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into insulin-producing cells (IPCs): recent 
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Abstract 

Type 1 diabetes mellitus (T1D) is a chronic disease characterized by an autoimmune destruction of insulin-producing 
β-pancreatic cells. Although many advances have been achieved in T1D treatment, current therapy strategies are 
often unable to maintain perfect control of glycemic levels. Several studies are searching for new and improved meth-
odologies for expansion of β-cell cultures in vitro to increase the supply of these cells for pancreatic islets replacement 
therapy. A promising approach consists of differentiation of stem cells into insulin-producing cells (IPCs) in sufficient 
number and functional status to be transplanted. Differentiation protocols have been designed using consecutive 
cytokines or signaling modulator treatments, at specific dosages, to activate or inhibit the main signaling pathways 
that control the differentiation of induced pluripotent stem cells (iPSCs) into pancreatic β-cells. Here, we provide 
an overview of the current approaches and achievements in obtaining stem cell-derived β-cells and the numerous 
challenges, which still need to be overcome to achieve this goal. Clinical translation of stem cells-derived β-cells for 
efficient maintenance of long-term euglycemia remains a major issue. Therefore, research efforts have been directed 
to the final steps of in vitro differentiation, aiming at production of functional and mature β-cells and integration of 
interdisciplinary fields to generate efficient cell therapy strategies capable of reversing the clinical outcome of T1D.
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Introduction
Diabetes mellitus
Diabetes mellitus (DM) is a metabolic disease, which 
arises from a complete deficiency of insulin production—
type 1 diabetes (T1D)—or inability to utilize this hor-
mone, as occurs in type 2 diabetes (T2D). It is among the 
top 10 causes of death in adults, being estimated to have 
caused 4.2 million deaths globally in 2019 [1]. Accord-
ing to the International Diabetes Federation (IDF) [1], 
approximately 463 million adults aged 20–79  years old 
are living with diabetes. An additional number of 1.1 

million children and adolescents under 20 years old live 
with T1D. The IDF [1] also estimates that, by 2045, 700 
million adults will be living with DM globally. Therefore, 
it is crucial to discover and understand the underlying 
mechanisms of this disease, as well as searching for new 
and more efficient alternative therapy strategies.

T1D is characterized by the autoimmune destruction 
of insulin-producing β-pancreatic cells. Autoreactive 
T cells are key mediators of β-cell destruction, result-
ing in a complete depletion of insulin hormone, which 
is essential for carbohydrate metabolism and regulation 
of normal blood sugar (glycemic) levels [2]. The balance 
between activated autoreactive memory/effector T cells 
(Teffs) and activated regulatory T cells (Tregs) is critical 
for maintaining a healthy immune status. The mecha-
nisms of autoimmunity in T1D are driven by activation of 
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the Teffs, leading to initiation or exacerbation of a preex-
isting autoimmune process. The persistent activation of 
Teffs, uncontrolled by Tregs, leads to chronic inflamma-
tion and immune response to β-pancreatic cells [2, 3].

According to the World Health Organization (WHO) 
[4], T1D is responsible for approximately 10% of the 
totality of DM cases in the World. In contrast, T2D 
is characterized by the development of insulin resist-
ance due to alterations in the cell insulin receptor or in 
intermediate mediators of the insulin signaling path-
way. The prolonged dysregulation of glycemic levels can 
cause several chronic health complications, such as dia-
betic nephropathy, cardiovascular diseases (heart attack, 
stroke and peripheral artery disease), retinopathy and 
diabetic neuropathy, which can lead to amputation of 
inferior members and even death.

T1D therapies
Despite all efforts placed on T1D research throughout 
the years, the cure for this disease still remains more of 
an aspiration. Insulin therapy constitutes the main form 
of treatment for T1D patients; however, continuous 
administration of exogenous insulin requires an intensive 
therapeutic regimen and frequent monitoring of glycemic 
levels, with limited degrees of effectiveness. In addition, 
this regimen does not accurately mimic the endogenous 
insulin secretion kinetics; therefore, it is not able to effi-
ciently prevent some of the deleterious effects of hyper-
glycemia. Moreover, even though insulin therapy slows 
down the development of secondary complications, it is 
not able to control glycemic levels in hyper-labile patients 
[5], who are subject to a wide variation in glycemic rates, 
showing severe and often fatal hypoglycemic episodes, 
even under the best conditions of glycemic monitoring 
and insulin administration [5].

Some advances were made in the field of insulin admin-
istration, with the creation of alternative administration 
routes, such as inhalable insulin preparations, which have 
become clinically feasible [6, 7], and in the field of glucose 
level monitoring, with the creation of devices that utilize 
capillary blood samples [8]. However, it is still necessary 
to search for other alternative therapeutic strategies to 
improve the patient’s quality of life and enable a less strict 
and stressful regimen. From a physiological point of view, 
restoration of β-pancreatic cell functions through trans-
plantation of insulin-producing tissue (whole pancreas 
or isolated pancreatic islets) may be the best therapeutic 
option so far.

Therapeutic alternatives for T1D
According to Fioretto et  al. [9], whole organ pancreas 
transplantation is a viable therapeutic option, since 
it improves the patient’s quality of life and promotes 

regression of some late complications associated with 
T1D. However, this procedure constitutes a major sur-
gical intervention, which requires a strict immuno-
suppressive regimen and heavily depends on properly 
functioning of the donor pancreas for a successful treat-
ment, being recommended only for patients with brittle/
labile T1D who also need a kidney transplant [10]. Pan-
creatic islets transplantation, introduced in Brazil by our 
research group [11, 12], has been shown to be a promis-
ing alternative to whole organ pancreas transplantation, 
since it is a simpler and less invasive procedure. Accord-
ing to Hering et  al. [13], transplantation of pancreatic 
islets is a safe and efficient treatment option for T1D 
patients with hypoglycemia. Nevertheless, there are still 
some factors that limit this procedure, such as the low 
availability of pancreas donors and the requirement for 
constant patient immunosuppression [10, 14].

Chronic usage of immunosuppressant medication 
becomes necessary for immunological acceptance of the 
islet allograft; however, this regimen is associated with 
various side effects, such as oral sores, gastrointestinal 
diseases, hypertension, dyslipidemia, anemia, increased 
infection susceptibility, cancer and systemic toxicity [15]. 
Therefore, encapsulation of pancreatic islets has emerged 
as a promising strategy to avoid the need for these immu-
nosuppressive drugs. Production of semipermeable 
microcapsules for biological application, containing cells 
or proteins, was initially suggested in the 90’s [16], but 
considerable progress has been achieved in the field since 
then, with a major increase in application possibilities, 
including as an alternative for T1D treatment.

To avoid using steroid-based agents that damage β-cells 
and are known to be diabetogenic or induce peripheral 
insulin resistance, a glucocorticoid-free immunosup-
pressive protocol was developed by the Shapiro’s Group 
[17], for usage in islet transplantation trials. This proto-
col includes sirolimus, low dosage of tacrolimus and a 
monoclonal antibody against the interleukin-2 recep-
tor (daclizumab). Their findings, in a study with T1D 
patients, indicate that islet transplantation alone is asso-
ciated with minimal risks for the patient and results in 
good metabolic control, with normalization of glycated 
hemoglobin values and restricted requirement for exoge-
nous insulin [17]. This protocol, known as the Edmonton 
Protocol, was considered as a breakthrough, becoming 
the standard procedure for islet transplantation, con-
stituting a promising step toward the development of a 
cure for T1D [18]. However, the standard procedure for 
pancreatic islets transplantation is based on isolation and 
purification of islet cells from deceased donors, a process 
that requires two to four donors per patient, since the 
efficiency of islet isolation is well below 100% and, addi-
tionally, only about 50% of the implanted islets survive 
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after transplantation [19]. In addition, several factors 
interfere with the viability of the graft after transplanta-
tion, such as quality of the donated organ, viability and 
functionality of the purified islets and the patient’s own 
immune response [20]. Although many advances have 
been reached in the field, the need for a large number of 
viable islets, along with the low availability of donors, is 
still an important factor that compromise the viability of 
this methodology.

Although progress has been made, pancreas and islet 
transplantation are still limited by the limited number 
of pancreas donors, chronic immunosuppression, which 
causes a number of adverse effects, and, also, by the 
recurrence of autoimmunity/onset of alloimmunity [21]. 
Therefore, a variety of T1D immunotherapy approaches 
have been developed aiming to prevent or delay T1D 
onset in predisposed individuals or preserve insulin pro-
duction in T1D patients [22–24]. A hallmark of T1D is 
the emergence of β-cells destructive autoantibodies 
against endogenous antigens, which include proinsulin 
(biosynthetic precursor of insulin), proinsulin C-A junc-
tion (connection of C-peptide and A chain of proinsu-
lin), glutamic acid decarboxylase 65 (GAD65, tolerogenic 
vaccine for T1DM prevention), islet antigen 2 (IA-2) and 
zinc transporter 8 (ZnT8) [25–29]. Therefore, the over-
arching goal of immune-focused therapies in T1D is to 
prevent or delay the loss of functional β-cell mass.

Immunotherapies directed to T1D can be classified 
into non-autoantigen-specific and autoantigen-specific 
interventions [30]. Non-antigen-specific treatments are 
based upon the premise that enhancing immune regula-
tory mechanisms can ameliorate the destructive auto-
reactive immune responses, including those against 
β-cells. A large clinical trial was carried out investigat-
ing the therapeutic utility of cyclosporin A in the late 
80s. Although cyclosporin A treatment increased T1D 
remission, this was only for a short duration, since the 
studies reported progressive increase in daily insulin 
requirement [31]. Similarly, there have been many clini-
cal interventional studies carried out using anti-CD3 and 
anti-CD2034 monoclonal antibodies [32]. However, only 
transient preservation in C-peptide levels was observed 
[33]. Furthermore, a study investigating safety and effi-
cacy of anti-thymocyte globulin (ATG) failed to preserve 
β-cell function after two years [34].

Compared to non-autoantigen-specific immunomodu-
lation, autoantigen-specific immunotherapy is expected 
to selectively modulate T1D-related autoimmunity while 
preserving the global immune homeostasis intact [35–
37]. There are studies related to modulation of autoan-
tigen-specific T cell, such as Santamaria et al., 2016 that 
developed nanoparticles coated with autoantigen-related 
MHC-II/peptide complex molecules (pMHCII) [36]. 

There are also trials related to autoantigen-specific B lym-
phocyte modulation, which have been shown to be more 
promising than non-specific inhibition of B lympho-
cytes, for example, by depleting insulin-reactive B cells 
[37]. Significant progress has already been made through 
either non-autoantigen-specific immune modulation or 
T1DM autoantigen-specific immunotherapy. Neverthe-
less, so far, no T1DM immunotherapy is yet available to 
replace the standard insulin replacement therapy [30].

Another possible alternative for T1D cell therapy is 
based on using human mesenchymal stem cells (MSCs) 
due to their ability to release immunomodulatory mol-
ecules that may interrupt the early β-cell destruction 
by the patient’s own immune system [38]. This may be 
achieved by infusion of MSCs, which may be obtained 
from various tissues, directly into the patient’s blood-
stream or by apheresis, followed by ex  vivo stem cell 
Educator Therapy, in which the patient’s blood passes 
through a closed-loop system that separates white blood 
cells, which are momentarily co-cultured with stem cells, 
before returning them to the patient’s bloodstream [39].

Transdifferentiation has also become a potential 
method to produce functional β-cells. Some findings 
indicate that, under certain conditions, pancreatic cells, 
such as acinar and ductal cells, can transdifferentiate into 
β-cells, following viral transduction [40] or in response to 
soluble factors [41–43]. Nevertheless, further research is 
required to understand this transdifferentiation of non-β 
cells into insulin-producing cells (IPCs), since it remains 
unclear how similar reprogrammed cells are with respect 
to endogenous β-cells [44].

Several studies have been directed at new and 
improved methodologies for expansion of β-cell cultures 
in vitro, aiming at increasing the supply of IPCs for pan-
creatic islets replacement therapy. Since the nature of 
T1D disease is a dysfunction of only one cell type, β-cell, 
differentiation of pluripotent stem cells in β-like cells 
or IPCs represents a promising approach for T1D cell 
replacement therapy [45]. Stem cells display two main 
characteristics: They are non-specialized cells that self-
renew for long periods of time, through the cell division 
cycle, without differentiating into other cell types, while 
maintaining their capacity to differentiate into different 
cell types, according to the physiological and experimen-
tal conditions to which they are submitted [46].

Achieving economically and technologically viable 
stem cell-derived therapies still constitutes a great chal-
lenge, which requires strict rules for handling and pro-
duction under appropriate current Good Manufacturing 
Practice (cGMP) conditions. A cGMP facility is a pro-
duction facility that includes the manufacturing space, 
the storage warehouse for raw and finished product and 
support laboratory areas, also including quality control 
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and quality assurance  programs, establishing a  Quality 
System  approach [47]. Implementation of procedures 
and protocols adapted to cGMP requirements is critical 
to ensure robust and consistent high-quality stem cell 
manufacturing.

To ensure uniformity from batch-to-batch, manufac-
turers are required to keep Master Batch Records (MBRs) 
and Batch Production Records (BPRs) [48]. Detailed 
standard operating procedures (SOP) and MBRs for 
manufacturing of stem cell-derived β-cells lots suitable 
for clinical transplantation are key to ensure that a viable 
mass of insulin-producing cells can be safely infused into 
the recipients. These SOPs detail each procedural step, 
from stem cell expansion and differentiation in  vitro to 
pre-transplantation, quality controls and product release 
criteria for transplantation [49] ensuring that the repro-
ducibility of the final product is in accordance with estab-
lished specifications [50]. Also, operation in a closed 
system and automation of the manual steps enable steril-
ity, processing robustness and reproducibility [48]. The 
main requirements for stem cell clinical-grade manu-
facturing, product characterization, infrastructure and 
concerns related to therapeutic application are shown 
in Fig.  1. Importantly, investigational products must 
go through a thorough review process by a regulatory 
agency, such as FDA (Food and Drug Administration), 

EMA (European Medicines Agency) and ANVISA (Bra-
zilian Health Regulatory Agency), to determine the safety 
and effectiveness of products in a well-controlled clinical 
trial with human subjects.

Based on ongoing clinical trials using stem cell-derived 
β-cells, the eligibility criteria for participating in a clini-
cal study usually include age 18–65  years, clinical his-
tory of T1D with > 5 years of duration, episodes of severe 
hypoglycemia and stable diabetes treatment [51]. Dur-
ing the clinical study, a protocol for outcomes measure-
ment is established in order to evaluate the effectiveness 
of the transplantation, with most clinical studies having 
one primary outcome measure, but some have more than 
one. Graft function depends on the complex physiologic 
relationship between the graft and the recipient, with 
several metabolic tests being necessary to monitor graft 
function and the success of the transplantation. Similar 
to islet transplantation, the primary endpoints for stem 
cell-derived β-cells should consist of normal HbA1c level 
(HbA1c ≤ 6.5%), absence of hypoglycemic  episodes and 
graft durability. The major secondary endpoints include 
insulin independence, stimulatory test using meal toler-
ance test (MTT) and oral glucose tolerance test (OGT), 
continuous glucose monitoring and patient quality of life 
[52, 53].

Fig. 1 Overview of the relevant requirements for institution of stem cell-derived therapy clinically, including β-like cells. cGMP: Current good 
manufacturing practice. iPSC: Induced pluripotent stem cell; ESC: embryonic stem cell
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Many of the previously mentioned therapeutic strate-
gies, exemplified in Table 1, are currently being clinically 
tested. Strategies focused on immunomodulation by 
MSCs infusion are the most highly represented among 
cell therapies for T1D currently in clinical trials. The 
combination of immunomodulatory and regenerative 
properties of MSCs made these cells the most frequently 
investigated stem cells for clinical applications during 
the last couple of decades [54]. The immunoregulatory 
mechanism mediated by MSCs is based on inhibition of 
effector T cells and other immune cells, while inducing 
Tregs, reducing directly and indirectly the production of 
pro-inflammatory cytokines. Many immunosuppressive 
cells, such as Tregs, regulatory B cells (Bregs), endothe-
lial progenitor cells (EPCs) and myeloid-derived sup-
pressor cells (MDSCs), express TNFR2, TNFα receptor, 
in direct relationship to their immunosuppression effi-
ciency [55]. In fact, Beldi et  al. [56] showed that mouse 
TNFR2 KO-MSCs have significantly lower immunosup-
pressive and immunomodulatory effect against T cells. 
It was further demonstrated that TNFR2 blockade led 
to increased levels of IFNγ, TNFα and IL-6 pro-inflam-
matory and decreased IL-10 and TGFβ anti-inflamma-
tory cytokines and nitric oxide production. Moreover, 
TNFR2 deficiency leads to the induction of Tregs with 
remarkably less immunosuppressive effect [54].  It has 
also been suggested that mast cells could confer resist-
ance to T1D, by promoting increased Treg cells, and 
decreased IL-17-producing T cells in the pancreatic 
lymph nodes [57]. Considering the autoimmune nature 
of T1D, marked with a disbalance in Teff and Tregs, as 
previously described, the MSCs and other molecules that 
boost Tregs responses represent a therapeutic option for 
immunomodulation to improve T1D outcomes.

Only two trials involve the usage of pluripotent stem 
cells fully or not differentiated into insulin-producing 
β-cells, which includes two companies, namely Via-
Cyte and Vertex. The ViaCyte initiative is considered as 
the first cell replacement therapy in clinical trials, with 
islet-like cells derived from stem cells, testing the safety 
and efficacy of pancreatic precursor cells incorporated 
into its encapsulation devices, namely PEC-Encap and 
PEC-direct. The biologically active component of the 
PEC-Encap and PEC-direct product candidate is stem 
cell-derived pancreatic islet cell progenitors, called PEC-
01™ cells. ViaCyte has shown that once implanted and 
engrafted, the cells mature into β cells and other islet cell 
types and are able to secrete insulin in a regulated man-
ner. The PEC-Encap was developed with the purpose of 
eliminating the need for immunosuppression. The device 
was evaluated in a 24-month open-label, dose-escalating 
Phase 1/2 study in T1D patients with minimal insulin-
producing β-cell function. The potential for prolonged 

cell survival has been demonstrated, for as long as 
24  months, but has been inconsistent among subjects 
and primarily limited by a foreign body response to the 
device component which indicates the requirement for 
optimization of the device materials [58]. PEC-Direct is 
an islet cell replacement therapy comprised of stem cell-
derived pancreatic islet progenitor cells in a pouch that 
allows direct vascularization of the implanted cells, thus 
requiring a concomitant immunosuppressant regimen. A 
report analysis of data from the first cohort of 15 patients 
showed that up to one year, patients had 20% reduced 
insulin requirements, spent 13% more time in target 
blood glucose range, had stable average HbA1c < 7.0% 
and had improved hypoglycemic awareness. Implanta-
tion of PEC-01 cells was well tolerated, and the serious 
adverse events that impacted two patients have been 
previously documented to be associated with the immu-
nosuppression protocol. Only one patient had a > 50% 
reduction in insulin requirements within one year post-
implantation, and no patients achieved insulin independ-
ence [59].

Recently, a report by the Vertex company announced 
positive day 90 data for the first patient from the Phase 
1/2 clinical trial of VX-880, an investigational stem cell-
derived, fully differentiated pancreatic islet-like cell 
replacement therapy. This patient had a 91% decrease 
in daily insulin requirement and simultaneous robust 
improvements in glucose control, indicating that treat-
ment was generally well tolerated. This was the first 
demonstration of patient with T1D achieving robust res-
toration of insulin production from such a cell therapy. 
The patient was treated with a single infusion of VX-880 
at half the target dose in conjunction with immunosup-
pressive therapy.  There were no serious adverse events 
related to VX-880, and the majority of the adverse events 
were considered mild to moderate1 [60].

The other trials depicted in Table  1 involve pancre-
atic islet cell transplantation, based on the Edmon-
ton Protocol or variation thereof, in combination with 
an immunosuppression regimen (NCT00133809; 
NCT00434811) or evaluation of different transplantation 
sites (NCT02402439; NCT02821026) or the combination 
with other non-endocrine tissues (NCT03977662). Con-
sidering the already available advances in the pluripotent 
stem cells area and the advantages that stem cells-derived 
IPCs could provide for T1D treatment, these data high-
light the crucial necessity to establish efficient and repro-
ducible protocols for stem cell differentiation into IPCs 
in order to enable their clinical applicability. Therefore, 
the aim of this review is to provide an overview of the 
current approaches and achievements in obtaining stem 
cells-derived IPCs in vitro and the challenges which still 
need to be overcome.
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Stem cells as a source of insulin‑producing cells
Stem cells
Stem cells (SCs) are non-specialized cells capable of both 
auto-renewal and differentiation into different cell types 
[61]. The cell differentiation process depends on the 
physiological or experimental conditions to which the 
cells are subjected, being induced, on the one hand, by 
intracellular factors, such as expression of key genes, and, 
on the other, by extracellular factors, such as differentia-
tion-inducing molecules present in the cellular microen-
vironment [62].

SCs can be classified into three main types: embryonic 
SCs, adult SCs and induced pluripotent SCs. Embryonic 
stem cells (ESCs) comprise a class of stem cells derived 
from the inner cell mass of the blastocyst. ESCs are pluri-
potent cells that can generate cells from all three embry-
onic leaflets (endoderm, mesoderm and ectoderm); 
therefore, they have the greatest potential for cell differ-
entiation [63, 64]. Adult stem cells (ASCs) are non-dif-
ferentiated cells found in most specialized adult tissues, 
being able to generate only a selection of cell types of 
those which are present in that tissue, mainly due to their 
maintenance and self-renewal [41]. Although displaying 
a lower proliferation and differentiation potential, ASCs 
present the great advantage of enabling autologous trans-
plantation [65, 66].

Induced pluripotent stem cells (iPSCs) are genetically 
modified and reprogrammed cells that originate from 
adult cells through cellular genetic modification mecha-
nisms, generating cell products, which are similar to 
ESCs [67]. The reprogramming process is based on trans-
fection of transcriptional factor genes (Oct4, Sox2, c-Myc 
and Klf4), which are highly expressed in ESCs, through 
retroviral transduction [68]. After introduction of these 
reprogramming factors, it is possible to obtain, from dif-
ferentiated adult cells, groups of cells that are similar to 
human ESCs, regarding their morphology, cell prolif-
eration rate, antigenic profile, gene expression profile, 
epigenetic profile, telomere activity and differentiation 
capacity.

In vitro stem cell differentiation into IPCs 
as a therapeutic strategy for T1D
In vertebrates, the embryonic pancreas originates from 
dorsal and ventral protrusions which branch out of the 
primitive gut. The two pancreatic buds then grow and 
merge to form the definitive pancreas [69]. The adult 
pancreas is a retroperitoneal gland divided into three 
parts: the head (proximal), body and tail (distal). The 
pancreatic gland has two main cellular compartments 
with distinct functions, namely the exocrine and the 
endocrine compartments. The exocrine pancreas, 
mainly constituted by acinar cells, is responsible for 

the production and secretion of digestive enzymes, 
such as proteases, lipases and nucleases, and corre-
sponds to most of the pancreatic mass [70, 71]. In con-
trast, the endocrine pancreas represents only a small 
percentage (1–2%) of the entire organ, with cells being 
organized into cellular groups called islets of Langer-
hans, which are embedded into the exocrine tissue. 
The endocrine pancreas consists mainly of four cell 
types, namely ⍺, β, δ and PP cells, which produce, 
respectively, the glucagon hormone, insulin hormone, 
somatostatin hormone and the pancreatic polypeptide 
[69, 70].

iPSCs and ESCs are ideal candidates for differentia-
tion into β-cells due to their outstanding renewal abil-
ity, which enables the generation of high numbers of 
cells that have long been sought in the clinic [71]. In 
general, the main objectives to be achieved during the 
differentiation process are: (a) identification of stem 
cells or progenitor lineages that are capable of self-
renewal and differentiation; (b) identification of prolif-
erative signals as well as instructive signals that induce 
the differentiation process; and (c) identification of 
molecular signals that maintain the correct physiologi-
cal state and viability of the differentiated cells [69].

Different strategies have been adopted to obtain 
IPCs, namely spontaneous differentiation with further 
selection of Nestin + progenitor cells [72], inhibition of 
phosphatidylinositol-3-kinase (PI3K) [73], mimicking 
the in  vivo developmental process by adding differen-
tiation factors [74–77], co-culture with fetal pancre-
atic buds or culture in the presence of fetal pancreas 
conditioned medium [78] or transgenic expression of 
pancreas-specific transcription factors, such as foxa2, 
ptf1a, pdx1, hnf4a (hepatocyte nuclear factor 4 alpha), 
hnf6 (hepatocyte nuclear factor 6), ngn3, pax4, neu-
roD1 and nkx6.1 [71, 79]. Currently, differentiation pro-
tocols have been designed using consecutive cytokines 
or signaling modulators treatments, in specific doses, 
to activate or inhibit the main signaling pathways that 
control the differentiation of iPSCs into pancreatic 
β-cells, namely Wnt; Nodal/Activin A; BMPs; FGF; 
EGF (epidermal growth factor); Hedgehog; retinoid; 
and Notch (Fig. 1) [80]. Obtaining mature IPCs in vitro 
depends on a refined control of concentration, time and 
duration of treatment with the defined growth and dif-
ferentiation factors.

Embryoid bodies (EBs)
One of the first steps of the differentiation protocol is the 
formation of embryoid bodies (EBs), which is necessary 
to mimic the in vivo embryonic stage of cellular organi-
zation. The EBs spontaneously differentiate into cell 
types of all three primary germ layers, namely ectoderm, 
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mesoderm and endoderm. The EBs formation stage is 
described as being crucial for determination of the final 
cells differentiation potential to generate IPCs. Depend-
ing on the size of the EB, there is a greater probability of 
obtaining precursor cells of different cell types [81, 82]. 
Because the number of specifically differentiated cell 
types is relatively low after spontaneous differentiation, 
the following steps aim to induce different signaling path-
ways to promote cell differentiation and specification. 
On this basis, the subsequent stages are the formation of 
definitive endoderm, followed by pancreatic progenitors, 
pancreatic endocrine cells and, finally, β-cells. Differen-
tial gene expression analysis during this process should 
be useful to follow the in  vitro differentiation stages 
(Table 2; Fig. 2).

Definitive endoderm (DE)
Initially, factors that lead to activation of the Nodal path-
way are employed, since the signaling gradient of these 
factors leads to endoderm (high nodal) and mesoderm 
(low nodal) segregation, thus displaying a key function 
in endodermal formation [130]. Activin A, a member of 
the TGF-β superfamily (transforming growth factor β), 
is described as a crucial activation factor for the Nodal 
pathway [129]. Nodal-mediated signaling modulates the 
FGF, BMP and Wnt pathways, activating the gastrulation 
process [131]. Therefore, activin A may be used to mimic 
Nodal activity in  vitro. Expression of Sonic hedgehog 
(SHH), a potent intercellular patterning signal, is strik-
ingly absent from pancreatic endoderm. Hebrook et  al. 
[132] showed that activin signaling, as a notochord fac-
tor, can decrease Shh expression, while inducing expres-
sion of Pdx1 and insulin by chick endoderm, thereby 
permitting pancreas development. However, some stud-
ies have shown that activin A may also induce neuronal 
cells [133]. Therefore, one of the most important parame-
ters for efficient endoderm differentiation is definition of 
the activin A concentration [129]. Retinoic acid also plays 
a crucial role in endoderm development during a step 
between endoderm formation and pancreatic progeni-
tors’ specification [134].

Once formed, definitive endoderm generates the  gut 
tube, which is patterned into anterior and posterior fates 
by gradients of WNT, FGF and retinoic acid (RA) sign-
aling [135]. WNT signaling is described to have a direct 
and multifaceted role for WNT signaling in intestinal 
specification and patterning. WNT signaling acts directly 
on definitive endoderm to induce Cdx2, a major regula-
tor of intestine-specific genes involved in cell growth 
and differentiation [136]. Reports demonstrated the abil-
ity of WNT to cooperate with Activin signaling to pro-
mote definitive endoderm formation, where the optimal 
induction of differentiation in definitive endoderm was 

achieved in cells simultaneously treated with Wnt3a 
[74, 137–140]. However, Kunisada et  al. [141] found 
that treatment with activin A plus CHIR99021 induced 
SOX17 and FOXA2 double-positive definitive endoderm 
more efficiently, when compared with activin A plus 
Wnt3a.

Pancreatic progenitors
The next step is to induce pancreatic precursor cells, 
which are cells that display the potential to give rise to all 
pancreatic lineages and originate all the functional endo-
crine and exocrine cell types. Considering that the mes-
enchymal tissues have a critical importance for growth 
of all pancreatic cell lineages, studies indicate that the 
FGF signaling pathway, derived from the surrounding 
mesenchymal tissue, is essential for the formation of spe-
cific cell domains. FGF10, as a mesenchymal factor, has 
an indispensable role in development of the pancreatic 
epithelium, acting as a mitogenic factor to stimulate pro-
liferation and allowing amplification of pancreatic cells 
in vitro [142, 143]. It has been demonstrated that culture 
of dissociated endodermal cells at lower density, followed 
by longer retinoic acid and FGF10 signaling, results in a 
high yield of pancreatic progenitors expressing key mark-
ers, such as Pdx1 and Nkx6.1 [144]. Ostrom [145] also 
provides support for an intrinsic role for retinoic acid 
signaling in specified Ipf1/Pdx1 + pancreatic progenitor 
cells. FGF2 or basic FGF, known as a notochordal signal, 
can affect this phase, since it maintains pdx1 expression 
in the endoderm and potentiates β-cell differentiation 
[132].

KGF (keratinocyte growth factor), also known as FGF7, 
is a member of the fibroblast growth factor family that 
can stimulate ductal cell proliferation [146]. It has also 
been observed that in rats, KGF acts on ductal cells by 
activation of distinct signaling pathways to promote 
β-cell regeneration [141]. KGF is widely used in stepwise 
differentiation media as it can generate both PDX1 + and 
subsequent PDX1 + /NKX6.1 + pancreatic progenitors 
populations, respectively  [75, 147–149]. Activation of 
protein kinase C (PKC) is reported to induce pancreatic 
precursors during β-cell differentiation protocols [75], 
PKC activation increases β-cell proliferation, size and 
mass in vivo and is required for growth factor-stimulated 
β-cell proliferation in vitro [150, 151].

Pancreatic endocrine cells
After induction of pancreatic precursors cells, the in vitro 
differentiation process must be centered on obtaining 
endocrine cell specification. Endocrine differentiation 
is initiated in PDX1 + /NKX6.1 + progenitor through 
inhibition of Notch signaling, allowing the expression of 
ngn3, as previously described [74, 152]. These authors 
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reported that cells undergoing endocrine differentiation 
lose responsiveness to Notch, because Notch activation 
in  Ngn3 + endocrine precursors prevents their differen-
tiation. Ngn3 + cells are promising candidates for endo-
crine progenitor cells, since they display proliferative 
capacity and generate cells that express islets-specific 
transcription factors, such as NEUROD, NKX6.1 and 
PAX6 [110]. At this stage, using distinct combinations 

of transcription factors, a specific gene expression pro-
file is initiated and maintained, allowing specification of 
multipotent progenitors toward the differentiated line-
ages [112]. Initially, D’Amour et al. [74] included DAPT 
(gamma secretase inhibitor), a Notch pathway inhibi-
tor, to obtain NGN3 + cells, but it was later shown that 
it may have a slight beneficial effect on this differentia-
tion step. Despite that, other studies demonstrated that 

Table 2 Function of the main genes involved in β-cell differentiation

Gene Function References

nanog (Nanog homeobox) Critical for early embryogenesis and for ESC pluripotency [83, 84]

oct4 (POU domain, class 5, transcription factor 1

sox2 (SRY (sex determining region Y)-box 2

foxa2 (forkhead box A2) Necessary for proper endoderm formation and pdx1 expression. 
Also required for regulated insulin secretion in mature β-cells—
regulates the expression of important genes for glucose sensing in 
pancreatic β-cells and glucose homeostasis

[85–89]

cxcr4 (chemokine (C-X-C motif ) receptor 4) Required for proper β cells generation – it is a key marker of defini-
tive endoderm, controlling cells migration during gastrulation

[90, 91]

sox17 (SRY (sex determining region Y)-box 17 Controls segregation of liver, biliary system, and pancreas; regulates 
insulin trafficking and secretion in β-cells

[92–95]

nkx6.1 (NK6 homeobox 1) Directly targeted genes involved in insulin biosynthesis (Slc30a8 
and Ero1lb), glucose transporter 2 (Glut2), and glucose metabolism

[96]

pdx1 (pancreatic and duodenal homeobox 1 Mainly involved in glucose-dependent regulation of insulin gene 
expression. Also necessary for the activation of several genes, 
including insulin, somatostatin, glucokinase, islet amyloid polypep-
tide and GLUT2

[97, 98]

ptf1a (pancreas associated transcription factor 1a Required for exocrine cell formation—activates an acinar cell genes 
repertoire. Has a complex set of interactions with Notch down-
stream intercellular mediators to regulate target patterning genes 
and acinar-specific genes

[99–102]

sox9 (SRY-box transcription factor 9) Necessary for regulation of pancreatic specification, differentiation 
and duct morphology

[103–107]

Cg (Chromogranin) A Constitute the regulated pathway of protein hormone secretion 
including all four pancreatic peptide hormones and gastrin. It is 
involved in the generation of secretory granules and is considered a 
pan-endocrine marker

[108, 109]

ngn3
(neurogenin 3)

Endocrine formation key regulator—induces the expression of 
endocrine genes such as neuroD1, nkx2.2, nkx6.1, pax4, pax6 and isl1

[110–112]

neuroD1
(neurogenic differentiation 1)

Involved in islet growth, proliferation and endocrine differentiation 
in pancreatic progenitors. Activates IA1 (Insulin Associated 1), a 
zinc finger protein that appears to be important in executing the 
endocrine differentiation process. Can activate the pax6 gene

[113–116]

nkx2.2
(NK2 homeobox 2)

Necessary for β-cell precursors to express nkx6.1 and ins. Also binds 
to and activates mafa

[117–119]

pax4
(paired box gene 4)

Directs formation of β and δ cells. Acts as a transcriptional repressor, 
being especially effective for ghrelin expression and pax6-mediated 
glucagon expression

[120–124]

ins (insulin) Provides instructions for producing the insulin hormone [125]

mafa (v-maf musculoaponeurotic fibrosarcoma oncogene family, 
protein A)

Controls and activates insulin gene expression [126, 127]

mafb (v-maf musculoaponeurotic fibrosarcoma oncogene family, 
protein B)

Appears to be a key regulator of α- and β-cell maturation, since 
Mafb binds to and activates the mafa gene, causing a transition 
from mafb to mafa expression in insulin + cells as they transition 
from immature to mature β cells

[128]

Glut2 / SLC2A2
(solute carrier family 2 member 2)

An integral plasma membrane glycoprotein of islet β-cells that 
mediates facilitated bidirectional glucose transport

[129]
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DAPT could have an important role in inducing islet-like 
structures from embryonic pancreatic precursor cells 
[153] and  several differentiation protocols included the 
Notch inhibitor γ-secretase inhibitor II [75, 154, 155]. 
Retinoic acid is proposed to expand the endocrine cell 
population and block the formation of exocrine cells in a 
dose-dependent manner [134, 137, 156]. Also, it has been 
shown that activin A enhances transcription of the ngn3 
gene through Smad4 (TGF-β/Smad pathway), binding to 
the promoter region of ngn3 [157].

It is well known that thyroid hormones have several 
effects in the development of many endocrine glands, 
including pancreas [158]. Aiello et al. [158] showed that 
the thyroid receptors TRα1 and TRβ1 mRNAs were dif-
ferentially expressed at different phases of embryonic 
murine pancreas development. These authors found 
increased mRNA levels of the pro-endocrine gene ngn3 
(and increased number of β-cells in cultures previously 
treated with Triiodothyronine (T3)). The mechanism 
of T3 action was found to be induction of acinar repro-
gramming into ductal-like cells that subsequently will 
differentiated into endocrine cells [112]. Some studies 
indicate that the Pdx1 + progenitor cells differentiation 

process requires two major events after establishment 
of the definitive endoderm, in order to mimic the in vivo 
process, namely blocking liver differentiation induction 
by BMP antagonism and induction of pancreatic progeni-
tors by the retinoic signaling pathway [159]. The alterna-
tive hepatic lineage differentiation path can be inhibited 
by treating the cells with different types of inhibitors, 
such as NOGGIN (BMP antagonist) [152, 160]. It has 
been demonstrated that the combination of EGF and 
nicotinamide signaling, together with inhibition of the 
BMP pathways, promotes an efficient development of 
NKX6.1 + progenitors from hiPSC lines [143]. The BMP 
antagonism requirement should be reversed after induc-
tion of the pancreatic cell lineages, since BMP signaling is 
necessary for maintenance of pdx1 expression and addi-
tional cell differentiation later on, which can be compli-
cated to implement during in  vitro differentiation [161, 
162].

Nostro et  al. and Chen et  al. [135, 163] showed that 
the inhibition of the TGFβ/activin/nodal and BMP path-
ways by adding the small molecule ALK4/5/7 inhibi-
tor SB431542 (SB) and Noggin immediately following 
PDX1 induction had an additive effect, resulting in a 

Fig. 2 Schematic representation of the signaling pathways that coordinate each step of β-cell differentiation and expression levels of the main 
transcription factor and functional proteins during β-cell differentiation and maturation. NGN3 and MAFB are transiently expressed, while the others 
remain expressed after maturation. BMP: Bone morphogenetic protein; EGF: Epidermal growth factor; FGF: Fibroblast growth factor; PKC: Protein 
Kinase C; SHH: Sonic hedgehog; T3: Triiodothyronine; and TGF-β: Transforming growth factor beta
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sixfold increase in  INS  expression over that observed 
in untreated cultures. The results indicated that inhibi-
tion of TGFβ/activin/nodal and BMP signaling follow-
ing induction of pancreatic progenitors does promote 
differentiation to the endocrine lineage. Rezania et  al. 
[154] and Pagliuca et  al. [75] reported that ALK5i and 
T3 played a significant role at late stages of the differ-
entiation protocol to generate stem cell-derived β-cells. 
However, Velazco-Cruz et al. [164] identified that inhibit-
ing TGF-β signaling during the last stage of the protocol 
greatly reduces the function of these differentiated cells, 
while treatment with Alk5i during the previous stage is 
necessary for a robust β-like cell phenotype.

Mature β‑cells
The final stage of β-pancreatic differentiation aims at 
β-cells specification and maturation to obtain high levels 
of cells displaying glucose-stimulated insulin secretion 
capacity. Mature adult pancreatic β-cells are function-
ally defined by their rapid response to elevated glucose 
[154]. To reach this cellular profile, frequently, factors 
and molecules that are known to act in adult pancreas 
are used. Betacellulin, a member of the epidermal growth 
factor family, is produced by proliferating pancreatic β 
cells [135] and can increase Pdx1 and insulin produc-
tion [165]. At this stage, nicotinamide supplementation 
is usually added to the culture medium, to enhance the 
in  vitro differentiation of cultured human pancreatic 
cells, favoring the expression of insulin, glucagon and 
somatostatin [166]. Nicotinamide has historically been 
used to augment pancreatic β-cell differentiation and 
to protect islet cells from toxic insults, due to its anti-
oxidant properties. Studies showed that cells exposure to 
nicotinamide is essential for robust nkx6.1 expression in 
hiPSC differentiation to pancreatic endocrine progeni-
tors, acting predominantly through PARP (poly-ADP-
ribose polymerases) inhibition [167, 168]. Thowfeequ 
et al. [169] showed that the addition of betacellulin and 
nicotinamide to the modified differentiation protocol 
sustained PDX1 expression and induced pancreatic β-cell 
differentiation in human ES cell line.

Glucagon-like peptide-1 (GLP-1) is an intestinal incre-
tin hormone that binds to specific G protein-coupled 
receptors on pancreatic β-cells to stimulate insulin secre-
tion via cAMP-dependent pathways. Consequently, 
GLP-1 plays a crucial role in β-cell mass regeneration 
[170]. Exogenous GLP-1 increases islet cell prolifera-
tion in Ins-1 cells via a PI3-kinase-dependent pathway 
[171]. Exendin 4, a long-acting GLP-1 analogue, is resist-
ant to dipeptidyl peptidase IV (DPP-IV) cleavage, being 
more useful clinically, and can also be used to promote 
β-cell proliferation. Considering the importance of mafA 
expression in β-cells, representing an important indicator 

of β-cell maturity, studies identified that thyroid hor-
mone is also a physiological regulator of β-cell matura-
tion through direct interaction with the mafA promoter 
[172]. Therefore, thyroid hormone may improve in vitro 
functional maturation of immature stem cells-derived 
insulin-expressing cells. Moreover, it is believed that 
VEGF (vascular endothelial growth factor) is predomi-
nantly secreted by β-cells in adult pancreas, affecting islet 
function and physiology [173]. Consequently, exogenous 
supplementation with VEGF has been associated with 
reduction in β-cell apoptosis and maintenance of β-cell 
mass [174].

Another important component that is crucial and 
should be provided during β-cell differentiation and 
maturation is the major components of the extracellular 
matrix (ECM) of islet cells, including laminin and colla-
gen. The islet ECM has been shown to regulate survival, 
insulin secretion, proliferation and islet morphology. 
Moreover, laminin and type IV collagen were identi-
fied to be beneficial for β-cell function in  vitro [175]. 
Laminins were shown to induce expression of islet-spe-
cific transcription factors and hormones, such as Pdx1, 
insulin1, insulin2, glucagon and Glut2 [176]. In in  vitro 
experiments, collagen has been associated with pro-
vide the desired mechanical properties of transplanted 
grafts, to improve the performance of scaffolds and, in 
combination with other ECM proteins, such as laminin, 
to enhance glucose-stimulated insulin secretion in pan-
creatic islets [177, 178]. Therefore, providing islet matrix 
proteins to the in  vitro differentiation process is a key 
determinant for presentation of matrix-bound signals, 
warranting a microenvironment which is closer to the 
native in  vivo situation, thereby sustaining the mainte-
nance of cellular viability.

Challenges and achievements
Although several factors are important for successful 
generation of IPCs from iPSCs or ESCs, careful han-
dling of cell culture conditions stands out as one of the 
most critical factors [161]. Table  3 highlights the main 
growth and differentiation factors used during the four 
critical steps of β-cell differentiation from hiPSC or 
hESC, described in major reports found in the literature. 
Numerous efforts have been employed to obtain hPSC-
derived β-cells since Lumelsky et  al. [72] first described 
a protocol to enrich IPC from ESCs by selecting NES-
TIN + cells, but only in 2014 two different research 
groups [75, 154] published a protocol showing the dif-
ferentiation of human embryonic stem cells (hESCs) into 
β-cells that resemble cadaveric β-cells with respect to 
both gene expression and function. It was quite a break-
through in developing stem cell-derived β-cells, and 
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currently, the protocol developed by the Melton Lab [75] 
is the basis for the Vertex clinical trial therapy.

Acquisition of dynamic insulin secretion upon glu-
cose stimulation is a key feature of β-cells. This dynamic 
function is represented by a pulsatile behavior of two-
phase insulin secretion: The first phase has a period of 
10–15 min following stimulation by glucose, comprising 
a high amplitude but with short duration, while the sec-
ond phase has a lower amplitude and a longer duration 
of 1–2  h [186, 187]. According to Table  3, many of the 
protocols generated immature mixed populations of cells 
at different developmental stages, displaying polyhormo-
nal properties and, additionally, IPCs-transplanted mice 
usually maintain euglycemia for only a short period of 
time or present a compromised GSIS dynamics. Indeed, 
the majority of β-like cells derived from stem cells dif-
ferentiation resemble fetal β-cells regarding their matu-
rity [188]. Velasco-Cruz et al. [164] first reported robust 
dynamic insulin secretion of SC-β cells. It was further 
shown that manipulation of the polymerization state of 
actin cytoskeleton influences NEUROG3-dependent 
endocrine induction. The results obtained allowed over-
coming the requirement for three-dimensional culture 
in stem cell-derived β-cell differentiation and creating a 
fully planar protocol [189]. These findings enable sim-
plifying the differentiation methodology, requiring only 
basic stem cell culture experience, as well as familiarity 
with assessment techniques which are commonly used in 
biology laboratories [190].

Nair et al. [191] optimized the Russ et al. protocol [152] 
to increase β-like cells maturity through reaggregation of 
 INS+ β-like cells isolated by fluorescence-activated cell 
sorting (FACS); however, these cells presented a marked 
first phase response to glucose but failed to sustain the 
second phase of insulin secretion. Studies by Yoshihara 
et  al. [192] demonstrated that stem cells-derived β-cells 
could acquire adult insulin secretion behavior through 
overexpression of estrogen-related receptor γ (ERRγ), 
which is hypothesized to regulate mitochondrial meta-
bolic pathways required for GSIS. In the attempt to char-
acterize the protocol of in vitro differentiation, single-cell 
transcriptome has been undertaken to visualize popula-
tions and pathways regulated during the stages [193].

It is important to highlight that native pancreatic islet 
is highly vascularized cellular aggregates, consisting of, 
approximately, 10% of blood vessels, which are essen-
tial to allow networking between glucose concentra-
tion sensing and insulin secretion by β-cells and, also, to 
provide proper islet oxygenation [194]. The lack of these 
vasculature interactions is one of the main reasons for 
the low survival rate of transplanted islets [195]. In this 
context, studies have hypothesized that in vitro interac-
tion between ESC-derived EBs and endothelial cells may 

augment the differentiation toward pancreatic endocrine 
progenitors and IPCs [196]. Weizman et  al. [197] also 
proposed a 3D architecture system using polymeric scaf-
folds to culture hESC-derived pancreatic cells embedded 
in a vascular niche composed of endothelial cells and/or 
fibroblasts. Therefore, endothelial cells may provide key 
factors that lead to the endocrine cell fate during in vitro 
differentiation. In general, incorporation of endothelial 
cells and other important cells normally present in the 
β-pancreatic niche may be beneficial for improving IPCs 
differentiation and functionality.

Pancreatic islets also receive complex neural inputs, 
and β-cells present a phenotypically diverse population, 
with a mosaic of metabolic and electrical activity pat-
terns [198]. Although adult β-cells populations are totally 
differentiated, they are heterogeneous with respect to 
their insulin secretory abilities, mitochondrial function, 
calcium signaling and proliferative properties. For this 
reason, maturity is not defined only by the expression of 
major molecular markers, such as PDX1, NKX6.1 and 
MAFA, or by high insulin expression levels [41]. Johnston 
and colleagues [199] have reported that a 5–8% subset of 
β-cells forms “super-connected hubs” within an intercon-
nected islet cellular network. It has also been shown that 
these cells serve as pacemakers that can synchronize the 
calcium and insulin secretory responses across the whole 
islet. In addition, β-cells can be divided into two major 
populations: One comprised of cells that are capable of 
proliferation and the other one comprised of mature 
β-cells that are marked by the expression of Fltp (also 
known as Flattop or Cfap126), a Wnt/PCP (planar cell 
polarity) effector. FLTP + cells represent the subpopula-
tion of mature β-cells, while Fltp-negative cells comprise 
immature and proliferative cells [200]. However, Dor-
rell et al. [200] demonstrated that human β-cells have at 
least four different cellular subtypes, which may be clas-
sified based on their cell surface markers expression. This 
suggests a functional heterogeneity among β-cells and 
illustrates the degree of complexity of the insulin release 
kinetics that stem cells-derived IPCs should probably 
achieve.

Typically, a patient requires two transplants, each of 
which with at least 10.000 islet “equivalents” (IEQs) per 
kilogram of body weight, to achieve insulin independ-
ence [19]. Proportionately, a single 70 kg patient requires 
approximately 700 million of transplanted IEQs [19]. 
This poses important challenges related to manufactur-
ing sufficiently pure and potent cells, at scale, for clini-
cal use and, also, protecting these cells from immune 
rejection following transplantation. Some strategies to 
address these limitations have already been described. 
Schulz et  al. [149] reported a process that allows scaled 
production of hESC and, subsequently, of pancreatic 
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progenitors. These authors developed a feeder-free cul-
ture system for expansion of the CyT49 hESC line and 
generation of large-scale single-cell master and work-
ing banks of CyT49 under good manufacturing practices 
(cGMP) [149].

Although autologous transplantation of patient-spe-
cific IPCs derived from iPSCs emerged as an attractive 
strategy, it still requires suppression of the preexisting 
autoimmunity [201, 202]. The negative effects of some 
immunosuppressants in human β-cell transplantation 
patients have been widely reported, being associated with 
complications at new onset DM upon transplantation 
[203–205]. Another interesting approach is to mediate 
genetic manipulation in order to control the expression 
of HLA class I and II genes, allowing the graft to escape 
from immune recognition and destruction [206]. Fur-
thermore, Yoshihara et  al. [185] showed that human 
islet-like organoids (HILOs) generated from iPSCs over-
expressing PD-L1, a known determinant of immune 
tolerance in β-cells, are protected from xenograft and 
allogenic rejection and maintain glucose homeostasis in 
diabetic mice.

The encapsulation strategies are currently the most 
promising approach, representing the most adequate 
alternative, when compared to adoption of the immu-
nosuppressive regimen. Cell encapsulation creates a 
physical barrier for the transplanted IPCs, providing a 3D 
architecture that may attenuate the deleterious impact 
of the host immune system on newly transplanted cells 
[207]. Encapsulation of pancreatic islets with artificial 
membranes allows preservation of their physical char-
acteristics and functional integrity. Furthermore, studies 
carried out by our group demonstrated that incorpora-
tion of polylaminin into the microcapsule polymer atten-
uated the post-transplantation immunological response 
against microcapsules grafted in mice, suggesting an 
improved maintenance of the grafted encapsulated pan-
creatic islets in the recipient organism [14]. Vegas et  al. 
[208] carried out an experiment of long-term evaluation 
of encapsulated SC-derived β cells in immune-competent 
mice. They showed that stem cell-derived β-cells can 
promote long-term glycemic correction (174 days) in an 
immune-competent diabetic animal in the absence of 
immunosuppressive therapy, using a modified alginate 
capable of mitigating the innate immune-mediated for-
eign body responses, with euglycemic mice still being 
present at the end of the experiment.  Subsequently, the 
same chemically modified alginate, called Z1-Y15, was 
shown to prevent pericapsular fibrotic overgrowth and 
maintain encapsulated islets function after four months 
of allogenic transplantation in non-human primates, 
in the absence of immunosuppression, in a pre-clinical 
study [209]. These authors also suggest an alternative 

transplantation site into the bursa omentalis, which can 
support nutritional exchange for long-term islet viabil-
ity. This technology was incorporated by the Sigilon 
Therapeutics company and has already been tested in 
clinical trials (phase 1/2) to assess the safety, tolerability 
and preliminary efficacy of SIG-001, which is composed 
of human cells that are engineered to produce FVIII, in 
adults with severe or moderately severe hemophilia A 
[210].

An important concern with stem cells-derived thera-
peutic products is the presence of undifferentiated or 
partially differentiated cells that may not only interfere 
with the desired cell types activity, but, also, be tumo-
rigenic. For this reason, optimization of the in vitro dif-
ferentiation process is fundamental to minimize the 
formation of unwanted cell types and, consequently, 
validate this technology for clinical use [44]. Additional 
approaches to eliminate non-differentiated cells include 
the use of antibody-toxin molecules or conjugates that 
selectively kill non-differentiated cells [211]. Despite 
the existing risks, many different strategies have been 
employed to promote in vivo maturation of transplanted 
progenitor cells [137, 212]. However, the use of encapsu-
lation devices that provide their precise location in the 
body and the possibility to be recovered in case of graft 
failure or other complications is a promising approach to 
allow safe progenitor cells transplantation [182, 213]. In 
general, the choice of cells at different stages of matura-
tion has many safety-related implications, with mature 
differentiated cells being the safest ones since they dis-
play low levels of residual plasticity [214].

Many advances have been made with respect to the 
establishment of differentiation protocols capable of 
generating homogeneous cell masses at early stages of 
development. Also, many efforts have been made to 
generate better functioning β-cells by introducing some 
features that could favor the differentiation process, 
such as promoting clustering of immature β-like cells 
into endocrine-enriched niches [191], assembly of islet-
like organoids onto hydrogel slabs [82, 215], engineering 
human islet organoids using an organ-on-a-chip platform 
[216] and culturing in decellularized pancreatic scaffolds 
[217]. However, a standardized differentiation protocol 
is still lacking, and the final differentiation stages also 
need to be better understood. To address this challenge, 
understanding the whole transcriptome, epigenome and 
proteome of the differentiation process could help to 
obtain insights into the pathways that lead to the process 
of mature and functional β-cells generation.
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Conclusions
In conclusion, generation of pancreatic β-cells from 
pluripotent stem cells constitutes a very promising 
therapeutic approach to provide insulin independ-
ence to millions of diabetic patients. Differentiation 
protocols, cell culture methodology and encapsula-
tion protocols are being developed to optimize β-cells 
production and provide protection against the autoim-
mune response displayed by T1D patients. Although 
several previously mentioned challenges still need to 
be overcome, a great deal of efforts has been employed 
combining several interdisciplinary fields, such as stem 
cell biology, embryology, immunology, cell encapsula-
tion and tissue bioengineering, to enable the develop-
ment of effective cellular therapies.
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