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Abstract 

Chronic obstructive pulmonary disease (COPD) is known as the third leading cause of human death globally. 
Enhanced chronic inflammation and pathological remodeling are the main consequences of COPD, leading to 
decreased life span. Histological and molecular investigations revealed that prominent immune cell infiltration and 
release of several cytokines contribute to progressive chronic remodeling. Recent investigations have revealed that 
exosomes belonging to extracellular vesicles are involved in the pathogenesis of COPD. It has been elucidated that 
exosomes secreted from immune cells are eligible to carry numerous pro-inflammatory factors exacerbating the 
pathological conditions. Here, in this review article, we have summarized various and reliable information about the 
negative role of immune cell-derived exosomes in the remodeling of pulmonary tissue and airways destruction in 
COPD patients.
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Introduction
COPD is a chronic inflammatory condition with progres-
sive bronchopneumonitis, leading to difficulty breathing 
and limitation of daily tasks [1]. Recent works established 
the importance and critical role of innate and adaptive 
immune systems in the pathology of COPD [2]. Pro-
longed inflammatory response accounts for excessive 
mucus production, generation of emphysematous foci, 
obstruction/narrowing of airways, and remodeling of the 
extracellular matrix (ECM) within the lung parenchyma 
[3]. The innate immune system response is stimulated 

in COPD patients coincides with the expression of 
cytokines such as interleukin-8 (IL-8), matrix metallopro-
teinase protein-9 (MMP-9), and neutrophil elastase (NE) 
in certain micro-anatomical regions of pulmonary paren-
chyma and intra-alveolar septum. These features may 
associate with reduced airflow capacity and gas exchange 
between blood and respiratory system [4]. Regardless of 
the presence of different subsets of immune cells in the 
COPD pulmonary niche, it is believed that the release of 
degrading enzymes and inflammatory mediators can reg-
ulate the bioactivity of other cells in close or remote sites 
[5]. Previous works have provided evidence of exosomal 
cytokines and modulatory effects under pathological 
conditions [6]. For example, several cytokines have been 
indicated inside the lumen of Exo released from inflam-
matory cells, progenitors, and certain stem cell types. 
Unlike several types of immune cells, mesenchymal stem 
cells (MSCs) can produce extracellular vesicles (EVs) with 
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a large content of anti-inflammatory cytokines compared 
to the other cell lineages [7].

Exo are known as nano-sized communication vehi-
cles, playing an interesting role in the paracrine activity 
of almost all cells under physiological and pathological 
conditions [8, 9]. Exo can cross all-natural barriers within 
the body and transfer their cargo to remote sites [6]. 
Their communicative facilities and components such as 
microRNAs (miRNAs) make key players in the dynamic 
activity of cells under pathological conditions [10, 11]. 
Besides, the critical role of Exo inside the body, using 
them directly or as a delivery agent is an undeniable 
part of almost the majority of experimental and clinical 
studies [12–14]. As expected, immune cells like other 
cells can actively secret Exo for reciprocal communica-
tion [15]. Exo exchange between the immune cells can 
be assessed from two distinct aspects. Whether and how 
these Exo can exacerbate the inflammation and remod-
eling process or trained immune cell Exo may contain 
certain growth factors that accelerate the regeneration 
of injured pulmonary microenvironment is the subject 
of area. It seems that the cellular source and cargo type 
is determinant in Exo activity under pathological condi-
tions. For instance, under pathological conditions such 
as sepsis macrophages can release Exo with the abil-
ity to increase the expression of intercellular adhesion 
molecule-1 (ICAM-1) in alveolar epithelial cells and 
trafficking of immune cells from the blood side into the 
pulmonary niche, leading to subsequent tissue damage 
and deleterious outcomes [16, 17]. Unlike these effects, 
inflamed monocyte-derived Exo contain mitochondrial-
associated DAMPs which can diminish neutrophil infil-
tration into injured sire via the suppression of Toll-like 
receptor-9 (TLR-9) [18]. It can be hypothesized immune 
cell Exo possess pleiotropic properties related to patho-
logical state and intensity of inflammation [19]. In this 
review article, we collected comprehensive information 
about the role of immune- and stem cell-derived Exo on 
the pathology of COPD disease.

Exosome biogenesis
EVs are distributed in different biofluids and are involved 
in paracrine cross talk between the cells in higher organ-
isms [20]. Generally, the term EVs include a heterogene-
ous population of vesicles shed by the majority of cell 
types and can be detected in biofluids. Based on ultras-
tructural analyses, EVs are classified into different subsets 
based on size, mechanism of biogenesis, density, func-
tion, and origins [21]. EVs include Exo, microvesicles, 
and apoptotic bodies [22]. Unlike Exo, microvesicles, and 
apoptotic bodies are directly generated via the protrusion 
plasma membrane, and their sizes are ranged between 
500 to 2000  nm [23]. Among all subtypes of EVs, Exo, 

with a mean diameter of 40 to 160 nm, are classified as 
the smallest vesicles with an endosomal origin [24]. In 
physiological and pathological conditions, several fac-
tors such as proteins, nucleic acids (including mRNA and 
miRNA), viral genetic materials, and lipids are sorted into 
the Exo lumen, harbored in biofluids, and transferred to 
the nearby acceptor cells or distant sites [25].

Exo appear relatively spherical and are enclosed by the 
lipid bilayer membrane, making them stable bioshuttles 
[26]. One reason would be that distinct factors such as 
tetraspanins (CD9, 63, 81, and 82), microvesicular bod-
ies (MVB) biogenesis-associated proteins [ALG-2 inter-
acting protein X (Alix)], tumor susceptibility gene 101 
(TSG101), clathrin), tumor necrosis factor receptor-1 
(TNFR-1), flotillin, docking, and membrane fusion pro-
teins [RABs, adenosine diphosphate ribosylation factor 
(ARF)], and heat shock proteins [HSPs (Hsp90, Hsp70, 
and Hsp60)] are tightly attached to Exo membrane dur-
ing biogenesis [27]. Besides proteins, several lipid ele-
ments such as sphingomyelin, cholesterol, ganglioside 
GM3, and ceramides are distributed in the Exo mem-
brane. The amount of Exo membrane lipids and protein 
can be different in terms of cell origin and physiologi-
cal and pathological conditions [28]. In collaboration 
with ESCRT machinery, lipids can participate in cargo 
sorting, Exo secretion, and induction of specified sign-
aling pathways in acceptor cells [26, 29]. Nucleic acids 
such as mRNA, microRNA (miRNA), non-coding RNA, 
and DNA are other important elements sorted into Exo 
lumen [26, 29]. In the cytosol, Exo are formed inside 
MVBs and an endosomal compartment with the collabo-
ration of several machinery systems (Fig. 1) [26, 29]. In a 
very simple language, the Exo biogenesis consists of MVB 
formation, intraluminal budding, and cargo sorting. The 
invagination of cell membrane leads to the generation of 
early endosomes and further morphological changes lead 
to inward budding at the vesicle membrane and the for-
mation of late endosomes and MVBs, respectively [30]. 
Numerous intraluminal vesicles (ILVs), Exo ancestors, are 
seen inside the MVBs. In the next step, MVBs can fuse 
with lysosomes or follow the endocytic/exocytic pathway 
where the membrane of MVBs coalesce with the plasma 
membrane and protrude the ILVs into the ECM hereafter 
referred to as Exo [31]. It was suggested that Exo biogen-
esis happens via two distinct pathways including endo-
somal sorting complex transport (ESCRT) required for 
transport (ESCRT)-dependent and -independent mech-
anisms [32]. The ESCRT system is composed of four 
different proteins ESCRT-0, -1, -2, and -3 [33]. These pro-
teins are in close contact with other factors like vascular 
protein sorting associated protein-4 (VPS4), vesicle traf-
ficking 1 protein (VTA1), and ALIX to promote MVBs. 
Of note, ESCRT-0 and -1 belonging to the ESCRT system 
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possess ubiquitin domains with the ability to recognize 
ubiquitinated protein and sort into the ILVs lumen [32]. 
Following cargo sorting, ESCRT-2 and -3 are recalled 

accelerating intraluminal budding via enzymatic de-ubiq-
uitination of cytosolic proteins which leads to MVBs for-
mation. The activation of the latter protein (ESCRT-3) is 

Fig. 1 Exo biogenesis and abscission mechanisms. Early endosomes are generated through the invagination of cell membranes. Then, by the 
inward budding of the vesicle, late endosomes and MVBs are formed. 2 pathways are involved in the exosome biogenesis: ESCRT-dependent 
and ECRT-independent pathways. Tetraspanins are thought to have a fundamental role in the ECRT-independent pathway. At the end of the 
exosome biogenesis process, formed MVBs either degraded into lysosomes or fuse with the plasma membrane. As a result of this fusion process, 
they are released by exocytosis through SNARE proteins and RAB GTPases. Released vesicles are called exosomes. MVB: multi-vesicular body, 
ESCRT: endosomal sorting complex transport, Rab: Ras-associated binding proteins, TSG: tumor necrosis factor (TNF)-stimulated gene, MHC: major 
histocompatibility complex
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also associated with the recycling of the ESCRT system 
[33]. Suppression of the ESCRT complex does not com-
pletely inhibit the Exo biogenesis which is the main rea-
son for the existence of the ESCRT-independent system. 
Interestingly, in the absence of ESCRT-0, -1, -2, and -3, 
the process of intraluminal budding continues, indicating 
an alternative pathway involved in Exo biogenesis [33]. 
In the ESCRT-independent pathway, the vesicle forma-
tion is orchestrated by the regulation of lipid and cargo 
domains via engaging HSPs, tetraspanins and lipids [34]. 
Along with these mechanisms, a recently introduced 
pathway so-called lipid raft participates in Exo biogenesis 
inside the cells [35]. In this pathway, changes are initiated 
in the lipid composition of the endosomal compartment, 
leading to lipid clustering, known as lipid rafts, allowing 
vesicle formation and intraluminal budding. It is thought 
that both flotillins and tetraspanins are involve in this 
mechanism [35]. The Exo secretion in this pathway is not 
affected by the downregulation of ESCRT components 
such as hepatocyte growth factor-regulated tyrosine 
kinase substrate (Hrs), Alix, or Tsg101 proteins, prov-
ing that this pathway is not associated with the ESCRT-
dependent pathway [35].

Once MVBs are formed, they harbor Exo in their 
membranes. To be specific, Exo have two distinct direc-
tions. They could either be degraded by the lysosomes or 
fused with plasma membrane resulting in the release of 
Exo into the ECM. If the MVB is targeted for lysosomal 
degradation, it will fuse with the lysosome and result in 
the release of the internal Exo and the macromolecules 
contained within them, into the lumen of the lysosome. 
These components will later be exposed to the hydro-
lytic enzymes and be degraded [36]. As a second fate, the 
MVBs will move to the plasma membrane and release 
their ILVs to the extracellular environment. There is 
molecular machinery involved in the transportation of 
MVBs to the cell periphery and fusion with the plasma 
membrane. This molecular machinery mediates the 
secretion of Exo [30].

Some studies proved that pathways for the secre-
tion of Exo are mediated by Rab GTPases [37, 38]. Even 
though the mechanism has not been fully understood 
yet, it has been shown that a GTPase, RAL-1, mediates 
the fusion of the MVB membrane with the plasma mem-
brane of the cell which results in the release of the Exo 
into the extracellular space [39]. It has also been shown 
in another study that some of the Rab family components 
such as Rab27A and Rab27B are the crucial mediators 
of Exo release. This process happens by inducing MVBs 
transfer to the cell periphery and finally ends with their 
fusion with the plasma membrane [37]. Soluble N-ethyl-
maleimide-sensitive factor attachment proteins receptor 
(SNARE) proteins are also thought to have a role in the 

fusion of vesicles with the plasma membrane [40]. Other 
molecular regulators, such as Rab11, Rab35, and cortac-
tin, have been implicated in different steps of Exo release 
from different cells [38, 41–43]. Other than these regula-
tors,  Ca2+ levels within the cells are directly proportional 
to the release of Exo [44]. It has also been seen that low 
pH in the microenvironment affects the release of Exo 
and also their uptake too [45].

As mentioned above, Exo contain several signaling bio-
molecules and can affect target signaling pathways inside 
the acceptor cells. Exo can exploit several mechanisms 
for internalization. In short, this procedure includes the 
mutual interaction of exosomal ligands with cell sur-
face receptors, membrane fusion, and endocytosis [46]. 
To this end, several mechanisms consisted of macropi-
nocytosis, clathrin-, caveolin-, and lipid raft-mediated 
endocytosis [47]. It was suggested that the membrane dis-
tribution of specific factors such as CD9, CD81, ICAM-1, 
heparan sulfate proteoglycans, annexins, and integrins 
can affect the internalization rate of Exo [48–50]. Upon 
Exo uptake, these elements are internalized into early 
endosomes and most of the early and late endosomes are 
directed to fusion with lysosomes. It is thought that the 
degradation metabolites are then released into the cyto-
sol and affect several signaling cascades [51].

COPD and immune system reaction
From a clinical perspective, COPD is commonly diag-
nosed with progressive dyspnea, cough, and sputum pro-
duction [52]. COPD is responsible for the third leading 
cause of human mortality globally mainly in low-income 
and middle-income countries [53]. It is estimated that 
the number of COPD deaths to increase with the aging 
human population shortly, while the exposure of individ-
uals to risk factors and allergens can speed up casualties 
[53]. The occurrence of chronic inflammatory response 
and relatively irreversible changes in airway conduits, 
known as bronchopneumonia, bronchitis/bronchiolitis, 
coincided emphysema limits airflow [54]. As a correlate, 
treatments have been mainly focused on the modulation 
of immune responses [55]. Importantly, airway conduits 
with an internal diameter less than 2 mm are touted to be 
major sites for obstruction following progressive COPD 
[56]. The increase in airway wall thickness due to epi-
thelial metaplasia, bronchial mucocele, hypertrophy of 
surrounding smooth muscle cells, and the recruitment 
of immune cells are common pathological findings dur-
ing COPD [5]. The activation of both innate and adap-
tive immunity has been documented following COPD 
and progressive inflammation [57]. Evidence points to 
the local infiltration of  CD8+ lymphocytes in air ducts 
[58]. There is a close association between pulmonary 
 CD8+ lymphocytes and the severity of COPD [58]. As 
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mentioned above, exposure to irritants, such as smoking, 
and air pollutants can intensify pathological remodeling 
and COPD symptoms [59, 60]. Following the exposure to 
irritants and allergens, the coordination of the oxidant/
antioxidant system is interrupted, leading to oxidative 
and nitrosative stress, leading to activation of certain 
factors such as NF-κB and AP-1 [61–63]. The apparent 
accumulation of free radicals predisposes the host cells to 
injury via triggering apoptotic changes [64]. Several lines 
of documents have shown both endothelial cells (ECs) 
and alveolar epithelial cells displayed apoptotic changes, 
indicated with enhanced P53 and Caspase activity, after 
the onset of COPD [65, 66]. Histological examinations 
have indicated that pulmonary ECM like basement mem-
branes and the interstitial matrix is degraded, leading 
to the lack of suitable elasticity and mechanical stability 
[67]. The progressive turnover in the ECM components 
supports prominent structural modifications and patho-
logical remodeling [68]. Along with these changes, induc-
tion of proteolytic activity and insufficient α1-antitrypsin 
level can result in the demolition of lung parenchyma and 
emphysematous appearance [69, 70]. It is confirmed that 
infiltration of immune cells or activation of local inflam-
matory cells such as dust cells (alveolar macrophages) 
and neutrophils is associated with notable proteolytic 

enzymes like MMP-12, MMP-2, MMP-9, elastase, cath-
epsin L, and neutrophil-derived protease 3 involved in 
pathological remodeling (Fig.  2) [71]. In normal lungs, 
neutrophils are dominant inflammatory cells while the 
onset of chronic inflammation indicated with the eleva-
tion of pulmonary lymphocytes and macrophages that 
likely leads to emphysema [72, 73]. In the support of 
this claim, lung macrophages  CD8+ lymphocytes are 
dominant inflammatory cells in the proximity of emphy-
sematous foci [74]. Likewise, several cytokines and 
chemokines such as tumor necrosis factor-α (TNF-α), 
IL-1β, IL-6, granulocyte macrophage colony-stimulating 
matrix (GM-CSF), and IL-8 were actively released to the 
inflammatory niche [75]. The prolonged inflammatory 
condition results in local fibrosis by the over-production 
and release of tumor growth factor-β (TGF-β) from small 
airway epithelial cells [76]. It is important to remember 
that macrophages have a critical role in the develop-
ment of COPD. Using ultrastructural studies, a marked 
increase in the number of macrophages has been indi-
cated in pulmonary parenchyma, bronchoalveolar lav-
age fluid (BALF), and sputum of COPD patients [77, 78]. 
In addition to the proliferation of local macrophages, a 
large number of pulmonary macrophages are associated 
with enhanced monocyte recruitment to the inflamed 

Fig. 2 The scheme represents inflammatory mediators in COPD. Cigarette smoke and other risk factors can activate epithelial cells and also recruit 
macrophages from circulating monocytes to produce various chemotactic factors that attract inflammatory cells to the lung. For instance, CXCL1, 
CXCL8, MCP-1, LTB-4, ENA-18, and IL-8 attract neutrophils and monocytes through on CXC-chemokine receptor (CXCR) 2, monocytes also can 
differentiate to alveolar macrophages in the lung (red arrow). CXCL 9, 10, and 11 can attract CD+8 T cells. IL-23 derived from alveolar macrophages 
can also trigger th17 entrance to the lung. Recruited macrophages also secrete MMPs (2, 9, 12), elastase, cathepsin K, L, S which are involving in 
lung fibrosis and emphysema (More detail in Fig. 3). On the other hand, activated lung epithelial cells can secrete TGF-β which leads to fibrosis, 
and also TNF-α, IL-6, IL-8, and GM-CSF (GM-CSF can increase proliferation of alveolar macrophages (green arrow)). CXCL: CXC-chemokine ligand, IL: 
interleukin, MCP-1: monocyte chemoattractant protein 1, LTB-4: leukotriene B4, ENA-78: epithelial neutrophil activating peptide, TGF-β: transforming 
growth factor-beta, GM-CSF: granulocyte–macrophage colony-stimulating factor
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microenvironment [79]. The apparent increase in local 
macrophage number is proportional to the severity of 
COPD. Frustrated macrophages are potent enough to 
release TNF-α, leukotriene B4 (LTB-4), monocyte chem-
oattractant protein-1 (MCP-1), reactive oxygen species, 
elastase, and IL-8 [80–82]. By contrast, most subsets of 
MMPs are released by neutrophils. Except in airway or 
lung parenchyma, the number of activated neutrophils is 
increased in sputum, bronchoalveolar lavage fluid, and 
airway smooth muscles of COPD patients. It would cor-
relate with rapid transition through these tissues [83]. 
The expression of adhesion molecules like E-selectin 
on the endothelial layer can increase the intra-pulmo-
nary entrance of blood neutrophils in COPD patients 
[84]. Concurrently, the concentration gradients of fac-
tors such as IL-8, LTB-4, and chemokines (C-X-C motif 
chemokine ligand (CXCL1) and CXCL8), and C-X-C 
motif chemokine 5 (ENA-78 or CXCL5) released by mac-
rophages, T lymphocytes, and epithelial cells are involved 
in neutrophils chemotaxis [85]. Continuous release of 
IL-8, granulocyte colony stimulating factor (G-CSF), and 
GM-CSF can increase neutrophil’s survival rate inside 
inflamed niches [86].

Pathological changes following COPD
Prolonged pulmonary diseases mainly COPD are indi-
cated with several abnormalities ranging from irre-
versible widespread pathological conditions in airway 
conduits and lung parenchyma to the alteration of bron-
cho-pulmonary function [1]. The continuity of chronic 
conditions allows ciliary dysfunction, the proliferation 
of goblet cells, and mucous secretion [87]. Due to the 
airflow obstruction or narrowing, both emphysema-
tous (excessive alveolar dilation) and atelectatic foci 
are detectable in gross and microscopic examinations 
[88]. The increased recruitment of immune cells, neu-
trophils, eosinophils, and further activation of alveolar 
macrophages coincides with the release of MMPs and 
lung destruction and ECM remodeling [67]. Within the 
lung parenchyma, the exposure of furnishing epithe-
lial cells to pro-inflammatory cytokines leads to mito-
chondrial dysfunction and squamous metaplasia (Fig. 3) 
[89]. Recent works have established the lack of normal 
mitochondrial function, incomplete oxidative phospho-
rylation, leading to intracellular accumulation of ROS in 
COPD patients [90]. As a consequence, the initiation of 
the mitochondrial damage-associated molecular pattern 
(DAMPs) triggers inflammation and apoptotic changes 
in epithelial cells. These pathological findings are con-
sistent with the promotion of autophagic response via 
mitochondrial injury which is so-called mitophagy. 
Ultrastructural imaging reveals the disintegration of 
mitochondrial membranes and localization of injured 

mitochondria in the periphery of the nucleus [91, 92]. 
These features support excessive ROS production and 
DNA injury. Commensurate with these descriptions, one 
could hypothesize that autophagic response, induced by 
mitophagy, can contribute to epithelial cell loss and sub-
sequent pathologies such as apoptosis and necroptosis 
[93, 94]. The loss of cilia would closely relate to mito-
chondrial dysfunction properties as the motility of these 
nano-sized structures is dependent on the energy supply 
provided by mitochondria. The reduction of mucocili-
ary clearance per se triggers goblet cell hyperplasia [95]. 
The increase of ROS was concurrent with the activation 
of the Akt/mTOR/sirtulin-1 axis. Sirtuin1 (SIRT-1) is a 
histone deacetylase linked to oxidative stress, inflamma-
tion, and cellular senescence in COPD [96, 97]. Given 
the highly intricate nature of COPD, the ECM network 
within the lung parenchyma is likely to change in COPD 
patients, leading to the alteration of blood-pulmonary 
barrier integrity. Likewise, activation of Rho-associated 
protein kinase and reduction of E-cadherin can lose cell-
to-cell connection [98]. In the pulmonary system, ECM is 
the main component of basal membrane (type IV colla-
gen and laminin) and lamina propria, and alveolar inter-
stitium (collagens, fibronectin, elastin, and fibronectin) 
[99, 100]. It is thought that fibroblasts and myofibroblasts 
are the main ECM producers inside the pulmonary niche 
[101]. Reconstruction of ECM is tightly regulated by the 
activity of MMPs and tissue inhibitors of metalloprotein-
ase (TIMPs) [102]. Excessive production of MMP-2, -9, 
and -12 increases elastin degradation and emphysema 
formation [103]. Histological examinations have shown 
less elastic fiber content in the lungs of COPD patients 
compared to normal tissues. [104]. In response to the 
reduction of elastin fibers, enhanced gene expression of 
elastin and fibulin-5 is normal in COPD cases [105]. The 
reduction of elastin is compensated with the production 
and deposition of type I collagen in COPD [106]. Exces-
sive collagen leads to the loss of elasticity in alveolar 
structure and airway collapsibility [102].

Role of Exo on the progression of COPD
The release of Exo by immune cells is done to main-
tain cell-to-cell communication while these bio-carriers 
can also spread the effectors associated with pathologi-
cal conditions. To be specific, tissue progenitor/stem 
cells exit from quiescence, migrate and differentiate into 
the mature cell type in response to Exo released from 
immune cells and injured cells with pro-inflammatory 
response [107]. It has been shown that various types of 
progenitor cells can be detected within pulmonary in 
terms of micro-anatomical sites, specific biomarkers, 
and activities (Table 1). Lung progenitor cells are quies-
cent during the physiological condition. Shortly after the 
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Fig. 3 The scheme illustrates the effect of COPD on tissue remodeling. A Activation of alveolar macrophage leads to upregulation in TGF-β1 
expression, upregulated TGF-β1 triggers differentiation of fibroblast to myofibroblasts and endothelial and epithelial cells to mesenchymal cells 
(EMT) which leads to fibrosis. Moreover, overexpressed TGF-β1 leads to an increase in ROS production by NOX4 activation. B Under inflammatory 
conditions, bone marrow-derived monocytes can migrate to lung tissue and differentiate to alveolar macrophages and this is, in turn, activates 
neutrophils in the existence of LTB-4 and IL-8. Activated neutrophils degrade elastin and as a result occurrence of emphysema through impairing 
protease/anti-protease balance and upregulation of MMP 2, 9, and 12; on the other hand, upregulated MMP 2, 9, and 12 induced goblet cells 
hyperplasia. C T cells derived from endothelial cells in COPD-derived inflammation-induced expression of IL-4, IFN-γ, IL-13, and perforin which leads 
to triggering goblet cells hyperplasia via disrupting mucociliary clearance. D In COPD diseases cause to increase in oxidative stress in mitochondrial 
which finally leads to activation of apoptosis by inhibiting P53. NOX4: NADPH oxidase 4, ROS: reactive oxygen species, ECM: extracellular matrix, 
LTB-4: leukotriene B4, IL: interleukin, MMPs: matrix metalloproteinase, IFN- γ: interferon-gamma

Table 1 Different pulmonary progenitor cells with diverse bioactivities

Progenitor cell type Micro-anatomical site Specific marker (s) Role Ref

Basal cells Bronchi Cytokeratin-14, 5 and P63 Epithelium regeneration [111]

Club/clara cells Bronchioles Secretory club cells-specific protein 
(CCSP or scgb1a1)

Involving in local inflammation 
response, xenobiotic metabo-
lism

[151]

Alveolar type 2 Gas exchanging area (Alveoli) Surfactant protein (SPC-A,B,C,D) Surfactant secretion, tissue 
regeneration, differentiation 
to AT1

[152]
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occurrence of pathological circumstances, these cells 
proliferate and subsequently differentiate into mature 
cells [108]. Among these progenitor cells, tracheal basal 
cells commonly express cytokeratins such as cytokera-
tin-14 and -5 as well as P63 [109, 110]. In response to 
insulting conditions such as chemical irritants (sulfur 
dioxide and naphthalene) and injury of the pseudostrati-
fied epithelial layer, basal cells proliferate and differenti-
ate into both ciliated and non-ciliated luminal epithelial 
cells [111]. In COPD patients and cigarette smokers, an 
untamed proliferation of basal cells can lead to pathologi-
cal hyperplasia and lack of mucociliary epithelia restora-
tion [112]. Type 2 alveolar pneumocytes (AT2) are other 
lung progenitor cells with the ability to secret surfactant 
proteins. Under pathological conditions like inhalation 
of toxic gas  NO2, proliferate and differentiate into type 
1 alveolar pneumocytes (AT1) [113]. Interestingly, AT2 
cells can be adversely affected by various types of respira-
tory disorders like idiopathic pulmonary fibrosis, leading 
to early cellular senescence and reduction of regenerative 
capacity in the pulmonary tissue [114]. Similarly, COPD 
can prone AT2 cells to DNA damage with the possibility 
of apoptotic changes [115]. Goblet cells are also known 
as secretory progenitor cells and produce mucus in col-
laboration with serous cells [116]. Like AT2 cells, goblet 
cells function is mainly affected by inflammation, result-
ing in mucus overproduction. Histological examination 
has shown that inflammatory compositions followed by 
COPD dictate goblet cells hyperplasia and consequently 
mucus hypersecretion [117] (Table 2).

Whether or how inflammatory Exo or immune cell Exo 
can predetermine pathological remodeling and/or regen-
eration status need further investigations. It is also pos-
sible the molecular identity of stem/progenitor cell Exo 
can be different rather than that of immune cell Exo. For 
instance, it has been indicated that the administration 
of epithelial progenitor cells (EPCs) Exo in acute lung 
injury using lipopolysaccharide ameliorates the patho-
logical condition. This work revealed that the regenera-
tive effects can be associated with exosomal miRNA-126 
and inhibition of sprout-related EVH1 domain-contain-
ing protein-1 (SPRED-1) via the RAF/ERK signaling axis 
[118]. Within the lung parenchyma, alveolar epithelial 
type II cells are the source of surfactant with an inher-
ent capacity to mature into type I alveolar epithelial cells 
[119]. Besides differentiation into functional cells, type 
II epithelial cells secret a significant amount of Exo that 
can lead to the delivery of chemotactic factors recall mes-
enchymal stem cells (MSCs) under inflammatory condi-
tions. Upon migration of MSCs into lung parenchyma, 
the intensity of inflammation is diminished via mito-
chondrial donation and improving bioenergetics [120]. 
This indicates that the tissue stem/progenitor cell Exo 

mighty blunt the pro-inflammatory condition and regen-
erate the injured area. However, the physiological signifi-
cance of this claim is the subject of debate.

It also suggests that various immune cells like neutro-
phils, macrophages, resident dendritic cells (DCs), and B 
lymphocytes can release Exo during COPD. The activity 
of several enzymes, hydrolases, lysozymes, proteinases, 
collagenase, etc., inside neutrophils, eosinophils, and 
basophils granules is closely related to the tissue dam-
age and ECM remodeling [121, 122]. In line with the 
active secretion of granules, the critical role of polymor-
phonuclear cells (PMNs) Exo has been indicated in the 
pathogenesis of COPD. These Exo distribute neutrophil 
elastase, and α1-antitrypsin, into the COPD inflamma-
tory sites where active ECM destruction occurs. In vitro 
investigations revealed that this enzyme digests type I 
collagen and elastin. Noteworthy, intratracheally injec-
tion of neutrophil Exo into the mouse airway conduits 
led to alveolar enlargement following the ECM remod-
eling [123]. The close interaction of Exo-containing neu-
trophil elastase with type I collagen is associated with 
surface Mac-1 protein (integrin αMβ2) [8]. In late COPD, 
extensive ECM destruction and pathological remodeling 
can be detectable. Under these conditions, the activ-
ity of specific cell lineages such as alveolar macrophages 
is increased as well [124]. The secretion of cytokines by 
alveolar macrophages into the pulmonary niche induces 
bronchial epithelial cells proliferation and migration. 
Exo isolated from alveolar macrophages are enriched in 
miRNA-380 a specific genetic element that tends to regu-
late the target cell cycle [125]. On basis of immunomodu-
latory properties of antigen-presenting cell Exo, such as B 
lymphocytes and DCs, it is postulated that these cells in 
line with the innate immune cell system participate in the 
COPD pathogenesis [126]. These immunomodulatory 
properties highly correlate with Exo cargo and surface 
antigenic molecules. For example, it has been indicated 
that the exosomal levels of major histocompatibility com-
plex I and II (MHC-I and II) and heat shock proteins (70 
and 90) [127]. In support of this notion, Rapaso and col-
leagues showed that B lymphocyte- and DC-derived Exo 
can activate  CD4+ and  CD8+ lymphocytes [128, 129]. 
Indeed, these Exo can harbor processed antigens to the 
T lymphocytes using integrins and ICAM [130]. Of note, 
the Exo releasing capacity of these cells can be altered 
according to developmental steps. For example, it has 
been indicated that mature DCs possess less cytosolic 
MVB compared to mature DCs, showing the reduction 
of released Exo in mature DCs. Therefore, it is logical to 
postulate that Exo can promote specific cell bioactivity in 
the target cells depending on cargo type and intracellu-
lar origination [131, 132]. Regarding the activation of T 
lymphocytes after exposure to DC Exo, one reason would 
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be that DC-derived Exo contain CD86, T cell stimula-
tor, αMβ2, milk fat globule-epidermal growth factor 8, 
ICAM-1/CD45, and Ig family member protein [127]. 
Besides, molecular investigations have shown that HSP70 
family member heat shock cognate protein (HSC73) is 
a chaperon protein involved in MHC II presentation 
which is abundant in DC-derived Exo [133]. Along with 
this protein, the content of HSP90 is also high in DC 
Exo, leading to immunogenicity of Exo and activation 
of T lymphocytes [130]. Further analyses showed that 
B lymphocyte Exo harbor a large amount of ICAM-1/
CD45 too, late endosomal lyso-bis-phosphatidic acid, 
and sphingomyelin [127]. Importantly, it is notewor-
thy to mention that Exo from other cell types rather 
than immune cells can regulate pathological response 
in COPD patients. In the line with this claim, Xu et  al. 
showed that Exo derived from human bronchial epithe-
lial cells (BECs) can induce myofibroblasts differentiation 
through transporting overexpressed miRNA-21 in ciga-
rette smoke-induced COPD [134]. It is thought that dif-
ferentiation of bronchial fibroblasts to myofibroblasts and 
aggregation of myofibroblasts is one of the main reasons 
for the narrowing of the small airways in conditions that 
coincided with the inflammatory response. The abun-
dance of specific genetic elements such as miRNA-21 
in BECs Exo can lead to the deterioration of connection 
between BECs and fibroblasts, promoting myofibroblasts 
differentiation and fibrosis via modifying Von Hippel 
Lindau/ Hypoxia-Inducible Factor-1 (VHL/HIF-1α) sign-
aling [134]. The increase of miRNA-21 can exacerbate 
COPD-related pathologies via enhanced polarization of 
macrophages toward M2 type and epithelial cell metapla-
sia via epithelial to mesenchymal transition (EMT) [135]. 
It seems that BECs can release Exo with distinct cargo in 
response to an inflammatory condition, exacerbating the 
conditions. The secretion of miRNA-210 via Exo can sup-
press autophagic response in pulmonary fibroblasts via 
targeting autophagy-related protein-7 (ATG7) [136]. As a 
correlate, prominent fibrosis and ECM remodeling occur, 
showing the critical role of autophagy in the regulation of 
COPD-related inflammatory response [137].

Taken together, the promotion of COPD can affect 
the production rate and exosomal cargo mainly via the 
alteration of the miRNA profile. Of course, the dura-
tion of disease and severity of immune responses can 
directly or indirectly affect exosomal content. In line 
with this claim, it was determined that the content of 
miR-122-5p was significantly reduced in bronchoalveolar 
fluid taken from COPD patients compared to the control 
group [138]. Due to the existence of active inflammatory 
response and recruitment of different immune cells into a 
pulmonary niche, it is logical to mention that the content 
of inflammatory Exo are high in inflamed site compared 

to the systemic circulation. It was suggested that spu-
tum and bronchoalveolar lavage fluid EVs, more impor-
tantly, Exo, are indicative of inflammatory composition 
during the occurrence of pulmonary pathologies [139]. 
Of note, transcription of specific miRNAs can be modu-
lated following the progression of different pathological 
conditions within the pulmonary niche. For instance, 
it has been shown that miR-145 and miR-338 contents 
were altered in conditions such as COPD, asthma, and 
asthma-COPD overlap syndrome, indicating that these 
miRNAs are common biomarkers for the detection of 
inflamed pulmonary tract [140]. As mentioned above, it 
seems that the pulmonary content of these genetic ele-
ments was higher than that of blood [141]. Whether con-
tinued inflammatory conditions can lead to balances in 
blood and respiratory content of specific miRNAs needs 
further investigation. Additionally, the specificity and 
sensitivity of each biomarker in response to pulmonary 
disease should be indicated.

Immunomodulatory effects of stem cell Exo 
on COPD niche
Putative therapeutic effects of stem cells and their Exo 
have been proved under inflammatory conditions via 
juxtacrine and paracrine activities [6]. It was suggested 
that a part of these restorative impacts correlates with 
anti-inflammatory, and immunomodulatory properties of 
release Exo [142]. Stem cell-derived Exo are comprehen-
sively applicable in studies ranging from pharmacological 
to clinical settings (Table  3). In addition to their thera-
peutic effects, the application of stem cell Exo as a deliv-
ery vehicle is one of the most prominent approaches in 
this area [143]. For instance, Fonseca and coworkers tried 
to deliver micro-bubbles to the respiratory tract via Exo. 
To this end, ultrasound signals were used to penetrate tis-
sue to provide a way for Exo-containing micro-bubbles to 
reach the alveoli. They postulated that the combination of 
ultrasound signals and Exo administration can help in an 
emergency, such as COVID-19 patients, to decrease pul-
monary injury [144]. It is accepted that Exo can be touted 
as a natural carrier for the transfer of mRNA and other 
genetic elements under pathological conditions. Exo can 
be used for the delivery of mRNA-based COVID-19 vac-
cines and are superior in comparison with lipid nanopar-
ticles (LNPs) based delivery [145].

Up to now, there are few studies related to the appli-
cation of stem cell Exo in COPD patients. In a study 
conducted by Maremanda et  al., authors applied intra-
peritoneally the combination of MSCs and Exo in COPD 
mice. Data showed that the number of recruited neutro-
phils,  CD4+ lymphocytes, and macrophages was reduced 
in bronchoalveolar lavage, indicating the protective role 
of MSCs and Exo against COPD inflammation. One 
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reason related to the therapeutic effects of MSCs would 
be due to the reduction of adiponectin, keratinocytes-
derived chemokine following MSCs, and Exo admin-
istration [146]. In another experiment, intra-tracheal 
administration of umbilical MSCs Exo in COPD rats 
suppressed inflammatory cytokines such as NF-κB and 
inhibition of alveolar septum thickening. These features 
coincided with the reduction of goblet cell hyperpla-
sia compared to control asthmatic rats [147]. Like these 
studies, the application of placental MSCs Exo in COPD 
mice reduced the number of infiltrating leukocytes, 
diminished vascular inflammation, and suppressed local 
secretion of TNF-α, IL-1β, IL-12, and interferon-γ. Histo-
logical examination revealed the number of local CD80/
F4+ macrophages in the pulmonary tract [148]. Small 
airway fibrosis is another complication of COPD; the 
underlying mechanism for this phenomenon is related 
to activation of myofibroblasts by the TGF-β signaling 
pathway [149]. One possible way to cope with this side 
effect might be using stem cells derived Exo; according 

to previous studies, effective role of this kind of Exo in 
fibrosis has been strongly confirmed (Table 3).

Clinical application
Due to the pleiotropic effects of Exo from different cell 
sources and the complexity of underlying mechanisms 
in therapeutic properties of these nano-sized vesicles, 
there are few reports related to the application of Exo in 
COPD patients (Table 4). As shown in Table 3, Exo were 
used only for monitoring for the prediction of pathologi-
cal changes and detection of valid biomarkers in COPD 
patients. Lack of enough knowledge related to whole 
Exo dose (single or repeat injection), route and time of 
administration, lack of standard GMP protocol, and the 
possibility of side effects limit the extensive application of 
Exo in COPD patients. Besides, standard methods have 
not been introduced for Exo isolation and purification, 
leading to heterogeneity in Exo population and content 
[150].

Table 3 Studies about the role of stem cells derived Exo on fibrosis

Disease Source of Exosomes Experiment Results References

Pulmonary fibrosis Human umbilical cord MSCs Using 3D cultured umbilical cord 
MSCs-derived Exo to treat silicosis 
induced lung fibrosis

Decreasing collagen I (COL1A1) 
and fibronectin (FN) expression
-Increasing FEV0.1 amount

[164]

Renal fibrosis BM-MSCs Transferring miR-let7c via BM-
MSCs-derived Exo to alleviate 
renal fibrosis

Decreasing in collagen IVα1, TGF-
β1, and α-SMA expression

[165]

Liver fibrosis BM-MSCs Investigating the underlying 
mechanism for treating potential 
of BM-MSCs-derived Exo on liver 
fibrosis

Decreasing collagen aggregation 
and inflammation
Improve the function of the liver
Increase hepatocyte regenera-
tion
Responsible mechanism for 
the healing effect of Exo is the 
Wnt/β-catenin pathway

[166]

Renal fibrosis Human umbilical cord MSCs Investigating about repairing role 
of Exo though governing Yes-
associated protein (YAP)

Decreasing renal fibrosis via 
regulating CK1δ/β-TRCP inhibited 
YAP activity

[167]

Cystic Fibrosis Lung MSCs Using lung MSCs-derived Exo to 
treating inflammation in cystic 
fibrosis

Decreasing in IL-1β, IL-8, IL-6 
expression
Increasing the mRNA expres-
sion of PPARγ controlling NF-kB 
mechanism
Reducing NF-kB nuclear trans-
location

[168]

Cystic fibrosis BM-MSCs Using BM-MSCs-derived Exo 
containing zinc finger protein to 
cystic fibrosis transmembrane 
conductance regulator (CFTR) 
performance

Increasing in CFTR transcription [169]

Hypertrophic scar (HS) fibrosis Adipose-derived MSCs (AD-MSCs) Studying about the effect of AD-
MSCs-derived Exo in HS and its 
related mechanism

Suppressing proliferation and 
migration of HS-derived fibro-
blasts
A decreasing expression of col 1, 
col 3, and α-SMA expression
Increasing wound healing ratio

[170]
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Conclusion
The majority of previously published data have indi-
cated the critical role of immune cell-derived Exo in the 
progression of COPD. It seems that the exosomal cargo 
and activity of host cells can predetermine the inflam-
matory/therapeutic role of Exo in specific tissue niches. 
In contrary to immune cell-derived Exo, stem cell-
derived Exo exhibit prominent anti-inflammatory and 
regenerative properties under pathological conditions. 
Regarding the existence of few studies monitoring stem 
cell Exo, many comprehensive studies are needed for 
confirming therapeutic effects in COPD patients.
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