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Abstract 

Exosomes are extracellular vesicles found in various tissues, blood circulation, and tissue fluids, secreted into the 
extracellular environment by fusing a multivesicular body with a plasma membrane. Various cell types release these 
vesicles to contribute to many cellular functions, including intercellular communication, cell proliferation, differentia-
tion, angiogenesis, response to stress, and immune system signaling. These natural nanoparticles have therapeutic 
effects in various diseases and exhibit a behavior similar to the cell from which they originated. In the meantime, 
exosomes derived from mesenchymal stem cells have attracted the attention of many researchers and physicians due 
to their unique ability to modulate the immune system, repair tissue and reduce inflammation. Numerous clinical and 
preclinical studies have examined the effect of MSC-derived exosomes in various diseases, and their results have been 
published in prestigious journals. This review article discusses the biogenesis and sources of exosomes, MSC-derived 
exosomes, the use of these exosomes in regenerative medicine, and treatments based on exosomes derived from 
stem cells in respiratory diseases.
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Introduction
Mesenchymal stem cells (MSCs) have unique biologi-
cal properties due to their stem cell nature. These cells 
can regenerate themselves and differentiate into multi-
ple cells [1]. Mesenchymal stem cells are isolated from 
various tissues and are widely distributed throughout 
the body, including bone marrow and adipose tissue 
[2]. Identification features of human mesenchymal stem 
cells, including adhesion capability in traditional culture, 
expression of CD105, CD73, and CD90, non-expres-
sion of CD45, CD34, CD14, CD11b, CD79a, CD19, and 

HLA-DR, differentiation into osteoblasts, adipocytes, 
and chondrocytes in vitro, have been expressed by Inter-
national Association of Cell Therapy [3]. The significant 
capability of MSCs to proliferate in vitro and differentiate 
into different cells introduces these cells as therapeutic 
agents for regenerating necrotic cells or for connective 
tissue apoptosis. Mesenchymal stem cells can be differen-
tiated into several classes, including adipocytes, endothe-
lial cells, cardiomyocytes, chondrocytes, osteoblasts, 
and various cells like hepatocytes and neuron-like cells 
[4, 5]. Mesenchymal stem cells have low immunogenic-
ity because of the lowly expression of MHC-I and the 
expression of a small number of MHC-II molecules [6, 
7]. MSCs have also shown immune system modulation 
and regeneration capacity in various disease models 
[8–11]. At present, significant advances have been made 
in stem cell technology with good therapeutic prospects 
for treating different diseases such as respiratory dis-
eases [12]. Many studies indicate that MSCs can affect 
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activation, proliferation, and differentiation of cells acting 
on natural killer cells (NK), dendritic cells (DCS), mac-
rophages, B lymphocytes, and T lymphocytes [13–16]. 
MSC migrate to the inflammation site through adhesion 
molecules and integrins such as VCAM-1 and VLA-4, 
affecting the damaged tissue through cell–cell contact 
and secretion of various trophic factors [17]. In a clinical 
trial on patients with cirrhosis, it was shown that mesen-
chymal stem cells were trapped in the lungs in the early 
hours after injection into peripheral blood and that they 
left the lungs after 48 h, migrated to the liver and spleen, 
and remained in these tissues for several days [18]. Other 
investigations have indicated that most injected MSCs 
are commonly trapped in the liver, spleen, and lungs and 
that a small number of these cells reach the damaged 
site. Therefore, focusing on cell-free therapies is of high 
importance [19]. MSCs secrete soluble factors such as 
growth factors, cytokines, and chemokines, and they also 
release extracellular vesicles (EVs), leading to therapeutic 
consequences through the exchange of cytoplasm and 
genetic material [20, 21]. The therapeutic ability of MSCs 
may depend on paracrine factors in the vesicles [22]. This 
paper will examine exosomes (especially MSC-derived 
ones) and their application in diagnosing and treating 
lung diseases.

Biogenesis and sources of exosomes
Extracellular vesicles (EVs) are released from various cel-
lular sources and have been known as messengers of cel-
lular transmission through the delivery of lipids, proteins, 
and biologically active RNAs. EVs are separated into 
three subtypes: exosomes, microvesicles, and apoptotic 
bodies [23]. Among these extracellular vesicles, exosomes 
play an essential role in modulating the immune system, 
as well as in cellular communication [24]. Exosomes 
from MSCs show similar natural activity to these cells by 
encompassing and transporting functional biomolecules 
such as peptides, proteins, and RNA species to damaged 
tissues and cells [25]. In terms of mechanisms and cel-
lular composition, exosomes resemble the cells derived 
from them [26]. Exosomes can be classified according to 
their cell or tissue of origin based on cellular elements 
and protein content. Proteins of cell-derived exosomes 
typically include integrins, adhesive molecules, MHC 
I and II, transferrin receptors, and other cell surface 
exosomes. Nonspecific proteins of exosomes restricted 
to plasma membranes, cytosols, and endosomal ele-
ments, including fusion and transporter proteins, and, 
cytoskeletal proteins, heat shock proteins, contribute to 
multivesicular and other cellular processes [27]. Studies 
have indicated that exosomes derived from endosomes 
recreate a necessary function in cell-to-cell communica-
tion. Exosomes are discovered in most biological fluids, 

including serum, breast milk, saliva, urine, synovial fluid, 
amniotic fluid, lymph, bile, gastric acid, tears, and cer-
ebrospinal fluid (CSF) produced in a variety of cells. 
In addition to cellular communication, exosomes are 
involved in tumor progression, myelin formation, and cell 
maintenance [28].

Exosomes originated from mesenchymal stem cells
Mesenchymal stem cells from different sources have 
received significant attention as an alternative treatment 
for various rare diseases due to their ability to stimulate 
tissue regeneration and modulate active immune cells 
[29, 30]. These cells act in various diseases through cell–
cell contact and environmental changes induced by the 
release of soluble factors [31]. MSC-derived exosomes 
have a crucial role in the function of mesenchymal stem 
cells as stromal support cells responding to external 
stimuli and maintaining tissue homeostasis. At injury or 
disease, tissue homeostasis is impaired, and exosomes’ 
key role becomes apparent. MSC-derived exosomes are 
affluent in biologically active molecules like proteins and 
RNAs and can adequately play their role [32]. Exosomes 
contain large amounts of membrane and cytoplasmic 
proteins such as extracellular matrix proteins, receptors, 
enzymes, transcription factors, nucleic acids, and lipids 
[33] (Fig.  1). MSC exosomes express CD markers such 
as CD73, CD44, CD29, and CD105 [34] and include pro-
teins, mRNAs, and microRNAs transported to receptor 
cells and change the manners of neighboring cells [35]. 
MSC-derived exosomes represent adhesion molecules 
(FN1, EZR, IQGAP1, CD47, integrin, and LGALS1/
LGALS3), receptors (PDGFRB, EGFR, and PLAUR), 
signaling molecules (RRAS/NRAS, MAPK1, GNA13/
GNG12, CDC42, and VAV2), and antigens related to 
MSCs (CD63, CD63, CD81, CD109, CD151, CD248, 
and CD276) [36]. MSC exosomes contribute to cellular 
functions, including proliferation, adhesion, transcrip-
tion, migration, and differentiation [35]. MSC-derived 
exosomes inhibit inflammation, induce angiogenesis, 
prevent fibrosis, increase neuronal survival and differ-
entiation, stimulate ECM regeneration and modulate 
immune cells [37].

Studies have shown that MSC-derived exosomes 
comprise more than 850 and 150 gene products and 
miRNAs, respectively [38, 39], which are applied in bio-
logical processes such as organism growth, immune 
modulation (miR-155 and miR-146), epigenetic regu-
lation, tumorigenesis, and tumor advance (miR-23b, 
451miR-, miR-223, miR-24, miR-125b, miR-31, miR-214, 
and miR-122) [40, 41]. These exosomes contain growth 
factors and cytokines including IL-10, TGFβ1, IL-6, 
and hepatic growth factor (HGF), which are involved in 
immune system modulation [42]. In addition, studies 
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have demonstrated that MSC-derived exosomes have a 
pivotal role in promoting angiogenesis and tissue repair 
through factors such as vascular endothelial growth 
factor (VEGF), extracellular matrix metalloproteinase 
inhibitor (EMMPRIN), and matrix metallopeptidase 9 
(MMP-9) [43].

Utilization of MSC‑derived exosomes in regenerative 
medicine
MSCs have the fantastic possibility to sustain tissue 
homeostasis because these cells can enter into dam-
aged tissue and regulate the immune system and tissue 
regeneration through cellular and molecular processes 
[44–46]. Further studies have revealed that the ben-
eficial effects of MSCs in repair are related to paracrine 
signaling, including secreted vesicles such as exosomes 
[47–50]. Various studies show that exosomes secreted 
by MSCs can replace stem cell-based therapies in differ-
ent models of injury and disease [51, 52]. The therapeu-
tic effects of MSC exosomes have been demonstrated in 
preclinical studies in various diseases such as CVD, renal, 
hepatic, and neurological diseases, healing of wounds, 

and other diseases [53]. We briefly review some of these 
investigations.

A study by Cui et  al. on exosomes derived from adi-
pose tissue MSCs in disease showed that these exosomes 
caused a significant increase in survival of H9C2 cell 
line under hypoxia/re-oxygenation (H/R) conditions 
in vitro. In this study, administration of Ad-MSC-derived 
exosomes via the Wnt/β-catenin signaling pathway is 
protected against myocardial ischemia in  vivo [54]. In 
another research on a model of myocardial ischemic 
injury, exosomes from BM-derived mesenchymal stem 
cells reduced apoptosis and the size of myocardial infarc-
tion and, after that, recovered heart function by persuad-
ing cardiac autophagy via two pathways such as AMPK/
mTOR and Akt/mTOR routes [55]. MSCs have revealed 
promising results in acute and chronic kidney damage. A 
study on a rat model of renal damage revealed that intra-
vascular injection of human umbilical cord-derived mes-
enchymal stem cells (huMSCs) in a mouse model with 
ischemia–reperfusion injury (IRI) of the kidney increases 
renal vein density, reducing renal fibrosis by direct trans-
fer of vascular endothelial growth factor, a process in 
which mRNAs are involved [56]. Another study showed 
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Fig. 1  The schematic role of MSC exosomes in respiratory diseases
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that an intrarenal injection of adipose tissue-derived 
EVs in a swine model with renal artery stenosis reduced 
the level of proinflammatory factors, including TNF-α, 
IL-6, and IL-1β, increased IL-10 levels in renal vein and 
decreased kidney inflammation, indicating the immune-
modulating capacity of EVs by changing proinflamma-
tory to tubular repair macrophages [57]. Effects such as 
protecting the liver tissue of exosomes separated from 
human embryonic stem cell-derived mesenchymal stem 
cells (hESC-MSCs) were investigated in a model of acute 
liver injury [58].

Moreover, it was found that these exosomes contribute 
to the regeneration of damaged liver tissue through posi-
tive regulation of PCNA expression, cyclin D1 cell cycle 
regulator, and Bcl-xL anti-apoptotic gene [58]. In another 
research, Li et al. assessed exosomes derived from human 
umbilical cord mesenchymal stem cells (hUMSC) and 
showed that these exosomes improve liver fibrosis by 
inhibiting EMT of liver cells and producing collagen, as 
well as recovering aspartate aminotransferase activity 
in serum and inactivating TGF-β1/Smad2 pathway [59]. 
One of the most prominent outcomes of MSC-derived 
exosomes is their ability to transit the blood–brain bar-
rier (BBB) and reach the brain parenchyma. Therapeu-
tic advantages of MSC-derived exosomes in the cure of 
neurodegenerative disorders have been demonstrated 
in different investigations. Exosomes targeted against 
α-synuclein reduce mRNA and alpha-synuclein pro-
tein levels in the brain [60, 61]. Studies on BM-MSC 
exosomes have indicated that these exosomes con-
tain miR-133b, which leads to neurite regeneration 
and improves stroke in mouse models [62]. Intrave-
nous injection of BM-MSC exosomes in a mouse stroke 
model increased neurovascular flexibility and improved 
axon density in the ischemic margin region of the brain 
[63]. Exosomes derived from Wharton Jelly mesenchy-
mal stem cells lead to angiogenesis in vivo and enhance 
wound healing via the Wnt4 pathway and activation of 
β-catenin [64]. MiRNAs such as miR-21, miR-23a, miR-
125b, and miR-145 originating from WJ-MSC exosomes 
contribute to wound healing by inhibiting scar forma-
tion and myofibroblast accumulation and reducing colla-
gen deposition [65]. Another study found that exosomes 
derived from BM-MSC via Akt, ERK, and STAT3 signal-
ing pathways could raise fibroblast proliferation, migra-
tion and increase HGF, IGF1, NGF, and SDF1 levels [66]. 
Exosomes derived from Wharton Jelly-MSC showed 
significant medicinal effects by improving bronchopul-
monary dysplasia, pneumonia, pulmonary hypertension, 
fibrosis, and regulating the phenotype of pulmonary 
macrophages in the lung tissue [67].

Studies have shown that microRNAs from exosomes 
derived from mesenchymal stem cells, such as 

miR-125a-3p, improve Treg survival and prevent T cells 
from differentiating into effector cells [68]. These micro-
RNAs, including miR-146a, function in inflammatory 
responses using the NF-κB signaling pathway [69]. They 
have debilitating effects on dendritic cells through miR-
21-5p, miR-142-3p, miR-223-3p, and miR 126-3p [70]. In 
addition, they inhibit the production of cytokines such as 
IL-6 through miR-142-3p [70].

MSC‑derived exosomes‑based therapies in respiratory 
disease
Clinical trials based on anti-inflammatory medications 
combined with glucocorticoids have failed to treat lung 
diseases [71, 72]. Preclinical studies indicate that MSC-
derived exosomes have a significant healing prospect in 
the regeneration and rehabilitation of several lung dis-
eases via various molecular pathways and by influencing 
lung tissue target cells like immune cells, endothelial and 
epithelial cells [73, 74]. MSC-derived exosomes are prom-
ising for the cure of diverse lung diseases, including idi-
opathic pulmonary fibrosis (IPF), ALI, ARDS, pulmonary 
artery hypertension, asthma, pneumonia, inflammatory 
lung disease, silicosis, chronic obstructive pulmonary 
disease (COPD), and Bronchopulmonary dysplasia [75]. 
While the production of exosomes is practically and 
economically tricky compared to that of MSCs, they are 
not trapped in the lungs as MSCs injected intravenously 
do, have advantages such as small size (approximately 
100  nm), and can be favorable as aerosol inhalation for 
the treatment of airborne diseases [76] (Fig.  1). Proin-
flammatory mechanisms are inhibited by MSC-derived 
exosomes and are associated with remodeling of inflam-
matory lung disease and reduction in oxidative stress and 
pulmonary fibrosis [77].

One study used exosomes derived from human BM 
mesenchymal stem cells in a bleomycin-induced pul-
monary fibrosis model. This study demonstrated the 
use of exosomes as an exciting and innovative approach 
to treating fibrotic lung disease. Exosomes improve pul-
monary fibrosis by modulating the monocyte phenotype 
[78]. In a study by Ahn et  al., VEGF was shown to be 
highly important in protecting exosomes in pulmonary 
hyperoxia damages. Exosomes derived from umbilical 
cord mesenchymal stem cells have significant efficacy 
in improving impaired alveolar function through angio-
genic effects, reducing apoptosis, and limiting mac-
rophages and inflammatory responses in a mouse model 
of lung injury [74]. In another study, mitochondrial 
MSC exosomes increased the production of alveolar M2 
macrophages to reduce acute lung damage and inhibit 
inflammatory cytokines [79]. Intravenous injection of 
MSC exosomes exhibits immunomodulatory impacts in 
bacterial pneumonia lesions by increasing monocytes’ 
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phagocytic capacity and decreasing the secretion of 
inflammatory cytokines. Exosomes restore the metabo-
lism of alveolar type 2 epithelial cells by raising intra-
cellular ATP levels [80]. MSC-MVs stopped endothelial 
cell apoptosis via rising IL-10 levels and decreasing IL-6 
expression in endothelial cell culture medium through 
HGF factor in vitro [81]. In an animal model of chronic 
obstructive pulmonary disease (COPD) study, a com-
parison was made between the healing capacity of hUC-
MSCEVs and hUC-MSCs in remedy.

Both MSCs and exosomes derived from them improved 
peribronchial and vascular inflammation, thereby reduc-
ing the thickening of the alveolar septum in COPD via 
reducing the production of zeta C kinase protein and 
NF-κB subunits of p50 and p65 subunits [82]. MSC-
derived exosomes are effective, promising treatments 
for ALI/ARDS. In one study, human BM was injected 
by chips using MSCs into an ALI model. This research 
observed a significant decrease in macrophage-2 inflam-
matory protein levels in Bronchoalveolar lavage fluid 
(BALF), pneumonia, neutrophil infiltration, and protein 
penetrance [83]. In addition, a study by Abreu et al. [84] 
found that exosomes derived from HBM-MSCs could 
help reduce inflammatory responses in ARDS through 
mitochondrial transmission. Studies have shown that 
the injection of BM-MSC-derived exosomes can prevent 
myofibroblastic differentiation associated with TGF-β1 
in pulmonary fibrosis [85]. Despite the COVID-19 pan-
demic, MSC-derived exosomes can be good as a thera-
peutic agent in this disease and its associated difficulties, 
such as acute lung injury and ARDS.

As a therapeutic strategy for severe COVID-19, 
exosomes are used with convalescent plasma since it 
contains acquired immune antibodies that require con-
sideration that it contains trillions of exosomes. These 
exosomes are produced by immunomodulatory cells that 
transmit miRNAs [86]. MSC-derived exosomes have 
remarkable characteristics, including antiviral proper-
ties, immune system regulation, and tissue repair. A pre-
sent investigation showed that MSC-derived exosomes 
could replace MSCs because they are similar to mesen-
chymal stem cells in COVID-19 [87]. In a study of severe 
COVID-19 disease, exosomes derived from allogeneic 
BM-MSCs were used in 24 patients, which showed that 
MSC exosomes could be a potent therapeutic candi-
date for treating severe COVID-19 [88]. Because the 
pathogenesis of SARS-CoV-2 is equivalent to many 
viruses and results in complications such as ARDS and 
lung damage, treatment approaches launched on MSCs 
or MSC-derived exosomes were examined in SARS-
CoV-2. In previous studies, MSC-derived exosomes have 
been shown a favorable reaction to ARDS and suppress 
cytokine storms by transmitting mRNA and miRNA 

to lung tissues [23, 89]. The schematic role of MSC 
exosomes in respiratory diseases is depicted in Fig. 1.

In recent years, clinical studies on the use of exosomes 
in lung diseases such as COVID-19, ARDS, Early-staged 
Lung Cancer, Acute Lung Injury and BPD have been doc-
umented, as shown in Table 1.

Conclusion
Clinical and preclinical studies have shown advantageous 
effects of MSC-derived exosomes. Since stem cell therapy is 
associated with clinical challenges such as high cell count, 
selective dose, cell injection routes, cell safety, exosomes 
derived from these cells have become highly important in 
various diseases. Exosomes have received much attention 
in biomarker research today and are even regarded as an 
alternative strategy for stem cell-based regenerative thera-
pies. For this purpose, the use of separation methods and 
optimization of these exosomes can be promising in clini-
cal studies of various diseases, including lung diseases.
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