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Abstract

The multipotency property of mesenchymal stem cells (MSCs) has attained worldwide consideration because of their
immense potential for immunomodulation and their therapeutic function in tissue regeneration. MSCs can migrate
to tissue injury areas to contribute to immune modulation, secrete anti-inflammatory cytokines and hide themselves
from the immune system. Certainly, various investigations have revealed anti-inflammatory, anti-aging, reconstruc-
tion, and wound healing potentials of MSCs in many in vitro and in vivo models. Moreover, current progresses in the
field of MSCs biology have facilitated the progress of particular guidelines and quality control approaches, which
eventually lead to clinical application of MSCs. In this literature, we provided a brief overview of immunoregulatory
characteristics and immunosuppressive activities of MSCs. In addition, we discussed the enhancement, utilization, and
therapeutic responses of MSCs in neural, liver, kidney, bone, heart diseases, and wound healing.
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Introduction

In the last decade, stem cells are increasingly applied as
a therapeutic method for numerous disorders. Stem cell
therapy, traditionally applied for hematopoietic disor-
ders, nonetheless, is now established for the treatment of
non-hematologic disorders [1, 2].

Accumulating evidence has shown that mesenchymal
stem cells (MSCs) offer an encouraging option for cell
treatment and reconstruction of human tissues because
of their differentiation multipotency, self-renewal capac-
ity, long-term ex vivo proliferation, paracrine potentials,
and immunoregulatory effect [3]. Furthermore, MSCs
have the capability to support the progression and differ-
entiation of other stem cells. They can release bioactive
molecules, which is a key benefit in tissue regeneration
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[4, 5]. These properties result in progression of treat-
ments for a wide range of diseases, such as diseases
affecting the bone, neuron, lung, liver, heart, kidney, etc.
[4]. Due to these features, it is obvious that MSCs will
hold a major therapeutic role in clinical trials. Because of
these properties, we provided a general overview of the
latest trials that studied the effectiveness of MSCs in sev-
eral diseases such as neural, liver, kidney, bone, heart dis-
eases, and wound healing.

Stem cells in regenerative medicine

In the last years, numerous studies have demonstrated
that cellular therapy has exhibited great development
in both in vitro and in vivo researches. Stem cells have
the capability to self-renew, and also to differentiate into
all cell types and are involved in physiological regenera-
tion [6]. There are multiple stem cell sources of adult and
pluripotent stem cells (PSCs) such as embryonic stem
cells (ESCs) and induced pluripotent stem cells (iPSCs)
for tissue regeneration. PSCs have a high potential for
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pluripotency and self-renewal, which makes these cells
an important option for treatment of diseases. However,
there are ethical issues when using these cells, in which
ESCs are separated from blastocyst-stage embryos,
requiring destruction of the embryo [7-9]. The results
of studies have revealed the regenerative ability of iPSCs
in preclinical setting and conducted the first clinical
study for treatment of age-associated with macular dete-
rioration [10, 11]. Nonetheless, the tumorigenicity risk
remains unsolved. Because of these limitations, research-
ers began to investigate adult stem cells, the multipotent
stem cells found in tissues and organs of adults. Various
investigations have reported that stem cell therapy can
regenerate and repair injured organs in vivo, including
bone repair, cutaneous wound, pulpitis, and ischemic
cardiac tissue through stem cell differentiation and pro-
duction of new particular cells [12—15]. Moreover, some
investigations have demonstrated that cultured adult
stem cells release many molecular factors with anti-
apoptotic, immunoregulatory, angiogenic, and chemoat-
tractant features that stimulate regeneration [16—18].
Hematopoietic stem cells (HSCs) and MSCs are part of
adult stem cells, which are the most widely used, gener-
ally because they can be isolated from individuals in dis-
eased conditions.

Mesenchymal stem cell

In the late 1960s, Friedenstein and colleagues discov-
ered MSCs as multipotent stem cells for the first time
[19]. MSCs are non-hematopoietic cells and have the
capability to differentiate into various lineage includ-
ing mesodermal (adipocytes, osteocytes, and chondro-
cytes), ectodermal (neurocytes), and endodermal lineage
(hepatocytes) [20, 21]. At the beginning, it was thought
that MSCs are “stromal” cells instead of stem cells [22].
Several investigators tried to alter the name of MSCs to
medicinal signaling cells due to their function in secre-
tion of some metabolites molecules in the sites of dis-
eases, injuries, and inflammations [23, 24]. After that,
some studies have stated that MSCs can release pros-
taglandin E2 (PGE2), which plays a major role in the
self-renewal ability, immunomodulation of MSCs, and
generating a cascade of events, that demonstrates the
stemness of MSCs [25]. Therefore, the term mesenchy-
mal stem cells is justified.

MSC:s chiefly found in the bone marrow (BM) possess
the ability of self-renewal and also display multiline-
age differentiation [8, 26, 27]. They were obtained from
various tissues and organs including BM, adipose tis-
sue, Wharton’s jelly, peripheral blood, umbilical cord,
placenta, amniotic fluid, and dental pulp [3, 28-30].
MSCs can express a wide range of surface markers and
cytokine profiles according to the origin of isolation [31].
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Nevertheless, the common characterization markers of
MSCs are CD73, CD105, CD90 and lacking expression
of CD45, CD34, CD14 or CD11b, CD79a or CD19, and
HLA-DR [32-34]. During the last decades, MSCs have
shown various biological roles such as multilineage dif-
ferentiation, immunomodulation, angiogenesis, anti-
apoptotic and anti-fibrotic activity, chemo-attraction,
and tissue repair development [35-37]. The MSCs have
broad properties that make them a suitable source for
cell therapy, such as stemness potency, easily isolation
from different sources, they can be rapidly expanded in
a large scale for clinical use, have less ethical issues as
compared to ESCs, unlike iPSCs, MSCs transport a lower
risk of teratoma formation, and they are beneficial for a
wide scale of therapeutic applications due to their capa-
bility to migrate to injured tissue through chemo-attrac-
tion [38-40]. In addition, MSCs can release a variety of
bioactive components including proteins, growth fac-
tors chemokines, microRNAs (miRNAs), and cytokines
which can suggest their acceptable application [41].

The biological roles of MSCs
MSCs have the ability to inhibit the immune response in
inflammatory cytokine-rich situations, including infec-
tions, wounds, or immune-mediated disorders. These
immunomodulatory properties were discovered in pre-
clinical and clinical trials, where MSCs effectively sup-
pressed T cell activation and proliferation along with
stimulation of macrophages shift from M1 to M2 [42—
44]. This specific performance of MSCs in the presence
and absence of inflammatory mediators is termed MSC
polarization. MSCs have the ability to migrate to dam-
aged areas after systemic infusion and consequently
exert a beneficial effect by various mechanisms, chiefly
immunoregulation, and angiogenesis [45, 46]. Although
the related mechanism-mediated MSC immunosuppres-
sion has not been entirely clear, it appears that cellular
interaction, accompanied by many factors, performs the
principal function in this process. In the presence of high
levels of inflammatory cytokines, e.g., TNF-a and IFN-
Y> MSCs release several cytokines including TGF-$ and
hepatocyte growth factor (HGF) and produce soluble fac-
tors including indoleamine 2,3-dioxygenase (IDO), PGE2,
and nitric oxide (NO). These mediators suppress T effec-
tor cells and enhance the expression of FOXP3, CTLA4,
and GITR in regulatory T cells (Tregs) to increase their
immunomodulation effects [47—-49]. Moreover, cell-to-
cell communication facilitates the stimulation of Tregs by
cytokine-primed MSCs [50]. Overexpression of inducible
co-stimulator ligands (ICOSL) induces the stimulation of
efficient Tregs [51].

In addition, MSCs can enhance the generation of
Treg cells indirectly. According to the literature, MSCs
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stimulate M2 macrophage and alter the phenotype
through secretion of extracellular vesicles in an in vitro
study [52]. Also, M2 cells that are activated by MSCs
express CCL-18 and induce Treg cells [53]. Moreo-
ver, MSCs increase the expression of cyclooxygenase 2
(COX2) and IDO, resulting in expression of CD206 and
CD163 in M2 cells, as well as enhance the expression of
IL-6 and IL-10 in the microenvironment [54]. The over-
expression of IL-10 that is produced by dendritic cells
(DCs) and M2 cells upon MSCs co-culture leads to fur-
ther immunomodulation via inhibition of effector T cells
[55, 56]. Furthermore, the secretion of IDO from MSCs
can induce the proliferation, activation, and IgG releasing
of B cells, thereby suppressing T effector cells [57, 58].

One of the typical properties of MSCs is their multi-
potency capacity in which these stem cells are able to
differentiate into a number of tissues in vitro [59]. Chon-
drogenic differentiation of MSCs in vitro occurs com-
monly via culturing them in the existence of TGF-$1 or
TGEF-P3, IGF-1, FGF-2, or BMP-2 [60-63]. MSC differen-
tiation into chondroblasts is characterized by the increas-
ing of various genes such as collagen type II, IX, aggrecan,
and proliferation of chondroblast cell morphology. Dur-
ing the process of chondrogenesis, FGF-2 promotes the
MSCs induced with TGF-B1 or TGF-B3 and/ or IGF-1
[64]. According to the literature works, several molecu-
lar pathways such as hedgehog, Wnt/B-catenin, TGF-fs,
BMPs, and FGFs can regulate chondrogenesis [65]. In
addition, MSCs can exert the osteogenesis function by
inducing MSCs with ascorbic acid, B-glycerophosphate,
vitamin D3, and/or BMP-2, BMP-4, BMP-6, and BMP-7
[66].

One of the major abilities of MSCs is anti-fibrotic activ-
ity. These cells can differentiate into various cell lineages
such as hepatocytes, both in vivo and in vitro [67]. MSCs
contain multiple trophic factors which induce cells and
matrix remodeling to stimulate progenitor cells and the
recovery of damaged cells. MSCs can decrease myofibro-
blasts and reverse the fibrotic activity of injured tissues
[68]. Furthermore, these cells release pro-angiogenic fac-
tors including VEGEF, IGF-1, and anti-inflammatory fac-
tors that participate in the recovery of tissue function.
For instance, MSCs can increase neovascularization of
ischemic myocardium through VEGF in a mice model
of heart disease [69]; also, IGF-1 exerts an advantageous
effect on the survival and proliferation of cardiomyocytes
[70].

Bone marrow mesenchymal stem cell-based
regenerative medicine

So far, increasing data have lately studied the effects of
MSCs in the treatment or regeneration of various dis-
orders (Table 1). In this section, we reviewed the latest
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clinical studies that investigate the potential contribution
of MSCs in the regenerative medicine, as shown in Fig. 1.

Neural regeneration

The application of BMSCs has demonstrated promis-
ing therapeutic results in the treatment of neurologi-
cal diseases. Amyotrophic lateral sclerosis (ALS), also
known as motor neuron disease, is a neurodegenerative
disorder that leads to degeneration of the motor neu-
rons that causes paralysis and muscle weakness [138,
139]. Sykova et al. [71] carried out a study that intrath-
ecally injected 154 4.5 x 10° autologous BMSCs into 26
patients with ALS. After mesenchymal stem cells trans-
plantation (MSCT), ALS functional rating scale (ALS-
ERS) significantly reduced, forced vital capacity (FVC)
remained stable or above 70%, and weakness scales
(WSs) were stable in 75% of patients. They have shown
that the intrathecal BMSCs intervention in ALS patients
is a safe method and it can slow down the development
of the disease. There were no significant adverse events
related to the trial during and after transplantation of
BMSCs. Barczewska and colleagues indicated that three
intrathecal injections of 30 x 10® Wharton’s jelly-MSCs
(WJ-MSCs) improved ALSERS [77]. They showed that
WJ-MSCs are safe and effective in individuals that suffer
from ALS. However, one other group found that intrath-
ecal injection of autologous adipose MSCs does not
improve clinical symptoms of ALS patients [76]. Their
results indicated that the levels of CSF protein and nucle-
ated cells were increased and ALSFRS-R showed devel-
opment of disease in all treated patients. In the trial by
OH et al., autologous BMSCs were injected to treat seven
participants that suffer from ALS [75]. The participants
were injected twice with autologous BMSCs (one mil-
lion cells per kg) and followed up for 12 months. No seri-
ous adverse events were reported during the follow-up
period. Furthermore, during the 12-month follow-up,
there was no acceleration in the decrease in the ALS-
FRS-Revised (ALSFRS-R) score, Appel ALS score, and
FVC. Moreover, CSF analysis showed that the levels of
TGE-B and IL-10 were evaluated, while MCP-1, which
is chemokine-related and exacerbates the motor neuron
damage in ALS, was decreased. Their results exhibited
that two repeated MSC infusions have safety and feasibil-
ity for at least 1 year in seven individuals; nevertheless,
the study has some limitations such as low number of
participants and short-time follow-up. In another study
[73], 15 ALS patients were transplanted with autologous
BMSCs. These 15 patients were divided into two groups
(group 1: patients who had ALS with an inherently slow
course, group 2: individuals who had ALS with an inher-
ently rapid course) and received three intrathecal infu-
sions of MSCs. There were no significant adverse events
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Fig. 1 Effect of bone marrow mesenchymal stem cell-based regenerative medicine

in the course of multiple intrathecal injections of MSCs.
In group 1, there were no major changes in the rate of
disease development and in group 2 ameliorating of the
disease was indicated following MSCs therapy. According
to their observation, the response of patients with ALS
to treatment with MSCs was variable. Also, the authors
indicated that due to the small number of patients, less
subgroups were available for statistical analysis, limiting
their ability to draw conclusions from the data.

Spinal cord injury (SCI) is usually related to devastat-
ing results. The damage to the spinal cord leads to injury
to the motor, sensory, and autonomic roles of the spi-
nal cord that affects patients’ well-being such as their
physical and psychological state [140, 141]. In a phase [,
nonrandomized, uncontrolled study by Mendonga et al.
[84], 15 SCI patients were administered 1 x 107 cells/
ml MSCs. The results of the investigation revealed that
SCI symptoms were meaningfully decreased by MSCT,
all participants showed variable improvements in tactile

sensitivity, and eight participants improved lower limb
motor functional gains, chiefly in the hip flexors. Seven
patients revealed sacral sparing and developed American
Spinal Injury Association impairment scale (AIS) grades
B or C — partial damage. Nine participants had develop-
ments in urologic function and one patient showed alter-
ations in somatosensory evoked potentials (SSEP) 3 and
6 months after MSCT. These results stated that treatment
with MSCs ameliorated the organ malfunction in peo-
ple with SCI and has clinical safety, because no serious
adverse effects were reported. The authors indicated that
their results should be confirmed in larger and controlled
clinical trials. Albu and colleagues have been demon-
strated that intrathecal administration of W]J-MSCs
considerably improved the pinprick sensation in the der-
matomes below the level of damage [88]. Further results
showed that bladder maximum capacity was elevated and
bladder neurogenic hyperactivity and external sphincter
dyssynergy were reduced. In another study [85], ten SCI
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subjects received four subarachnoid injections of 30 x 10°
autologous BMSCs, maintained in autologous plasma, at
weeks 1, 16, 28, and 40 of the trial and followed up for
12 months. There were no adverse events and all partici-
pants tolerated the therapy. Vaquero et al. [86] demon-
strated that MSCT is safe and improves sensitivity, motor
power, spasms, spasticity, neuropathic pain, sexual func-
tion, or sphincter dysfunction in the SCI patients. The
results of their study have shown that 55.5% of patients
improved in SSEP and 44.4% of patients ameliorated in
voluntary muscle contraction together with intralesional
active muscle reinnervation. Hur et al. carried out a study
in which 14 patients with SCI were administered intrath-
ecally 9 x 107 adipose MSCs [87]. Their observations
showed mild progresses in neurological function. No
serious adverse events were observed. In a phase 2 study,
13 patients with SCI were intravenously administered a
single dose of autologous MSCs cultured in auto-serum
[82]. The results of this trial revealed that SCI symp-
toms were considerably declined by MSC therapy, ASI,
International Standards for Neurological and Functional
Classification of Spinal Cord (ISCSCI-92), and Spinal
Cord Independence Measure (SCIM-III) demonstrated
functional improvements after MSC injection. No severe
adverse effects were related to MSC administration.
Parkinson’s disease (PD) is a neurological disorder
principally characterized by the deterioration of motor
activities due to the impairment of the dopaminergic
nigrostriatal system [142, 143]. It has been indicated that
MSCs improved the symptoms of PD. In a phase I con-
trolled, randomized clinical study, patients that suffer
from progressive supranuclear palsy were administered
autologous BMSCs via intra-arterial injection [78]. The
results of the study exhibited that autologous BMSCs
are safe and reduce disease progression. Canesi et al.
[79] have demonstrated that injection of MSCs into cer-
ebral arteries of PD patients led to positive results in 17
PD participants: all treated participants were alive and
motor function rating scales remained stable for at least
6 months during the 12-month follow-up period. One
patient died 9 months after the injection for reasons not
associated with cell infusion or to disease development.
In a study conducted by Jaillard and colleagues in 2019
[89], 31 individuals with subacute stroke were adminis-
tered the intravenous injections of autologous BMSCs.
The results of the trial exhibited significant improve-
ments in motor-National Institute of the Health Stroke
Scale (NIHSS) score, motor-Fugl-Meyer scores, and
task-related functional MRI activity in motor cortex-4a.
However, there was no remarkable progress in Barthel
Index, NIHSS, and modified Rankin scores. In general,
their results suggested that BMSCs improved motor
recovery via sensorimotor neuroplasticity. In another
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study, 17 patients with subacute middle cerebral artery
infarct received two million cells/kg autologous BMSCs
[92]. During the follow-up process, NIHSS score, modi-
fied Rankin Scale or Barthel Index did not improve after
the transplantation. Nonetheless, there was a signifi-
cant improvement in absolute change in median infarct
volume, but no treatment-related adverse effects were
observed.

In sum, these outcomes suppose that BMSCs can safely
and efficiently treat neural diseases, inhibit disease devel-
opment, and considerably ameliorate the quality of life
and clinical manifestations of patients. Consequently,
BMSCs can become a new option for the clinical treat-
ment of neural diseases.

Liver regeneration

The potential of BMSCs to differentiate into the endo-
dermal lineage, such as hepatocyte-like cells, makes
them an attractive alternative for the treatment of liver
diseases [144]. Some clinical studies have demonstrated
the efficacy and feasibility of BMSC therapy in patients
with liver diseases. The effect of BMSCs has been studied
in individuals suffering from liver cirrhosis by Suk et al.
[98]. Seventy-two patients were enrolled in this trial and
randomly classified into three groups: one control group
and two autologous BMSC groups that received one-
time or two-time hepatic arterial administrations of fifty
million autologous BMSCs 30 days after BM aspiration.
Fibrosis quantification exhibited that in one-time and
two-time BMSC groups there are a reduction of 25% and
37% in the proportion of collagen, respectively. In addi-
tion, the Child-Pugh (CP) scores of both test groups
were meaningfully improved following BMSC adminis-
tration in comparison with the control group. No serious
adverse events were associated with MSC injection dur-
ing the 12-month follow-up. Wang and coworkers have
found that intravenous injection of UC-MSCs (0.5 x 10°
cells/kg) is feasible and well tolerated in patients with
primary biliary cirrhosis (PBC) [93]. They exhibited that
MSC:s significantly decreased the level of ALP and GGT;
however, there were no considerable changes in serum
AST, ALT, total bilirubin, albumin, prothrombin time
activity, or immunoglobulin M levels. Similarly, Zhang
et al. [94] have demonstrated that intravenous adminis-
tration of 1.0 x 10° cells/kg UC-MSCs is safe and efficient
for patients with ischemic-type biliary lesions after liver
transplantation. According to their results, MSCs therapy
reduced the serum ALP, GGT, and total bilirubin. In a
randomized placebo-controlled phase I-II single-center
study, nine patients that suffer from acute-on-chronic
liver failure (ACLF) grades 2 and 3 were enrolled [95].
The experiment group (n=4) received standard medi-
cal therapy along with five injections of 1 x 10° cells/kg
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of BMSC for 3 weeks. There were no transplant-related
adverse events; however, one patient in the experiment
group showed hypernatremia and a gastric ulcer, after
the third and fifth administrations, respectively. Further-
more, MSCT revealed a considerable improvement in
CP, model for end-stage liver disease (MELD), and ACLF
(grade 3 to 0). Thus, MSCT is safe and viable in individu-
als with ACLF. In an open-label non-blinded randomized
controlled study conducted by Lin et al. [96], 110 patients
with hepatitis B virus (HBV)-related ACLF were enrolled
in this trial. These patients were divided into two groups:
control group (N=54) was treated with standard medi-
cal therapy only and the intervention group (N =56) was
injected four times with 1.0-10 x 10° cells/kg allogeneic
BMSCs, and then followed up for 6 months. There were
no serious adverse events associated with transplanta-
tion. The results of that study demonstrated that MSCT
significantly improved clinical laboratory measurements,
such as serum total bilirubin, and MELD scores in com-
parison with control group. In addition, mortality from
multiple organ failure and prevalence rate of serious
infection in the intervention group was lower than that
in the control group. Their results clearly established
the safety and feasibility of the clinical use of peripheral
administration of allogeneic BMSCs for subjects with
HBV-associated ACLF, and markedly enhanced the sur-
vival rate through enhancing liver function and reducing
the prevalence of severe infections.

In summary, MSCT can meaningfully ameliorate the
clinical manifestations of these patients, reduce the liver
fibrosis, and inhibit the development of disease.

Kidney regeneration

Hurt to renal cells can occur because of a wide range of
ischemic and toxic insults and results in inflammation
and cell death, which can lead to kidney damage. Inflam-
mation has a significant role in the damage of renal cells,
as well as following cellular regeneration processes [3,
145]. Various investigations have consistently demon-
strated a supportive effect of MSC on acute and chronic
renal injury [146]. Makhlough et al. declared that intra-
venous administration of 1-2 x 10° cells/kg into seven
patients with chronic kidney disease failed to induce
remission [101]. They indicated that variations in esti-
mated glomerular filtration rate (eGFR) and serum
creatinine during the 18-month follow-up were not sta-
tistically significant. Nonetheless, no severe adverse
events were reported, and they could not assess the effi-
cacy because of their study design. Authors postulated
that limited sample size and lack of a control group led
to the lack of success. A study conducted by Swamina-
than et al. in 2021, has displayed the effect of allogeneic
BMSC s in acute kidney injury patients. They have shown
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that treatment of MSCs with SBI-101 stimulated an
immunotherapeutic response that initiated an enhanced
phenotypic alteration from tissue injury to tissue repair
[102]. In a single-arm phase I clinical trial carried out by
Makhlough et al. [100], six patients with autosomal dom-
inant polycystic kidney disease (ADPKD) were intrave-
nously injected 2 x 10° cells/kg autologous BMSCs. The
results of the study showed that the mean eGFR value
declined and the level of serum creatinine enhanced
during the 1-year follow-up. Moreover, no remarkable
modifications in renal function parameters and blood
pressure were observed during the year after interven-
tion. However, there were no severe adverse events after
1-year follow-up. In addition, the authors indicated that
there are some reasons for the lack of success, includ-
ing small number of patients, absence of a comparison
group, limited follow-up period, single dose administra-
tion, and they did not utilize htTKV as a surrogate end-
point. Abumoawad and colleagues have established that
adipose MSCs enhanced blood flow, GFR and reduced
inflammatory injury in poststenotic kidneys of individu-
als that suffer from atherosclerotic renovascular disease
(ARVD) [99]. Their results illustrated that mean renal
blood flow was considerably enhanced, and hypoxia,
renal vein inflammatory cytokines, and angiogenic fac-
tors were considerably attenuated.

Heart regeneration

Heart disease is the first and most frequently diagnosed
disease and the leading cause of disease death [147].
When cardiomyocytes are damaged via ischemic and
other factors, the remaining viable cardiomyocytes have
a restricted ability to proliferate and dead cardiomyo-
cytes are changed by non-contractile fibrous tissue, lead-
ing to functional impairment that elicits the progression
of heart failure. According to the developing number of
patients with heart disease, there is a vital need to expand
an innovative remedy to rescue deteriorating hearts.
Regenerative medicine and cell therapy are the upcoming
therapeutic opportunities for heart diseases. According
to the literature, the transplantation of BM-derived cells
and cardiac stem cells into deteriorating hearts appeared
to provide functional benefits [148, 149].

In a study by Yagyu et al. [110], 8 individuals with
symptomatic heart failure were infused with BMSCs.
During the follow-up period, no serious adverse events
were observed. There were no major differences in B-type
natriuretic peptide, left ventricular ejection fraction
(LVEF), and peak oxygen uptake at 2 months. The results
of this study recommend further research regarding the
feasibility and efficacy of MSCs. In a study by Gao et al.
[107], 116 patients with acute myocardial infarction ran-
domly received an intracoronary injection of WJ-MSCs.



Margiana et al. Stem Cell Research & Therapy ~ (2022) 13:366

They indicated that MSCs therapy elevated the myocar-
dial viability and perfusion within the infarcted territory.
In addition, the LVEF was elevated and LV end-systolic
volumes and end-diastolic volumes were decreased in the
W]J-MSCs group.

Chan et al. demonstrated that intramyocardial infusion
of autologous BMSCs in conjunction with transmyocar-
dial revascularization or coronary artery bypass graft
surgery was technically feasible and could be performed
safely. The results showed that regional contractility in
the cell-treated regions improved during the 1-year fol-
low-up; also, the quality of life was improved along with
a substantial decrease in angina scores at 12 month post-
treatment [104]. In a study by Kaushal et al. [113], 12
participants with hypoplastic left heart syndrome were
transplanted with allogeneic human MSCs (2.5 x 10°
cells/kg). This study determined the safety, feasibility,
and usefulness of MSC administration into the left ven-
tricular myocardium. No serious adverse effects were
reported during the trial. Mathiasen et al. observed that
after BM-MSCT, left ventricular end-systolic volume
was significantly reduced, also LVEF, stroke volume, and
myocardial mass remarkably improved [103]. In addition,
a major decrease in the amount of scar tissue and quality
of life score was observed. No side effects were identified.
In a randomized, double-blind, placebo-controlled, mul-
ticenter, phase II study, 100 patients with anterior ST ele-
vation myocardial infarction received autologous BMSCs
and atorvastatin (ATV) treatment. The results of that
study represented the absolute change of LEVF within
12 months, improvement in cardiac function, induc-
tion of remodeling and regeneration, and improvement
in quality of life [108]. Recently, Celis-Ruiz and cowork-
ers conducted a study in which intravenous administra-
tion of adipose MSCs within the first 2 weeks of ischemic
stroke onset is safe at 24 months of follow-up [106]. In
a study conducted by Hare et al. [112], 37 non-ischemic
dilated cardiomyopathy patients were divided into two
groups and received 10 x 107 allogeneic and autologous
BMSCs. Minnesota Living with Heart Failure Question-
naire score decreased in both groups. The major adverse
cardiac event rate was lower in allo vs. auto. Also, TNF-a
decreased, to a greater extent in allo vs. auto at 6 months.
These results suggested the clinically meaningful efficacy
of allogeneic vs. autologous BMSCs in non-ischemic
dilated cardiomyopathy patients. Qayyum et al. have
found that intra-myocardial injections of autologous adi-
pose MSCs ameliorated cardiac functions and unchanged
exercise capacity, in contrast to deterioration in the pla-
cebo group [115].

Levy et al. indicated that after allogeneic BMSCs
in patients with chronic stroke, Barthel Index scores
increased. Moreover, electrocardiograms, laboratory
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tests, and computed tomography scans of chest/abdo-
men/pelvis suggest that BMSCs could alleviate the clini-
cal symptoms in patients with stroke [90].

In sum, BMSC therapy can be an effective, achievable,
and safe process that remarkably improves cardiac func-
tion and promotes patients’ quality of life.

Bone regeneration

Bone regeneration is a hot topic of research in clini-
cal studies. Bone regeneration is a crucial problem in
numerous cases, including bone fracture, defect, osteo-
arthritis, and osteoporosis, which should be resolved
[150-152]. Autogenous bone grafts are considered the
standard approach for bone formation by means of the
participants’ own cells that stimulate osteoinductive,
bone conductivity, and histocompatibility in bone dis-
eases [153]. Nevertheless, there are some shortcom-
ings of this procedure such as unpredictable absorption,
extended recovery time, and patients commonly experi-
ence pain and nerve injury at the harvest area [154—156].
With the development of understanding bone tissue biol-
ogy as well as recent approaches in the improvement in
tissue regeneration, the application of MSC has become
an attractive subject in augmenting bone tissue forming
[157, 158].

In a pilot study by Jayankura and coworkers, allogeneic
BMSCs were applied to treat 22 participants with bone
fractures [128]. All participants received percutaneous
implantation of autologous BMSCs (5 to 10 x 107 cells)
into the fracture area. After intervention, Tomographic
Union Score (TUS) and Global Disease Evaluation (GDE)
score were improved, and pain at palpation at the frac-
ture site was reduced. In addition, the ratio of blood
samples comprising donor-specific anti-HLA antibod-
ies enhanced at 6 months post-intervention. Three seri-
ous cell-related adverse events were reported. In another
study by Shim and coworkers [129], intramedullary
(4 x 107 cells) and intravenous (2 x 10® cells) infusion of
WJ-MSCs in combination with teriparatide showed ben-
eficial results in individuals with osteoporotic vertebral
compression fractures. Their observation displayed that
the mean visual analog scale, Oswestry Disability Index,
and Short Form-36 scores meaningfully improved. They
stated that WJ-MSCs in combination with teriparatide
are viable and have a clinical profit for fracture healing by
stimulating bone architecture.

Several studies investigated the effect of BMSCs in
osteoarthritis (OA) patients. Chahal et al. carried out
a clinical phase I/IIa trial that involved 12 individuals
with late-stage Kellgren-Lawrence knee OA. These
12 patients were injected with a single intra-articular
of 1x10% 10 x 10°%, and 50 x 10° BMSCs. The results
showed that patients had improved Knee Injury and
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Osteoarthritis Outcome Score (KOOS) pain, symp-
toms, quality of life, and Western Ontario and McMas-
ter Universities Osteoarthritis Index (WOMAC)
stiffness relative to baseline. Moreover, cartilage cata-
bolic biomarkers and MRI synovitis were meaningfully
lower at higher doses and the levels of pro-inflamma-
tory monocytes/macrophages and IL-2 reduced in the
synovial fluid after intervention. No serious events
had occurred [116]. Dilogo et al. have reported that
UC-MSCs (10 x 10° cells) significantly decreased the
WOMAC and could be a potentially new regenerative
treatment for patients with knee OA [127]. In a study
conducted by Hernigou et al. [117], 140 patients with
OA received a subchondral infusion of BMSCs on one
side and received total knee arthroplasty (TKA) on the
contralateral knee. They demonstrated that subchon-
dral MSCs had a significant effect on pain to postpone
or avoid the TKA in the contralateral joint of patients
with OA. In a phase II multicenter randomized con-
trolled clinical trial, 60 OA patients received 10 x 107
cells of autologous BMSCs along with platelet-rich
plasma and followed up for 12 months [119]. No seri-
ous adverse effects were observed after MSCs injection
or during follow-up. According to the observations,
treatment with BMSC related to platelet-rich plasma
was demonstrated to be a feasible alternative treatment
for individuals with OA, along with clinical develop-
ment at the end of follow-up. Similarly, Bastos et al.
have reported that MSCs alone or in combination with
platelet-rich plasma are safe and have an advantageous
effect on symptoms in OA individuals [121]. They found
that MSCs group and MSCs+ platelet-rich plasma
group can improve the pain, function and daily liv-
ing activities, and quality of life subscales. Ten adverse
events were reported in three participants in the MSCs
group and in two of the MSCs+ platelet-rich plasma
group. PERS and colleagues reported another clinical
phase Ia study that involved 19 individuals suffering
from knee OA [123]. These 18 individuals were classi-
fied into three groups and received a single intra-artic-
ular administration of 2 x 10°% 10 x 10% and 50 x 10°
adipose MSCs. According to their results, individuals
had experienced significant improvement in pain lev-
els and function. There were no severe adverse events;
however, 4 individuals experienced transient knee joint
pain and swelling after local administration. In a long-
term follow-up of a multicenter randomized controlled
clinical trial by Espinosa et al. [120], 30 OA patients
were administered the intra-articular infusion of two
diverse doses of autologous BMSCs cells (10 x 10° or
10 x 107) versus hyaluronic acid in the treatment of
OA. No adverse effects occurred after MSCT or dur-
ing the 4-year follow-up. Their results showed that
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intra-articular infusion of BMSCs together with hya-
luronic acid is a safe and viable process that leads to a
clinical and functional improvement in knee OA.

Overall, these data display that BMSCs can be a prom-
ising, safe and effective alternative for bone regenera-
tion, significantly improve the clinical manifestation of
patients, and inhibit development of diseases.

Wound regeneration

The skin has several layers along with different com-
pounds and roles that work together to support internal
organs and serve various biological roles. It has three
main layers, the epidermis, the dermis, and the subcu-
taneous layer [159]. Generally, skin wound healing, trig-
gered by tissue injury, includes four stages: hemostasis,
inflammation, proliferation, and maturation. MSCs can
assist in all stages of the wound healing process. The use
of MSC:s for the treatment of skin can improve the regen-
eration of skin and reduce scarring. MSCs exert their
functions through migration into the skin damage site,
suppressing inflammation, and increasing the growth
and differentiation ability of fibroblasts, epidermal cells,
and endothelial cells [160, 161]. As MSCs have exhibited
wound healing in many preclinical studies, the applica-
tion of MSCs for chronic wounds contributes to progress
toward clinical trials. Falanga et al. have demonstrated
that autologous BMSCs are an impressive and safe treat-
ment method for wound healing [131]. The results of the
study indicated a trend toward a reduction in ulcer size
or complete wound closure by 4—5 months. No adverse
events were noted. In a study by Zhou et al., 346 patients
with skin wounds were administered adipose MSCs
[132]. There were no adverse events during the trial. They
reported that the granulation tissue coverage rate and
thickness of granulation tissue were considerably ame-
liorated. In an open-label phase I/II study, sixteen par-
ticipants with vocal fold scarring were administered a
single dose of 0.5-2 x 10° cells autologous MSCs [137].
Video ratings of vocal fold vibrations and digitized analy-
sis of high-speed laryngoscopy and phonation pressure
threshold were considerably enhanced for 62—-75% of the
participants. Voice Handicap Index was meaningfully
enhanced in eight participants, with the remaining expe-
riencing no remarkable alteration. No serious adverse
events or minor side effects were reported. Lonardi et al.
observed that micro-fragmented adipose tissue improved
skin tropism in patients with diabetic foot ulcer [135].
Furthermore, the results of studies have shown that adi-
pose-derived stem cells had a beneficial effect on the full-
thickness foot dorsal skin wound in diabetic mice with a
considerably decreased ulcer area [162]. Recently, Huang
et al. carried out a clinical study in which six subjects
with intrauterine adhesion and four with cesarean scar
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diverticulum enrolled in this trial [136]. They found that
intrauterine injection of UC-MSCs improved the endo-
metrial thickness, cesarean scar diverticulum, and the
volume of the uterus.

Conclusion

In the last decades, optimizations of isolation, culture,
and differentiation procedures have permitted MSCs to
improve closer to clinical uses for improving disorders
and various tissue regeneration. MSCs have some impor-
tant characteristics that make them preferred candidates
to use for regenerative medicine: immunomodulatory
capability valuable to improve immune system abnormal-
ities, paracrine or autocrine roles that produce growth
factors, and the vital potential to differentiate into vari-
ous cells. Several clinical trials have reported that both
autologous and allogeneic MSCs are valuable sources for
tissue forming. Particularly, autologous MSCs signify the
chief sources examined safe for administration and mini-
mization of immunological threat, regardless of the lack
of reported grievances concerning allogeneic MSC-based
therapy. According to the studies described in this litera-
ture, administration of MSCs appear to be more effective
and the usefulness of MSC therapy in bone and heart dis-
orders has been broadly established. In terms of safety,
no significant relationship was found between the MSC
therapy and incidence of cancer and infection. Intra-
venous injection of MSCs is the most widely used form
of administration and the dosage commonly fluctuates
between 1 x 10° cells/kg and 2 x 10% cells/kg. Accord-
ing to the literature works mentioned in this review, the
repeated administration of MSCs suggests being more
beneficial than a single injection. In addition, the effec-
tiveness of MSCs therapy in osteoarthritis disorder has
been widely established. Long-term follow-up studies
exhibited that serum tumor markers did not enhance
before and 3 years after MSCs therapy. Nevertheless,
there is still a lack of reliable scientific data on the mecha-
nisms whereby the MSC therapy improves the numerous
disorders that can develop the MSC modification and
increase their prospective clinical application.
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