose the necrotic infarct area 
at the post-stroke stage and the permanent neural tissue 
loss causes a series of neural dysfunctional symptoms. 
Only a limited number of endogenous NSCs can be acti-
vated by the signaling factors secreted from the lesion 
area to promote neuro-regeneration [11, 28]. To achieve 
better neuroprotection and neurogenesis, researchers 
have genetically modified NSCs (gm-NSC) or applied 
iPSC-derived NSCs in neuroregenerative studies. Zhang 
et  al. reported that intravenously transplanted bFGF-
expression NSCs can survive, migrate, and differentiate 
into neurons and glial cells in a MCAO rat model. Their 
histological analysis indicated that endogenous NSCs are 
activated and involved in neural tissue regeneration [66]. 
Along with the extensive preclinical studies on ischemic 
stroke, a commercial gm-NSC line (CTX, ReNeuron 
Ltd.) has been used in the first-in-man trial via stereotac-
tic ipsilateral putamen injection to treat patients that are 
6–60 months after ischemic stroke. This open-label, sin-
gle-site, dose-escalation study showed no adverse effects 
with improved neurological function [32].

Stem cell therapy strategy and limitations in ischemic 
stroke treatment
Stem cell therapy is considered a promising treatment for 
degenerative diseases and organ impairment. The clinical 
trials of cell therapy for stroke are summarized in Addi-
tional file 1: Supplementary Table 1. However, their cura-
tive effects on ischemic stroke are controversial as most 
of the relative clinical trials did not achieve the therapeu-
tic targets that have been proved in animal studies. How 
to ensure the survival rate, maintain cell survival in vivo, 
improve  target organ homing efficiency, differentiation 
ability, and paracrine functionality of the implanted stem 
cells are the major challenges in stem cell therapy [67, 
68].

The means by which cells are delivered to stroke 
patients are selected based on the stage of the stroke and 
the desired therapeutic outcome. Multipotent stem cells 
are administered systemically via intravenous, intraarte-
rial, intrathecal, and intraperitoneal routes when treat-
ment via their paracrine effects is desired. Although 
systemic injection is a safe and convenient method to 
treat early-stage ischemic stroke patients, lung, liver, kid-
ney, and spleen may clear or retain most of the implanted 
cells. Moreover, BBB prevents most of the leftover cir-
culating stem cells from reaching the infarcted zone [13, 
38].

Stem cell cerebral stereotactic implantation is an 
alternative cell treatment solution to improve neuro-
regeneration, developed following the progression of 
live-imaging technology (which improves the accuracy) 
and biomaterial technology (which increases the cell sur-
vival and homing rate by providing better cell carriers, 
such as injectable hydrogels). However, direct injection of 
stem cells into the brain is a risky procedure and can only 
be performed during the chronic stage of a stroke, after 
the infarction scar has already formed and the intracra-
nial pressure returns to normal [69, 70].

Despite of the revolutionary equipment and technolo-
gies  developed, it has remained a challenge to deliver 
cells to  the intracerebral microenvironment of ischemic 
stroke patients due to the complexity of pathophysiologi-
cal causes. Other factors resulting in low intracerebral 
migration and low homing rate are not due to immune 
rejection, but are due to ischemia, inflammation, oxi-
dative stress in the wounded area and the presence of 
endogenous electric fields within the patient body [71]. 
In particular, high levels of ROS and free radicals in and 
around the infarcted area of the brain can induce cell 
death and dysfunction of the administered stem cells 
[72].

Acupuncture to treat ischemic stroke
Acupuncture has been served as an optional treat-
ment in stroke rehabilitation. Clinical and laboratory 
evidence suggests that acupuncture induces multilevel 
regulation through complex mechanisms against cer-
ebral ischemia, including: (1) neuroprotection, (2) collat-
eral circulation reconstruction, (3) neuro-regeneration, 
and (4) modulating brain glucose metabolism and brain 
plasticity [73]. The data of acupuncture clinical trials for 
stroke treatment are summarized in Additional file  1: 
Supplimentary Table 2.

Acupuncture methods in stroke
In acupuncture, specific points on the body meridians 
are called acupoints. When acupoints are stimulated 
by needles, vital energy inside meridians is excited and 
produces the effects of dredging meridians, resulting 
in harmonizing the internal environment, attenuating 
the pathogenic factors, and may finally relieving symp-
toms or curing diseases [104]. There are many methods 
of acupuncture to treat stroke, but broadly, it falls into 
two major categories based on the intervention styles 
and techniques: manual acupuncture (MA) or electroa-
cupuncture (EA). Acupuncture interventions have been 
applied at any stage in stroke progression and recovery 
after the patient’s vital signs are stabilized. The therapeu-
tic acupoint selection, schedule and course duration are 
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variable depending on the seriousness of the illness and 
intervention time [74–81] (Fig. 2).

Neuroprotective effects
Unlike neuroprotective agents, acupuncture is a multi-
target neuroprotective solution, which enhances endoge-
nous neuroprotection functions to diminish brain edema 
and the volume of cerebral infarction, thus promoting the 
recovery of neural functions via the following therapeutic 
mechanisms.

Attenuating inflammation
Acupuncture can modulate inflammatory factors in brain 
tissues or peripheral blood that indirectly inhibit the acti-
vation of nuclear factor κB (NF-κB), reduce the synthe-
sis and secretion of pro-inflammatory cytokines, such as 
TNF-α, Interleukin-6(IL-6), IL-8, IL-1β, and TNF-α, and 
at the  meanwhile promote the secretion of anti-inflam-
matory cytokines IL-10. Acupuncture also attenuates the 
excessive activation of microglia, astrocytes, and mac-
rophages [82–84].

Attenuating the excitatory amino acids (EEAs)‑induced 
toxicity
Previous studies have shown that EA could reduce the 
accumulation of glutamate and aspartic acids in the topi-
cal cerebral infarct area and alleviate glutamate toxicity 
to neurons via regulating the expression of NMDARs 
and reducing Ca2+ influx in the hippocampus of cer-
ebral ischemia/reperfusion injury rats [85, 86]. Further-
more, EA pretreatment could play a neuroprotective 
role by enhancing the expression of glutamate receptor 
subunit 2 (GluR2) in the hippocampus after global cer-
ebral ischemia (GCI) reperfusion through cannabinoid 
CB1 receptors (CB1R) [87]. In addition, EA pretreat-
ment could also increase the expression of glutamate 
transporter-1 (GLT-1) and inhibit the excessive release 
of glutamate in the striatum during ischemic-reperfusion 
brain injury [88]. GABA-mediated inhibition also plays a 
role in acupuncture-induced reduction of excitotoxicity. 
There is evidence that acupuncture stimulation at GV26 
could decrease excessive release of glutamate induced by 
ischemia and maintain the endogenous inhibitory activ-
ity of GABA [89].

Inhibiting oxidative stress
Acupuncture therapy possesses the potential to reduce 
oxidative stress caused by cerebral ischemia, which may 
be related to the neuroprotective effect of acupunc-
ture [90]. Existing research showed that acupuncture 
could block the production of pro-oxidative stress fac-
tors, such as nitric oxide  (NO), inducible nitric oxide 
synthase (iNOS), malondialdehyde(MDA), superoxide 
anion, and oxidized glutathione in mitochondria, while 
promoting the production of antioxidant factors, includ-
ing superoxide dismutase  (SOD), CuZnSOD, MnSOD, 
cyclooxygenase (COX), and reducing glutathione [91, 
92]. Additionally, acupuncture also inhibits synthesis of 
translocase of the outer mitochondrial membrane 40 and 
translocase of the inner mitochondrial membrane 17A, 
as well as the accumulation of amyloid β in brain mito-
chondria [91].

Diminishing cell apoptosis
Preclinical studies indicate that acupuncture could 
inhibit apoptosis, decrease infarct volume, and amelio-
rate neurological impairment via mechanisms mediated 
by different signaling pathways, such as PI3K/Akt and 
extracellular signal-regulated kinase  (ERK)/c-Jun N-ter-
minal kinase (JNK)/p38 [93, 94]. Acupuncture could also 
inhibit apoptosis after cerebral ischemia by increasing the 
expression of anti-apoptotic genes or protein B cell lym-
phoma 2 (Bcl-2), while reducing the expression of pro-
apoptotic genes or proteins,  including BCL-2-associated 
X (Bax, capase 3, and caspase 9) [95, 96].

Regulating autophagy
EA pretreatment at GV20 decreases the expression of 
autophagy markers and the number of autophagosomes 
in the ischemic cortex [97]. EA at GV20, GV4, and ST36 
decreases the level of mammalian target of rapamy-
cin (mTOR) and increases the levels of autophagy-related 
protein Beclin1 and LC3, which can inhibit neuronal 
injury induced by autophagy during the reperfusion 
period of cerebral ischemia [98]. Furthermore, EA at LI11 
and ST36 could protect against focal cerebral ischemia 
by inhibiting autophagosome formation and autophagy, 
which is mediated via the mammalian target of rapamy-
cin complex 1-Unc-51-like kinase (mTORC1-ULK) com-
plex-Beclin1 pathway [99].

Fig. 2  Acupuncture method and intervention on stroke. a XingNaoKaiQiao (XNKQ) protocol, an acupuncture method for ischemic stroke 
treatment, includeing stimulating the main points to induce resuscitation and to tonify the liver and kidney and the supplementary points 
to dredge the meridians. b Acupuncture intervention may be applied in any stage of stroke with various therapeutic effects that promote 
the development of collateral circulation and prevent further brain damage at the acute phase and stimulate endogenous neurogenesis at 
the post-acute phase. BBB blood–brain barrier, MA/EA manual acupuncture/electrical acupuncture

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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Vascular remodeling and angiogenesis
Modulating integrity of the BBB
Existing evidence indicates acupuncture might allevi-
ate BBB dysfunction during ischemic stroke. During the 
acute stage of ischemic stroke, EA or MA could reduce 
BBB permeability and brain edema by increasing the 
expression of tight junction proteins ZO-1 and claudin-5 
in the ischemic cortex, decreasing the expression of ROS 
generation, NADPH oxidase 4  (NOX4) and astrocytic 
aquaporin 4 (AQP4) in the peri-infarct area [100], and 
inhibiting expression of MMP-2 and MMP-9, AQP4 and 
APQ9, which are implicated in BBB permeabilization and 
destruction [101, 102].

Adjusting the CBF
Ischemic stroke results from the occlusion of a cerebral 
artery followed by severe disturbances in blood supply 
through micro-vessels to brain tissues. Acupuncture has 
been shown to increase CBF and improve microcircula-
tion, which could potentially explain the beneficial effects 
of acupuncture on treating cerebral ischemia. EA may 
reduce vasoconstriction and improve blood supply in 
ischemic region by suppressing the expression of Angi-
otensin II and its receptor-mediated signaling pathway 
[103], and induce changes in cell proliferation-associated 
miRNA expression after stroke [104].

Promoting post‑stroke angiogenesis.
EA increase the endothelial cell proliferation from as 
early as 12  h post-MCAO [105]. Meanwhile, EA inter-
vention can alleviate the injury of microvascular ultras-
tructure of focal ischemic cerebral tissues and upregulate 
cerebral VEGF mRNA expression, suggesting a role of 
EA in protecting ischemic brain tissues by facilitating 
the angiogenesis of capillary vessels and thereby restor-
ing the function of the damaged microvasculature [106]. 
EA also accelerates and promotes production of stromal 
cell-derived factor-1 (SDF-1) which further induces the 
mobilization of EPCs [107], and increases the level of 
angiogenesis promoting factors in MCAO rats, including 
bFGF, angiogenin (Ang)-1/2, PDGF-b, which promote 
vascular endothelial cell proliferation and the recov-
ery of neurological function [108]. Furthermore, EA at 
GV26 promotes regional CBF on the infarcted and non-
infarcted hemisphere and increases the number of blood 
vessels in areas of infarctions by upregulating von Wille-
brand factor and vascular endothelial cell proliferation 
[109].

Neurogenesis
Acupuncture is potentially beneficial for post-stroke 
rehabilitation and is considered a promising preventive 
strategy for stroke. EA pretreatment or treatment after 

ischemic stroke generates neuroprotective and neuro-
regenerative effects [110]. A systematic review showed 
that acupuncture enhanced endogenous neurogenesis 
including proliferation, migration, and differentiation of 
NSCs in experimental ischemic stroke models [111]. Dif-
ferent stimulation methods of acupuncture as well as the 
selection of acupoints lead to neurogenesis in different 
regions of the brain. EA treatment applied at GV20 and 
GV14 after MCAO may promote functional recovery by 
enhancement of proliferation and differentiation of NSCs 
in the hippocampus and SVZ of the ipsilateral hemi-
sphere via the BDNF and VEGF signaling pathway [112]. 
Acupuncture stimulation on GV26 enhanced the “self-
repairing” capacity of MCAO rats and alleviated neural 
functional damage by increasing the brain blood flow 
and the population of BrdU+, Nestin+, BrdU/nestin co-
labeled immunofluorescence positive cells in penumbra 
and promoting the expression of nestin mRNA in cortex 
and hippocampus, which facilitates endogenous neuro-
genesis and may be associated with regulating GSK-3β 
and PP2A expression [113].

Influencing factors and limitations of acupuncture
The National Institute of Health published a consensus 
statement that acupuncture may be useful as an adjunct 
treatment or an acceptable alternative to be included in 
a comprehensive management program for stroke care 
[114]. In recent years, clinical trials of acupuncture reg-
istered and carried out worldwide involve the evaluation 
of limb motor function, limb spasm and pain, swallowing 
function, activities of daily living, quality of life, cognitive 
function, depression, and anxiety state, etc., both in acute 
and recovery phase of ischemic stroke. Among them, two 
multicenter clinical trials showed that acupuncture was 
safe for the acute and subacute phase of ischemic stroke, 
reducing long-term mortality or disability rate and 
improving the neurologic deficits of patients [115, 116].

Shown from the available evidence, acupuncture plays 
varying roles in stroke treatment depending on the 
degree of cerebral ischemia.  The efficacy is depending 
on the selection of acupoints and formula as well as the 
operator’s manipulation skills, the timing of interven-
tion, and the frequency of acupuncture sessions [117]. A 
multicenter prospective cohort study showed that early 
intervention produced better effects on the disability and 
motor dysfunction of patients with cerebral infarction 
and limb dysfunction [117]. However, more high-quality 
clinical evidence is still needed to build the consensus on 
the frequency and interval of acupuncture intervention 
in different phases of ischemic stroke.

Diversified acupoint selection, prescription, and stimu-
lation parameters in the acupuncture treatment plan are 
some of the major barriers between laboratory research 
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and clinical applications of acupuncture. The therapeutic 
mechanism of acupuncture on focal cerebral ischemia 
involves multiple targets and signaling pathways to exert 
acupuncture’s neural protective effects, and this com-
plexity increases the difficulty of setting up negative and 
placebo control groups. Lack of positive control and 
direct efficacy indices (such as infarct volume) also influ-
ence the evaluation of acupuncture efficacy. To obtain 
more reliable clinical effects, quantitative and standard-
ized managing acupuncture treatment is necessary to be 
established based on the clarification of the ‘acupuncture 
method—neural electrical signal code—acupuncture 
effect’, and the ‘dose-effect’ relationship.

Although the simple operation and no facility-depend-
ent properties are the advantages of acupuncture, acu-
puncture may has limited potential for  sustainable 
technical improvement as a thousand-year-old well-
developed clinical treatment method. Only a theoretical 
breakthrough based on modern biomedical analysis can 
optimize the current therapy protocols or the develope-
ment of  a joint therapeutic methodology could signifi-
cantly benefit the patients.

Combination of stem cell therapy and acupuncture
Stem cell transplantation and acupuncture are two indi-
vidual types of multi-targeted therapies for ischemic 
stroke patients via different mechanisms and pathways. 
Acupuncture mainly modulates the microenvironment 
and activates endogenous restoration activities, while 
implantation of stem cells exerts its effect via exoge-
nous stimulation of cell activities and/or direct integra-
tion for neuro-regeneration. Preclinical studies provided 
evidence that the combined stem cell transplantation 
and acupuncture treatment can significantly improve 
the neurological outcomes compared to a single type of 
therapy through three interactive mechanisms: (1) com-
pensatory effects, where acupuncture increases the sur-
vival rate, migration, and homing ability of implanted 
cells; (2) enhancing effects that modulate the inflamma-
tory response and oxidative stress; (3) synergistic effects 
that increase the regeneration ability of endogenous and 
exogenous NSCs [118, 119] (Fig. 3).

Compensatory effects—Stem cells facilitate the recov-
ery and reconstruction of neurovascular unit and 
networks, as well as support the proliferation of endog-
enously activated NSC populations. Acupuncture can 
maintain normal stem cell functions and stimulate their 

Fig. 3  Acupuncture may enhance the efficacy of cell implantation. Acupuncture may increase the survival rate, migration and homing ability of the 
implated cells and maintain cell functions by increasing the cerebral blood flow, modulating the blood brain barrier (BBB) integrity, and attenuating 
the excitotoxicity and inflammatory responses. EAA excitatory amino acid, IL interleukin, ROS reactive oxygen species, TNF tumor necrosis factor
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participation in neural regeneration by increasing cer-
ebral blood flow and regulating chemokines and various 
cell signal transduction pathways.

Local microenvironment and immune responses are 
the decisive factors affecting the in vivo fate and function 
of implanted stem cells. The chemokines and cytokines 
secreted locally in infarct site, such as SDF-1, SCF, and 
VEGF, can not only promote the mobilization and hom-
ing of implanted cells to the lesions because of stem cells’ 
chemotaxis characteristics, but also influence the dam-
aged sites by recruiting the exogenous stem/progenitor 
cells and affecting their functions [120]. Our previous 
studies have found that acupuncture rebuilds or repairs 
the signal network by regulating the expression of stem 
cell microenvironment-related cytokines, which aid 
in maintaining the interaction and signal connection 
between transplanted stem cells and neighboring cells, 
therefore, promoteing the survival and proliferation of 
homed stem cells in the impaired brain tissue [119].

Passive entrapment in the microvascular system is one 
of the major stem cell physical localization mechanisms 
[228, 229]. Migrating and homing ability of implanted 
stem cells have been linked with the improved local 
blood flow (physical and physiological influences) and 
the administration of relative homing factors (biochemi-
cal influences) by numerous studies [121–123]. Both 
animal and clinical studies have proved that acupunc-
ture can increase the cerebral blood flow and cerebral 
microcirculation by regulating the expression of angio-
genesis-related factors, which result in a more conducive 
microenvironment for the survival of transplanted stem 
cells and the regeneration of NVUs at the infarct site 
[103].

Enhancing effect—Stem cells produce neurotrophic 
and immunoregulatory factors via paracrine mecha-
nisms, which could potentially enhance the neuropro-
tective effect of acupuncture. However, the low homing 
efficiency and survival rate of the systemic administrated 
stem cells limit their therapeutic efficacy in ischemic 
stroke treatment. Although the stereotaxic implanted 
NSCs have displayed a better survival rate, they showed 
very limited therapeutic effects because there is no 
stroma  reserved in the liquefactive necrosis lesion site 
[124, 125]. Acupuncture can modulate the brain micro-
environment and reduce the cell loss caused by excitotox-
icity and oxidative stress, which could   further  enhance 
cell therapy efficiency.

Both stem cell transplantation and acupuncture dis-
played immunoregulatory and antioxidative stress ability 
through different mechanisms. In an endometrial injury 
animal study, Xia, et  al. reported that EA elevated the 
expression of endometrial surface chemokine, activated 
the SDF-1/CXCR4 axis, which resulted in enhanced 

migration and paracrine effects of BMSCs. Improved 
histological outcome, vibrant cell activity, and increased 
cytokine level were detected within the endometrial 
damaged area, resulting in a better embryo implantation 
rate [126].

The complement system is able to modulate the inflam-
mation and immune responses, which hae been found 
indirectly influencing the cytotherapy outcomes [127]. 
The anaphylatoxins C3a and C5a, which are produced 
by complement components C3 and C5, are the human 
MSC chemo-attractants that direct the cell migrating and 
homing to the injured site when their C3a and C5a recep-
tors (C3aR and C5aR) coupled to the MSC G1-protein. 
The resilience of the implanted MSCs to oxidative stress 
and ROS is enhanced by C3aR and C5aR binging, which 
results in an increased survival rate and normal cellu-
lar functions maintenance [128]. Chen, et  al. reported 
that acupuncture downregulated the pro-inflammatory 
cytokine TNF-α and IL-1β, stimulated the release of 
complements, such as C3a and C5a, as well as the secre-
tion of cytokines SDF-1 and TGFβ-1, which played a syn-
ergistic immunomodulatory effects when combined with 
stem cell-seeded cryogel/hydrogel biomaterials for treat-
ing the diabetic skin wounds [129].

Synergistic effect—Acupuncture can activate a limited 
number of endogenous NSCs while intracerebral trans-
planted NSCs are able to differentiate into several types 
of neural cells directly involved in functional recovery of 
the damaged brain tissues.

The combined intervention of EA and HUCB-MSC 
transplantation showed a synergetic effect on upregulat-
ing VEGF expression and inhibited the cellular apoptosis 
in the cerebral ischemic penumbra of the ischemic infarct 
core [130, 131]. Furthermore, Kim, et  al. reported that 
elevated autologous NSC proliferation, BDNF, and neu-
rotrophin-4 expression, and higher activation of the tran-
scription factor cAMP response element-binding protein 
are detected in the brain of the combination therapy 
group in MCAO mice, indicating the combination ther-
apy has more capability in neurotrophic factor modula-
tion (Table 2). Combination therapy has been proved to 
be more advantageous than simple cell transplantation 
because it has a synergistic effect in co-regulating neu-
rotrophic factors in the brain, promoting angiogenesis, 
inhibiting cell apoptosis, and promoting nerve function 
recovery of cerebral ischemia rats.

A later study from the same research group found 
that stereotactic injection of BDNF/NT4 receptor tro-
pomyosin receptor kinase B (TrkB) gene-transfected 
BM-MSCs (TrkB-MSCs) combined with EA treatment 
in MCAO mice showed better motor function improve-
ment than the  single therapy. The histological analysis 
revealed that the combined therapy group resulted in 
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more TrkB-MSCs differentiating into neural cells, which 
suggests EA displayed an enhancing role in the composi-
tion therapy by increasing the expression of neurotrophic 
factors, BDNF and NT4, to activate the residential NSCs 
as well as  to promote the differentiation of TrkB-MSCs 
into matured neurons [118, 132].

Conclusion and prospects
Preclinical and clinical study revealed that both stem cell 
transplantation and acupuncture can improve the recov-
ery and rehabilitation of ischemic stroke to a certain 

extent and acquire multi-target advantages compared to 
the currently available clinical  treatments. A combined 
therapy may increase the implanted stem cells’ survival, 
homing, and functional differentiation rate, and  benefit 
ischemic stroke patients by enhancing and synergizing 
the effects of individual treatments and compensating 
for the deficits of each therapy compared to when each 
therapy is administered on its own (Fig. 4).

Table 2  The combination of cytotherapy and acupuncture in cerebral ischemia treatment

References Cytotherapy and 
acupuncture 
intervention

Control group Effect index Comparison of effects between 
groups

Mechanism index

[130] HUCB-MSCs 
(1 × 106/10 µl, intrac‑
ranial transplanta‑
tion); EA (GV26, GV20, 
GV14, CV24, CV4, CV6; 
30/100 Hz/5 V; 20 min; 
7, 14, 28 days)

PBS group Modified neurological 
severity score

EA + HUCB-MSCs > HUCB-MSCs > PBS VEGF-positive cells↑

[131] HUCB-MSCs 
(1 × 106/10 µl, intrac‑
ranial transplanta‑
tion); EA (GV26, GV20, 
GV14, CV24, CV4, CV6; 
30/100 Hz/5V; 20 min; 
7, 14, 28 days)

PBS group Pathological lesion EA + HUCB-MSCs > HUCB-MSCs > PBS Cellular apoptosis↓

[118] mBMSC (1 × 105/5 µl, 
intracranial trans‑
plantation); EA (GV14, 
GV20, 2Hz/2V; 20 min; 
12 days)

MCAO group Motor and cognitive 
dysfunctions
Atrophic volume

mBMSC + EA > EA > mBMSC > MCAO mBDNF↑, NT4↑
cAMP↑, pCREB↑
Proliferation of neural 
progenitor cells↑

[132] TrkB-MSCs 
(1 × 106/2 μl, intrac‑
ranial transplanta‑
tion); EA (GV14, GV20, 
2 Hz/2 V; 20 min; 
10–22 days)

PBS group, MSCs 
group, MSCs + EA 
group

Motor and cognitive 
function

TrkB-MSCs + EA > TrkB-
MSCs > MSCs + EA > MSCs > PBS

BDNF↑, NT4↑
Survival, differentia‑
tion and migration of 
TrkB-MSCs into mature 
neuronal cells↑
Activation of BDNF/NT4/
TrkB Signaling pathway
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Prospects
Stem cell therapy offers more dynamic interventions 
compared to drugs. The convenient, low-cost, and safe 
acupuncture treatment is an ideal supplementary therapy 
for stem cell therapy in ischemic stroke management. On 
the premise of quantified acupuncture methodology, the 
benefits of combined therapy should be evaluated by ran-
domized, double-blind clinical trials that group ischemic 
stroke patients by age, obstruction location, primary 
cause, and stage to narrow down and examine specific 
indications. Novel molecular biological detections, cell 
labeling, and imaging techniques should be able to dis-
close more neuroprotection, neuro-regeneration, and 
anti-inflammatory solution as well as other mechanisms 
of stroke therapies.
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