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Abstract 

Accumulating proofs signify that pleiotropic effects of mesenchymal stromal cells (MSCs) are not allied to their dif-
ferentiation competencies but rather are mediated mainly by the releases of soluble paracrine mediators, making 
them a reasonable therapeutic option to enable damaged tissue repair. Due to their unique immunomodulatory 
and regenerative attributes, the MSC-derived exosomes hold great potential to treat neurodegeneration-associated 
neurological diseases. Exosome treatment circumvents drawbacks regarding the direct administration of MSCs, such 
as tumor formation or reduced infiltration and migration to brain tissue. Noteworthy, MSCs-derived exosomes can 
cross the blood–brain barrier (BBB) and then efficiently deliver their cargo (e.g., protein, miRNAs, lipid, and mRNA) to 
damaged brain tissue. These biomolecules influence various biological processes (e.g., survival, proliferation, migra-
tion, etc.) in neurons, oligodendrocytes, and astrocytes. Various studies have shown that the systemic or local admin-
istration of MSCs-derived exosome could lead to the favored outcome in animals with neurodegeneration-associated 
disease mainly by supporting BBB integrity, eliciting pro-angiogenic effects, attenuating neuroinflammation, and 
promoting neurogenesis in vivo. In the present review, we will deliver an overview of the therapeutic benefits of 
MSCs-derived exosome therapy to ameliorate the pathological symptoms of acute and chronic neurodegenerative 
disease. Also, the underlying mechanism behind these favored effects has been elucidated.
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Introduction
Neurodegenerative conditions are heterogeneous dis-
orders characterized primarily by the progressive loss 
of neurons in the brain or spinal cord [1]. During acute 

neurodegeneration, neurons are promptly damaged 
and then destructed in response to a sudden insult (e.g., 
trauma) [2]. Chronic neurodegeneration develops over 
a prolonged period, causing the loss of a particular neu-
ronal subtype [3]. Indeed, acute neurodegeneration is 
found in conditions such as spinal cord injury (SCI), 
traumatic brain injury (TBI), and stroke. Besides, chronic 
neurodegeneration is shown in Alzheimer’s disease (AD), 
Parkinson’s disease (PD), Huntington’s disease (HD), 
amyotrophic lateral sclerosis (ALS), and multiple scle-
rosis (MS) [4, 5]. Given the diverse and multifaceted 
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mechanisms of neuronal loss, finding or designing an 
efficient and practical therapeutic strategy is challenging. 
However, it seems that neuroinflammation plays a criti-
cal role in their pathogenesis because of the presence of 
inflammatory mediators at high levels in the brain tissue 
of rodents with neurodegeneration [6, 7]. Thus, targeting 
neuroinflammation to induce a neuroprotective effect 
and stimulating neurogenesis to substitute destructed 
neurons is a rational therapeutic plan to provide pre-
ferred therapeutic outcomes in vivo.

Since the 1980s, when stem cell therapy on PD patients 
exhibited inspiring outcomes [8], stem cell technology 
has been considered a potential therapeutic modality in 
the context of neurological disease therapy. In this light, 
mesenchymal stromal cells (MSCs)-based therapeutics 
have attracted increasing attention because of their iso-
lation from various adult tissue, easy ex vivo expansion, 
and also low immunogenicity. These properties make 
them an ideal source in either an autologous or alloge-
neic manner [9, 10]. They are capable of differentiation 
into neural cell lineages, such as neurons, astrocytes, and 
oligodendrocytes (ODCs) [11–13]; however, it seems 
that the MSCs-mediated positive effect mainly depends 
on their paracrine effects rather than their direct dif-
ferentiation potential [14, 15]. Among them, inducing 
neuroprotection, neurogenesis, and angiogenesis, inhib-
iting neuroinflammation, promoting blood–brain bar-
rier (BBB) integrity, and degradation of aberrant protein 
aggregates are of paramount significance [16, 17]. These 
effects are mostly elicited by secretion of neurotrophic 
factors (NTFs), such as glial cell-derived neurotrophic 
factor (GDNF), nerve growth factor (NGF), and brain-
derived neurotrophic factor (BDNF), and also producing 
anti-inflammatory mediators like transforming growth 
factor-β (TGF-β) and interleukin-10 (IL-10), and tumor 
necrosis factor alpha-stimulated gene-6 (TSG-6) (Fig. 1) 
[1, 18].

During the last decades, researchers have sought differ-
ent strategies to improve the therapeutic effects of MSCs. 
Accordingly, MSCs-derived exosomes have become 
a promising novel cell-free approach. MSCs-derived 
exosomes bypass difficulties related to the MSC’s direct 
use, such as aging, possible tumor formation, and low 
engraftment, to target tissue due to the presence of BBB 
[19]. Exosomes are nano-sized, lipid bilayer-enclosed 
structures, which are secreted from various cells, particu-
larly stem cells, immune cells, and tumor cells [20, 21]. 
MSCs-derived exosomes can cross the BBB and exert 
robust and prolonged neuroprotection and neurogenesis 
[22, 23]. Indeed, they are hypoimmunogenic nanocar-
riers and comprise numerous immunoregulatory, neu-
rotrophic, pro-survival, and pro-angiogenic mediators 
[24–26]. Thus, exosomes exhibit a unique capability to 

ameliorate neurodegenerative disease-associated defi-
cits [27, 28]. Herein, we have focused on the therapeu-
tic application of MSCs-derived exosome as an emerging 
and rapidly evolving cell-free therapeutic approach to 
alleviate neurodegeneration and stimulate neurogenesis, 
with particular emphasis on last decade’s in vivo reports.

The rationality of MSCs‑derived exosome therapy 
in neurodegeneration‑related conditions
Suppression of neuroinflammation
Neuroinflammation is a multifaceted process in which a 
spectrum of inflammatory responses emerges and ulti-
mately leads to neural cell loss [29]. Deregulated microglia 
and astrocytes activation accompanied by up-regulated 
levels of the pro-inflammatory molecules is commonly 
observed in patients suffering from MS, PD, ALS, HD, 
AD, SCI, TBI, and also stroke [30]. Neuroinflammation 
also abrogates the endogenous brain repair process, thus 
impairing neural tissue recovery [31]. Microglia and 
astrocytes are induced into two polarization statuses 
during neuroinflammation: pro-inflammatory pheno-
type (M1 and A1) and the anti-inflammatory phenotype 
(M2 and A2). Microglia (M1)-mediated inflammatory 
responses largely contribute to various neurological dis-
eases associated with neural damage [32]. M1 activation 
of microglia is described as an undesired event and is 
complicated in the development of neurological disease. 
M1 microglia induces immediate inflammation by secre-
tion of pro-inflammatory cytokines, such as IL-1, IL-6, 
and TNF-ɑ. They also regulate the function and status of 
neurons, astrocytes, and ODCs [33]. Pro-inflammatory 
cytokines also have a correlation with enhanced numbers 
of A1 reactive astrocytes in the damaged tissue. Besides, 
M2 activation of microglia leads to the secretion of anti-
inflammatory mediators, such as IL-10, TGFβ, and glu-
cocorticoids [34]. Aberrant activation of the NLR family 
pyrin domain containing 3 (NLRP3) inflammasome, a 
crucial part of the innate immune system, also contrib-
utes to the development of various neurodegenerative 
conditions, including AD and PD [35, 36]. Inflammatory 
brain responses are also related to the up-regulated pros-
taglandins (PGs) levels, particularly PGE2 [6].

A large number of studies have shown that MSCs can 
down-regulate M1 microglia and A1 astrocyte activation, 
thus inducing neuroprotective effects [37, 38]. In  vitro 
results indicated that MSCs’ co-culture with amyloid 
beta-peptide (Aβ)-induced neural cells resulted in the 
release of IL-10 and TGF-β into the culture medium [39]. 
The shift from a pro-inflammatory to an anti-inflamma-
tory environment was also found in the lumbar spinal 
cord of ALS mice following umbilical cord (UC)-MSCs 
therapy [40]. Likewise, MSCs-derived exosomes elicited 
strong anti-inflammatory influences in a subarachnoid 



Page 3 of 23Yari et al. Stem Cell Research & Therapy          (2022) 13:423 	

hemorrhage (SAH) [41] and AD rodent model by improv-
ing M2-polarized macrophages numbers [42]. MSCs also 
inhibit inflammatory response by up-regulation of TSG-6 
[43, 44] and down-regulation of NLRP3 expression [45, 
46], which obstructs microglia activation as shown in 
TBI and SCI animal models. In the ALS mice model, 
results also revealed that MSCs-derived exosome admin-
istration by intramuscular [47] and intraventricular [40] 
routes impaired disease development and reduced the 
inducible nitric oxide (NO) synthase (iNOS) activation 
and subsequent NO syntheses [47]. In sum, MSCs’ robust 
anti-inflammatory and immunomodulatory effects justify 
their application in neurological diseases associated with 
neuroinflammation.

Neurotrophic factors (NTFs) release
Neurotrophic factors (e.g., BDNF, NGF, and GDNF) 
are endogenous biomolecules mainly contributing to 
cell proliferation and differentiation in the nervous sys-
tem. They are also implicated in synaptic plasticity and 
long-term memories [45]. Based on findings, changes in 
the levels of neurotrophic factors or their receptors are 
thought to be responsible for neuronal deterioration and 
also participate in neurodegenerative diseases’ pathogen-
esis [46, 48, 49]. Apart from anti-inflammatory action, 
functional rescue after MSCs therapy mainly arises from 
neurotrophic factors delivery to brain tissue, thus pro-
voking neuroprotection and neurogenesis [50–54]. The 
existence of the NTFs such as BDNF, NGF, and GDNF in 

Fig. 1  Underlying mechanisms behind the mesenchymal stromal cell (MSCs)-derived exosome-mediated favored effects on 
neurodegeneration-associated diseases. Due to the presence of growth factor, miRNAs, and anti-inflammatory mediators, exosome treatment 
induces angiogenesis and neurogenesis, improves blood–brain barrier (BBB) integrity, and also attenuates neuroinflammation
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MSCs-derived exosomes has strongly been exhibited by 
molecular analysis [55, 56].

In rodent models of AD, results exhibited that UC‐
MSCs injection by intrahippocampal [50] and intrathecal 
[51] route led to cognitive deficits rescue and also facili-
tated neural networks formation by secretion of hepato-
cyte growth factor (HGF) [50] and growth/differentiation 
factor-15 (GDF-15) [51]. In the hippocampus of experi-
mental models, HGF and GDF-15 induce signaling path-
ways involved in neural cell survival, proliferation, and 
migration [57]. Further, systemic injection of AT-MSC 
brought about the up-regulation of dopamine transporter 
expression and inspired functional rescue in PD rodent 
models due to BDNF and GDNF delivery [52]. In addi-
tion, Ebrahimi et al. (2018) demonstrated that GDNF and 
vascular endothelial growth factor (VEGF) secretion by 
MSCs favored motor coordination and muscle functions 
in HD animal models [58].

Irrespective of the inherent potential of MSCs to secret 
NTFs, genetically modified MSCs to overexpress NTFs 
provide a promising therapeutic approach to treating 
neurological diseases. Meanwhile, BDNF-overexpressing 
MSCs elicited appreciated in vivo outcomes upon trans-
plantation into a PD monkey model [59], SCI rat model 
[60], and also mice model of HD [61] and ALS [62]. Based 
on the in vivo reports, BDNF-overexpressing MSCs could 
restore motor function and improve overall survival (OS) 
in treated animals. Besides, GDNF-overexpressing MSCs 
could reduce neuroinflammation and consequently 
down-regulate neurodegeneration in the rat models 
of PD [63] and ALS [64]. There are also five ongoing or 
completed registered trials designed to address the safety 
and efficacy of intramuscular and intrathecal adminis-
tration of NurOwn® (MSC-NTF) in patients with ALS 
(NCT02017912, NCT04681118, NCT01777646, and 
NCT01051882) and MS (NCT03799718). Meanwhile, 
Berry and colleagues (2019) findings [65] verified the 
safety and efficacy of single-dose intrathecal and intra-
muscular transplantation of MSC-NTF in ALS patients. 
They showed improved levels of the neurotrophic factors 
in cerebrospinal fluid (CSF) in ALS patients. At the same 
time, CSF inflammatory biomarkers were reduced in 
treated patients, highlighting the central roles of immu-
nomodulation and NTFs delivery in MSCs-mediated 
therapeutic influences in vivo [65].

Stimulating angiogenesis
Angiogenesis, the growth of new blood vessels, is a 
natural defense mechanism helping to restore oxygen 
and nutrient supply to the damaged brain tissue upon 
ischemia or similar conditions. By stimulating ves-
sel growth, angiogenesis may stabilize brain perfusion 
and potentiate neuronal survival, brain plasticity, and 

neurologic recovery [66]. During neurodegeneration, the 
neural progenitor cells’ (NPCs) migration to regenerate 
damaged neurons is facilitated by blood vessels. Thereby, 
it was hypothesized that angiogenesis might provide suc-
ceeding neurogenesis [67, 68]. Interestingly, up-regulated 
levels of angiogenic growth factors such as VEGF and its 
receptors are shown in brain tissue after several neuro-
logical diseases, such as TBI and stroke [69]. In addition 
to the activating signaling pathways involved in angio-
genesis, MSCs-derived exosomes deliver pro-angiogenic 
factors such as VEGF, EGF, and FGF-1 directly to the tar-
get tissue [70].

In 2017, Hung and coworkers showed that intravenous 
injection of MSCs-derived exosome stimulated angio-
genesis in SCI rats, while the underlying mechanism was 
not elucidated [71]. However, other reports have shown 
that deposition of fibronectin (FN) accompanied by up-
regulation of the expression of VEGF, HGF, insulin-like 
growth factor 1 (IGF-1), angiopoietin-1 (Ang-1), and 
hypoxia-inducible factor 1-alpha (HIF-1α) contributes to 
inducing angiogenesis upon MSCs’ therapy. These bio-
molecules transduce various signaling axes, particularly 
phosphatidylinositol-3-kinase (PI3K)/Akt pathway [72–
74]. For example, perivascular delivery of encapsulated 
MSCs enhanced postischemic angiogenesis by paracrine 
induction of VEGF-A [75]. Likewise, BM-MSCs’ trans-
plantation potentiated VEGF and ANG-1 expressions 
and, in turn, enhanced the formation of microvessels in 
brain tissues after TBI in mice models [76]. Also, HGF-
overexpressing BM-MSCs’ therapy promoted angiogen-
esis in an ischemic rat [77]. Hypoxic preconditioning of 
MSCs resulted in the up-regulation of HIF-1α, VEGF, 
erythropoietin (EPO), stromal-derived factor-1 (SDF-1), 
and C-X-C chemokine receptor type 4 (CXCR4), thus 
potentiating their pro-angiogenic capacities in stroke 
rodents [78]. MSCs also underlie neurogenesis and repair 
neural damage by stimulating endogenous angiogenesis 
and up-regulation of angiogenic mediators secreted from 
activated astrocytes [79].

Others
In the brain, the vascular endothelium acts as a critical 
part of the BBB due to its suitable construction to pro-
vide a functional and molecular dissociation of the brain 
from the rest of the body and defend neurons versus 
pathogens and toxins [80]. Thus, deregulated transpor-
tation of metabolites across the BBB because of its dys-
function might elicit adverse effects on brain health and 
cognitive function [81, 82]. Indeed, the BBB damage con-
tributes to impaired peripheral–CNS interaction, thereby 
provoking neurodegeneration [83]. Besides, because of 
the significant vulnerability of the brain to oxidative dam-
age and high levels of ROS, mitigation of oxidative stress 



Page 5 of 23Yari et al. Stem Cell Research & Therapy          (2022) 13:423 	

is urgently required to enable efficient treatments of neu-
rodegeneration [84–87]. Although low levels of ROS play 
physiological roles in cell signaling, various clinical trials 
based on targeting increased levels of ROS are ongoing 
using antioxidant agents.

Recent reports have indicated that MSCs-derived 
exosomes could transfer a myriad of microRNAs (miRs), 
such as miR-132-3p, to endothelial cells (ECs), which in 
turn improves their proliferation and thus alleviates BBB 
impairment [88]. A study in the middle cerebral artery 
occlusion (MCAO) mouse model exhibited that miR-
132-3p could inhibit RASA1, while improving Ras and 
PI3K phosphorylation [88]. In addition to these effects, 
miR-132-3p-enriched exosome reduced ROS production 
and ECs apoptosis and supported tight junctions. This 
study offers clear evidence signifying the positive effect 
of exosome therapy on BBB integrity and also eliciting 
antioxidant effects in vivo [88]. Likewise, exosome treat-
ment also significantly enhanced the expression of genes 
involved in promoting the BBB stability, including clau-
din-5, occludin, tight junction protein 1 (TJP1), laminin 
subunit B1 (LAMB), and RUNX family transcription 
factor 1 (RUNX1) in TBI rodent models [89]. Addition-
ally, Williams et al. (2020) showed that exosome-treated 
animals had reduced albumin extravasation and higher 
laminin, claudin-5, and zonula occludens 1 (ZO1) levels 
[90]. These events ultimately diminished brain swelling 
and lesion size, down-regulated blood-based cerebral 
biomarkers, and finally enhanced BBB integrity [90].

Furthermore, Katsuda et  al. (2013), for the first time, 
demonstrated that human AT-MSCs secrete exosomes 
carrying enzymatically active neprilysin (NEP) [91]. The 
NEP is the most significant amyloid-β (Aβ)-degrading 
enzyme in the brain. They suggested that NEP-enriched 
exosome could attenuate both secreted and intracellu-
lar Aβ levels in neural cells [91]. Besides, MSCs-derived 
exosomes could reduce the Aβ levels and promote the 
expression of NEP in APP/PS1 [92]. Of course, further 
evidence is required to ascertain the putative capacity of 
MSCs-derived exosome to degrade Aβ.

Exosome therapy as a cell‑free approach
Exosomes are a subtype of extracellular vesicles (EVs) 
with a diameter in the range of 30–100 nm. They are usu-
ally released by various human and animal cells such as 
stem cells [93]. Exosomes include multiple biomolecules, 
including proteins, lipids, messenger RNA (mRNA), 
and most importantly, microRNAs (miRNAs) as cargo. 
Exosomes are secreted in a firmly regulated process: 
formation of endocytic vesicles by invagination of the 
plasma membrane, generation of multivesicular bodies 
(MVBs) upon endosomal membranes’ inward budding, 
and finally merging of shaped MVBs with the plasma 

membrane and release of the vesicular contents termed 
exosome [94]. Brain tissue recovery and functional res-
cue in neurological diseases upon MSCs therapy are 
chiefly due to the MSCs-mediated paracrine effect. This 
fact confirms the importance of MSCs-derived exosome 
therapy rather than direct MSCs’ transplantation. Indeed, 
MSCs-derived exosome targets biological processes in 
recipient cells while alleviating comprehensions concern-
ing the immediate use of parental cells (e.g., aging and 
tumor formation) [95]. Overall, such vesicles show bet-
ter stability in circulation, improved biocompatibility, low 
immunogenicity, and toxicity compared with parental 
stromal cells [96].

The inability of most drugs to cross the BBB is the 
main problem of modern neuropharmacology. Exosomes 
reproduce a critical benefit in this light since they can 
cross BBB [97]. Accumulating information offered by ani-
mal studies has shown that MSC-derived exosomes can 
re-induce self-tolerance without complications observed 
during the direct MSCs transplantation. Given that the 
exosome cargos rely on their cellular origin, the com-
position of MSCs-derived exosomes is similar to that of 
parental cells. They express common surface markers 
and membrane-binding proteins, such as CD73, CD44, 
and CD29 [98]. As cited, exosomes can attenuate neu-
roinflammation, inspire neurogenesis and angiogenesis, 
restore spatial learning deficits, and support functional 
recovery in neurological disease [99–102]. MSCs-derived 
exosomes can up-regulate the levels of anti-inflammatory 
molecules and down-regulate pro-inflammatory mol-
ecules levels. They suppress macrophage activation by 
inhibition of Toll-like receptor (TLR) signaling and also 
reduce hypoxic inflammation by down-regulation of pro-
proliferative pathways, such as signal transducer and acti-
vator of transcription 3 (STAT3) phosphorylation [103].

Meanwhile, other results revealed that MSCs-derived 
exosomes could augment the number of newborn neu-
rons detected in the granule layer of the dentate gyrus 
(DG) of the hippocampus in TBI animal models [104]. 
Significantly, various approaches are developed to 
improve the therapeutic capabilities of exosomes. The 
current methods are concentrated on two main strate-
gies: cellular modification by preconditioning, such as 
genetic modification and pre-treatment (pre-isolation), 
and manipulation of isolated exosome (post-isolation) 
(Fig. 2). For instance, Xin et al. (2012) showed that co-
culture of MSCs with brain tissue extracted from rats 
with ischemic stroke might improve the quantity of 
miR-133b in MSCs-derived exosomes [105]. MSCs’ 
ischemic preconditioning also may result in promoted 
levels of miR-22 in isolated exosomes [106]. These 
miRNAs promote neurite remodeling, potentiate ECs 
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proliferation, and improve functional recovery in 
rodents with neurological disease [107, 108]. In addi-
tion, loading the MSCs-derived exosome with curcumin 
upon isolation and before intranasal transplantation 
improved the movement and coordination ability of 
the PD mice model, based on Peng et al. (2022) reports 
[109]. Curcumin can excite developmental and adult 

hippocampal neurogenesis and reinforce neural plastic-
ity and repair [110].

MSCs‑derived exosome in acute 
neurodegeneration
SCI
Spinal cord injury (SCI) is characterized by temporary or 
permanent changes in spinal cord function due to spinal 

Fig. 2  Potentiating the therapeutic capacity of the mesenchymal stromal cell (MSCs)-derived exosome. To promote the efficacy of exosome 
therapy, parental cells’ modification (pre-isolation) or manipulation of exosome (post-isolation) are being used in preclinical studies
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cord damage with traumatic and non-traumatic etiolo-
gies [111]. During SCI, damage to neurons and ODCs 
impairs their normal functions and disrupts vasculature 
and the blood–spinal cord barrier, leading to neurological 
dysfunction [112]. Destruction of spinal cord microvas-
cular supply leads to cell permeabilization, pro-apoptotic 
signaling, and ischemic injury [113]. The recruitment of 
inflammatory cells, cytokines, and vasoactive peptides, as 
shown by up-regulated levels of the TNF-ɑ and IL-1β, is 
demonstrated within minutes of injury [114, 115].

During neurodegeneration, A1 astrocytes lose their 
normal astrocytic function while acquiring a new neuro-
toxic action, thereby killing neurons and mature ODCs 
[116]. Recent results revealed that BM-MSCs-derived 
exosomes could display pro-angiogenic properties, atten-
uate glial scar formation, decrease lesion volume, aug-
ment axonal regeneration, and also improve functional 
recovery. These effects are mainly mediated by various 
mechanisms such as down-regulation of nitric oxide 
(NO) release in microglia in association with inhibition 
of the activation of A1 neurotoxic reactive astrocytes 
[117]. MSC-derived exosomes may also diminish SCI-
induced A1 astrocytes potently by down-regulation of 
the nuclear translocation of NFκB p65, thereby inspiring 
anti-inflammatory and neuroprotective effects on SCI 
animal models [118]. M1 macrophages are implicated 
in further damage to the spinal cord, whereas M2 mac-
rophages trigger regenerative growth responses in adult 
sensory axons [119]. Recently, Liu et  al. (2020) showed 
that miR-216a-5p-enriched MSCs-derived exosome 
improved functional behavioral recovery in the SCI ani-
mal model by shifting microglial polarization from M1 
to M2 phenotype [120]. MiR-216a-5p down-regulated 
TLR4/NF-κB/PI3K/AKT signaling cascades, improved 
M2/M1 ratio, and thereby favored amelioration of trau-
matic SCI [120].

Similarly, another study indicated that intravenously 
injected MSCs-derived exosomes improved M2/M1 
ratio, providing an anti-inflammatory environment in 
the injured spinal cord [121]. BM-MSCs-derived exo-
some also promoted the rescue of locomotor function 
and M2-phenotype polarization in a rat model of SCI 
[122]. Injected exosome suppressed neuronal apopto-
sis and degeneration and down-regulated inflammatory 
responses in treated rodents by miR-125a-mediated 
down-regulation of interferon regulatory factor 5 (IRF5) 
[122]. IRF5 is a transcription factor that contributes to 
the type I interferon and the TLRs inflammatory signal-
ing axes [123]. It can also enhance macrophage polariza-
tion toward the M1-phenotype and stimulate neuronal 
destruction in pathological conditions. Thereby, exoso-
mal miR-125a elicits neuroprotective impacts through 
down-regulation of IRF5 expression in SCI rats [122]. 

Likewise, Li and colleagues (2020) found that miR-
124-3p containing BM-MSC-derived exosomes attenu-
ated SCI and restored neurological dysfunction in a 
rat model by suppression of endoplasmic reticulum to 
nucleus signaling 1 (Ern1) protein. The Ern1 is involved 
in pro-inflammatory cytokine expression and stimula-
tion of M1 polarization [124]. Thus, miR-124-3p may be 
a novel therapeutic target to alleviate SCI by suppress-
ing Ern1 expression and increasing M2 polarization. 
In another study, given that the miR-29 family serves 
as an essential survival factor for neuronal cells, MSCs-
derived exosomes were transduced post-isolation with 
miRNA-29b to evaluate their effect on SCI [125]. The 
systemic injection of miRNA-29b containing exosomes 
improved hind limb motor function, reduced histopatho-
logical damage, and induced neuronal regeneration in 
spinal cord tissues in SCI rodent models. Targeting the 
proteins complicated in neuronal regeneration, such as 
neurofilament-200 (NF200), growth-associated protein 
43 (GAP-43), and glial fibrillary acidic protein (GFAP), 
was thought to be responsible for the favored effects 
upon exosome therapy in SCI rats [125]. Also, systemic 
injection of exosomes derived from genetically modified 
MSCs to overexpress miR-544 [126], miR-133b [127], and 
miR-126 [128] alleviated histologic deficits, ameliorated 
neuronal loss, down-regulated inflammation, stimulated 
neurogenesis, and finally improved hindlimb locomotor 
function in SCI rats.

In addition to inhibiting inflammatory responses, 
MSCs-derived exosomes can exert pro-angiogenic 
impacts on endothelial cells and thus stimulate angio-
genesis in the SCI model, offering great capacity for 
SCI therapy [71, 129]. Meanwhile, local administration 
of human urine MSCs-derived exosomes embedded in 
hydrogel might improve SCI-induced dysfunction prob-
ably via improving angiogenesis through angiopoietin-
like 3 (ANGPTL3) delivery [130]. Apart from playing 
a pivotal role in lipid metabolism, ANGPTL3 induces 
angiogenesis by improving the pro-angiogenic apti-
tude of endothelial progenitor cells (EPCs) and trigger-
ing ECs’ adhesion and migration through integrin αvβ3. 
These properties make it an ideal target for various CNS-
related disorders [131]. Activation of autophagy [132] 
and improvement in the integrity of the blood–spinal 
cord barrier (BSCB) [133] are other relevant mechanisms 
by which MSCs-derived exosomes stimulate functional 
recovery in SCI rodents. Autophagy can attenuate neu-
ronal injuries and ameliorate locomotor function by 
decreasing apoptosis following SCI [134]. As well, a 
significant association between promoted BSCB integ-
rity and potentiated locomotor recovery has strongly 
been observed [135]. In a recent study, MSCs-derived 
exosomes provoked autophagosome formation, reduced 
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cleaved caspase-3, and improved anti-apoptotic protein 
B cell lymphoma-2 (Bcl-2) levels in vitro and in the SCI 
rat model [132]. Moreover, these exosomes can decrease 
pericyte migration and thereby reduce the permeability 
of the BSCB by inhibiting NF-κB p65 signaling [133]. The 
MSCs-derived exosome also can support BSCB integrity 
by down-regulation of MMPs activity, thereby enhanc-
ing the functionality of cell junction proteins and reduc-
ing BSCB permeability [136]. These findings justify the 
MSCs-derived exosome application for SCI therapy.

Recent reports have revealed that UC-MSCs-derived 
exosome delivery using an alginate scaffold can induce 
neurite outgrowth, reduce inflammatory cytokine levels, 
and enhance IL-10 and GDNF levels in SCI rats [137]. 
Transplantation of exosomes immobilized in an adhesive 
hydrogel provoked nerve recovery and preserved urinary 
tissue by a marked inhibition of neuroinflammation and 
oxidation [138]. The hydrogel enables sustained release 
of embedded exosomes and thus can ease the long-term 
delivery of exosomes’ components to damaged tissue 
[138]. Likewise, implantation of BM-MSC-derived exo-
some encapsulated in gelatin methacrylate hydrogel 
(GelMA) enhanced exosomes’ retention, promoted neu-
rogenesis, and diminished glial scars in the lesion sites in 
an SCI preclinical model [139].

TBI
Traumatic brain injury (TBI) is a leading cause of death 
and chronic disability in young and elderly patients in 
industrialized and developing countries. It brings about 
fleeting or enduring physical, cognitive, and behavioral 
dysfunctions [140]. Upon TBI, various signaling mol-
ecules and metabolic instabilities, mainly impair BBB, 
induce neuroinflammation, cerebral edema, mitochon-
drial dysfunction, and oxidative injury [141].

In rats with controlled cortical impact (CCI)-induced 
TBI, systemic injection of MSCs-derived exosome 
reduced TBI severity and improved spatial learning and 
functional sensorimotor recovery [142]. In addition to 
the down-regulation of inflammation, the exosome ther-
apy enhanced neonatal ECs in the lesion zone and mature 
neurons in the dentate gyrus (DG) [142]. Thereby, it was 
thought that stimulation of angiogenesis and neurogen-
esis and also inhibition of inflammatory responses play 
critical roles in exosome-mediated sensorimotor func-
tional recovery and improved spatial learning in rats after 
TBI [104, 143]. Meanwhile, Zhang et al. (2015) revealed 
that exosome treatment strikingly augmented the vas-
cular density in the injured cortex and DG in rats with 
TBI, as evidenced by an increase in newborn ECs [104]. 
In mice with CCI-induced TBI, exosomes administra-
tion by intraorbital route also diminished the lesion size 
and ameliorated neurobehavioral function [144]. Also, 

improvement in Bax/Bcl-2 ratio, reduction in TNF-α, 
IL-1β, and iNOS, and induction of M2 polarization signi-
fied the key role of pro-survival pathways and suppres-
sion of neuroinflammation in this regard [144]. Also, 
Chen and coworkers (2020) indicated that exosomes 
derived from AT-MSCs could inhibit microglia activation 
by suppression of NFκB and P38 MAPK signaling, thus 
reducing inflammation and enabling functional recovery 
[145].

Interestingly, down-regulation of the high-mobility 
group box  1 (HMGB1)/TLR4 pathway is believed to 
be responsible for functional recovery in rodents with 
brain injury following MSCs-derived exosome trans-
plantation [23]. HMGB1 is a typical damage-associated 
molecular pattern (DAMP) protein and elicits its biologi-
cal function predominantly via binding to TLR4 [146]. 
The connection between HMGB1 and TLR4 eventu-
ally leads to the progression of neuroinflammation and 
resultant neurodegeneration. Xiong et al. (2020) showed 
that although brain damage results in improved levels 
of HMGB1, TLR4, TNF-α, and p53, administration of 
the MSCs-derived exosome could reduce their levels in 
treated murine in part by miRNA129-5p delivery [23]. 
MiRNA129-5p mediates anti-inflammatory and anti-
apoptotic effects by down-regulation of the HMGB1/
TLR4 pathway [23]. The encouraging outcomes also 
were exhibited in larger animal models of TBI [90, 147]. 
A study in swine models of TBI demonstrated that sys-
temic administration of MSCs-derived exosome could 
facilitate neuroprotection and support functional rescue 
by suppressing inflammation, as shown by reduced IL-1, 
IL-6, IL-8, and IL-18 [147]. Also, exosome therapy caused 
a reduction in NF-κB levels while improving BDNF levels 
in treated swine [147]. BDNF induces neuronal survival, 
synaptic plasticity, and neurogenesis in rats with TBI and 
thus holds great potential for applications in neurological 
disease therapy [148]. MSCs-derived exosome also atten-
uated cerebral edema (CE), which has an unfavorable 
prognosis in TBI. Exosome therapy also improved BBB 
integrity in swine with TBI via reducing albumin extrava-
sation and improving laminin, Claudin-5, and ZO 1 levels 
[90]. As previously described, these proteins enable TJs 
between the ECs and thus support BBB integrity.

Stroke
As the primary type of stroke, ischemic stroke is charac-
terized by an early ischemic occasion that divests brain 
tissue from blood supply and oxygenation. Indeed, stroke 
yields permanent brain injury and succeeding motor 
and cognitive deficits [149]. Based on the literature, the 
inflammatory response of glial cells is the chief reason 
for brain injury during stroke [150]. In this condition, 
the recruitment of the immune cells to the ischemic 
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zone in association with pathological mediators, such as 
oxidative stress, excitotoxicity, MMPs, HMGB1, TLR4, 
arachidonic acid metabolites, and MAPK, might spread 
ischemic brain injury [151]. Indeed, systemic and local 
immune responses contribute to the primary and sec-
ondary development of ischemic lesions. Thus, immune 
response affects repair, recovery, and overall outcome 
after a stroke [152]. Also, accumulating proofs display 
that autophagy is triggered in numerous cell types in 
the brain, including neurons and glial cells, following 
ischemic stroke [150, 153]. However, autophagy plays a 
double-edged sword role in stroke. Although autophagy 
may trigger neuroprotection upon stroke, its activation in 
some circumstances may result in cell death [152].

Upon stroke, reports have shown that CD14 receptors 
and TLR4 are robustly expressed in activated microglia 
in the infarct brain zone, enabling microglial activa-
tion [154]. These findings have outlined the importance 
of TLR4 expression in the proceeding of stroke-induced 
pathological events. Recent studies in middle cerebral 
artery occlusion (MCAO) mice, a standard cerebral 
stroke model, showed that exosomal miR-542-3p could 
decrease neuronal destruction, inhibit inflammatory 
microglial activation, and ultimately reduce infarct vol-
ume in  vivo [155]. Indeed, MSCs-derived exosomes 
inhibited ischemia-induced glial cell inflammatory reac-
tions by targeting TLR4, thereby exerting neuropro-
tective effects in  vivo [155]. Furthermore, miR-25-3p 
containing AT-MSCs-derived EVs reduced autophagy 
and the size of the infarct cavity and eventually elicited 
neurological recovery in a mice model of stroke [156]. 
In vitro analysis revealed that AT-MSC-derived EVs con-
strained autophagy through down-regulation of p53 and 
B cell lymphoma 2-interacting protein 3 (BNIP3) [156]. 
The p53 and BNIP3 are two primary positive regulators of 
autophagy, and their protein levels are usually enhanced 
in the infarct region of mice after stroke [156]. Similarly, 
exosomes from miR-30d-5p-overexpressing AT-MSCs 
also decreased infarct volume by inhibiting autophagy 
concomitant with triggering M2 microglia polariza-
tion [157]. The potent effects of the MSCs-derived exo-
some on the determination of microglial fate have been 
evidenced by other studies [158, 159]. For instance, 
miR-146a [158], miR-146a-5p [159], and miR-223-3p 
[160]-enriched exosomes derived from MSCs could 
ameliorate neurological activities, attenuate apoptotic 
neurons, and deter neuroinflammation most probably 
by inhibition of M1 polarization in rats with ischemic 
stroke. The miR-146a containing exosome reduced iNOS, 
cyclooxygenase-2 (COX-2), and monocyte chemoat-
tractant protein-1 (MCP-1) expression and simultane-
ously suppressed activation of IL-1 receptor-associated 
kinase1 (IRAK1) and nuclear factor of activated T cells 5 

(NFAT5) [158]. Likewise, exosomal miR-146a-5p attenu-
ated microglial-induced neuroinflammation by nega-
tive regulation of IRAK1/TRAF6 signaling pathway in a 
rodent model of stroke [159]. IRAK1/TRAF6 pathway 
serves essential roles in signal transduction of the TLR/
IL-1R superfamily, thereby targeting this axis averts 
inflammatory responses and inspires neuroprotection 
[159]. Exosome treatment also suppressed microglial M1 
polarization by down-regulation of cysteinyl leukotriene 
two receptors (CysLT2R). These well-known inflamma-
tory receptors mainly participate in inflammation and 
neuronal injury by stimulating microglia M1 polari-
zation [160]. In addition to their capability to reduce 
neuroinflammation mainly via inhibiting M1 microglial-
induced neuroinflammation and targeting key inflam-
matory signaling axes, MSCs-derived exosomes could 
also ameliorate functional recovery in animal models of 
stroke by improving the neuroplasticity [71, 161]. Mean-
while, Xin et  al. (2017) implied that systemic injection 
of miR-17-92 cluster-enriched exosome derived from 
MSCs could improve ODCs, neurogenesis, and neurite 
remodeling/neuronal dendrite plasticity in the ischemic 
boundary zone (IBZ) in MACO rats [161]. These desired 
effects were elicited by targeting phosphatase and tensin 
homolog (PTEN) by miR-17-92, which in turn stimulates 
PI3K/Akt/mechanistic target of rapamycin (mTOR)/gly-
cogen synthase kinase (GSK) 3β signaling pathway [161]. 
Based on previous reports, activation of this pathway 
exceeds cell survival and neuroplasticity and could pro-
mote functional recovery in neurological conditions [152, 
162]. Also, exosomes from MSCs might transport miR-
133b to neurons and astrocytes, thus provoking neurite 
remodeling and functional rescue in rodents after stroke 
[163].

A summary of main reports depending on exosome 
treatment in animal models of acute neurodegeneration 
is provided in Table 1.

MSCs‑derived exosome in chronic 
neurodegeneration
MS
Multiple sclerosis (MS), a common CNS degenera-
tive disorder, is characterized by the degradation of 
myelin proteins as a result of the dysregulated immune 
response. Indeed, MS is a heterogeneous, multifacto-
rial, immune-related condition that establishes demy-
elinating brain and spinal cord lesions, correlating 
with neuro-axonal injuries [184, 185]. Focal lesions are 
mainly induced by infiltrating immune cells, such as T 
cells, B cells, and myeloid cells, into the CNS paren-
chyma. Deregulation in the M1/M2 microglia ratio and 
irregular NLRP3 inflammasome activations also con-
tributes to the pathogenesis of MS [186]. In an early MS 
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Table 1  MSCs-derived secretome (e.g., exosome) therapy in preclinical models of acute neurodegeneration

Condition Model Cell source Administration route Results Ref.

SCI Mice BM Intravenous Stimulating functional behavioral restoration via improving M2/M1 macrophage 
ratio by exosomal miR-216a-5p

[120]

SCI Rat AM Intravenous Reducing inflammation and eliciting antioxidant effects through MSC-derived 
exosomes immobilized in hydrogel

[138]

SCI Rat UC Intrathecal Plummeting pro-inflammatory cytokine TNF-α and IL-1β, while improving IL-10, 
BDNF, and GDNF levels in brain tissue

[164]

SCI Rat BM Intravenous Alleviating neurological damage through suppressing Ern1 and promoting M2 
macrophage by exosomal microRNA-124-3p

[165]

SCI Rat BM Intravenous Repairing spinal cord injury by exosomal miRNA-29b [166]

SCI Rat BM Intravenous Repairing spinal cord injury by inhibition of A1 neurotoxic reactive astrocytes activa-
tion

[117]

SCI Rat UC Intrathecal Reducing the c-Fos, GFAP, Iba1, TNF-α, and IL-1β, and improving IL-10 and GDNF 
levels

[137]

SCI Rat BM Intravenous Inhibition of pericytes migration and improving the BSCB integrity by targeting 
NF-κB p65 signaling in pericytes

[133]

SCI Mice BM Intraspinal Promoting angiogenesis and axon growth leading to the functional rescue [167]

SCI Rat BM Intravenous Promoting the neurogenesis and angiogenesis, while reducing apoptosis by exoso-
mal miR-126

[128]

SCI Rat BM Intravenous Hindrance of complement activation [168]

SCI Mice Placental Intrathecal Potentiating angiogenesis leading to the ameliorated neurologic function [129]

SCI Rat BM Intravenous Improving M2 macrophage polarization [121]

SCI Rat UC Intravenous Exerting anti-inflammatory and anti-fibrotic action [169]

SCI Rat NA Intravenous Attenuation of inflammation through down-regulation of TLR4/NF-κB signaling 
pathway by exosomal miR-145-5p

[170]

SCI Rat BM Intravenous Inhibition of A1 neurotoxic reactive astrocytes activation in part via suppressing 
NF-κB translocation

[118]

TBI Rat BM Intravenous Promoting functional recovery through triggering endogenous angiogenesis and 
neurogenesis and also down-regulation of neuroinflammation

[104]

TBI Rat AT Intracerebroventricular Reducing microglia activation [145]

TBI Rat BM Intravenous Amelioration of sensorimotor and cognitive dysfunction, attenuation of hippocam-
pal neuronal cell loss, inducing the angiogenesis and neurogenesis, and mitigation 
of neuroinflammation

[143]

TBI Rat BM Intranasal Exosome efficient migration to the injured Forebrain [171]

TBI Rat BM Intravenous Amelioration of neurological functions, decreasing brain edema through favoring 
BBB integrity

[23]

TBI Swine BM Intravenous Boosting neural plasticity along with reducing inflammation and apoptosis ensur-
ing reduced brain lesion zone

[147]

TBI Mice BM Intraorbital Mitigation of early inflammatory responses [144]

TBI Rat BM Intravenous Triggering endogenous angiogenesis and neurogenesis [142]

TBI Swine BM Intravenous Induction of neuroprotection and supporting BBB integrity [90]

TBI Rat BM Intravenous Stimulating neuroprotection via exosomal miR-216a-5p, which up-regulates BDNF 
expression

[172]

TBI Mice BM Intravenous Amelioration of cognitive deficits [173]

Stroke Mice AT Intravenous Reducing autophagy by exosomal miR-25 [174]

Stroke Rat BM Intravenous Stimulation of neuritis outgrowth by exosomal miR-133b [163]

Stroke Mice BM Intravenous Obstruction of neuroinflammation and averting cerebral infarction by exosomal 
miR-542-3p

[175]

Stroke Mice UC Intravenous Attenuation of microglial-mediated neuroinflammation through down-regulation 
of the IRAK1/TRAF6 signaling axis by exosomal miR-146a-5p

[159]

Stroke Rat BM Intravenous Promoting the neurorestorative effects [176]

Stroke Rat BM Intravenous Suppression of the neuronal apoptosis and M1 macrophage polarization by exoso-
mal miR-146a-5p causes alleviated intracerebral hemorrhage

[177]

Stroke Mice BM Intravenous Induction of neuroprotection [178]

Stroke Rat BM Intravenous Improving the functional recovery and neurovascular plasticity [179]
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lesion, the primary pool of phagocytic cells consists of 
40% microglia [187]. Thereby, deterring inflammation 
and provoking remyelination are central therapeutic 
goals in this condition.

Recent reports have exposed that UC-MSCs-derived 
exosomes could avert the proliferation of peripheral 
blood mononuclear cell (PBMC)-derived from MS 
patients in  vitro, offering new opportunities to allevi-
ate MS severity [188]. Studies in experimental auto-
immune encephalomyelitis (EAE) mice, the most 
common model of MS, also have exhibited the thera-
peutic potential of exosome by secretion of immu-
nomodulatory factors, down-regulation of NALP3 
inflammasome activation, and also deterring of NF-κB 
expression levels in vivo [189]. The down-regulation of 
the NF-κB canonical pathway reduces EAE pathology. 
Conversely, knocking out NF-κB regulatory protein 
A20 in microglia might trigger microglial activation, 
neuroinflammation, and enhancement of EAE pathol-
ogy [190]. Accordingly, it seems that NF-κB can be 
a rational target for MS therapy. Transplantation of 
MSCs-derived exosomes also improved the levels of 
M2-related cytokines such as IL-10 and TGF-β lev-
els and decreased the levels of M1-related TNF-α and 
IL-12 in EAE mice, thus attenuating inflammation and 
demyelination of the CNS [191]. Based on the previous 
findings, TGF-β1 enhances remyelination and reduces 
disease severity in EAE by promoting ODCs matura-
tion and resultant remyelination [192]. Also, low IL-10 
production is related to the higher disability and MRI 
lesion load in secondary progressive MS patients. 
Hence, improved levels of IL-10, as shown in post-
exosome treatment, may offer desired outcomes in MS 
patients [193].

Further, growing information has demonstrated that 
IL-37, as a member of the IL-1 family, could induce 
beneficial effects in MS due to its potent anti-inflam-
matory influences [194]. Notably, IL-37 may be part 
of a feedback loop to regulate inflammation in MS 
pathogenesis. Further, IL-37 overexpressing mice also 

exhibit substantial resistance versus functional deficits 
and demyelination upon MS and SCI [195]. Injection 
of secretome derived from hypoxia-preconditioned 
human periodontal ligament (hPL) MSCs into C57BL/6 
mice with EAE also resulted in decreased clinical and 
histologic disease scores mainly through anti-inflam-
matory cytokine IL-37 [196]. Also, intervention alle-
viated oxidative stress and autophagic and apoptotic 
markers in treated mice [196]. Recent reports have 
displayed that IL-37 serves a critical role in averting 
innate and adaptive immune reactions and inflam-
matory responses in MS patients [194, 196, 197]. 
Besides, another study showed that systemic injection 
of MSCs-derived exosome promoted cognitive func-
tion, enhanced newly generated ODCs numbers, up-
regulated myelin essential protein (MBP) levels, and 
finally diminished neuroinflammation by promoting 
M2/M1 microglia ratio in a rodent model of MS [198]. 
The exosome-mediated anti-inflammatory effects prob-
ably relied on the down-regulation of the TLR2/IRAK1/
NFκB pathway post-transplantation [198]. This axis 
plays a pathological role in MS progress by impairing 
BBB integrity and aberrant T cells and B cells activation 
[199].

Interestingly, Reynolds et al. (2010) have suggested that 
TLR2 deficiency in Th17 cells may attenuate their abil-
ity to inspire EAE [200]. Further, neural cell prolifera-
tion and remyelination of axons following treatment with 
MSCs-derived secretome were found to be underlying by 
hepatocyte growth factor (HGF) and its primary recep-
tor cMet in EAE mice [201]. The HGF is a pleiotropic 
cytokine with substantial anti-inflammatory possessions. 
It hinders both the generation and action of cytotoxic T 
lymphocytes (CTLs) from naïve CD8 + T cells and inhib-
its CD4 + T cell CNS autoimmunity in MS preclinical 
models [202]. In addition to MSCs-derived exosome, 
intranasal administration of the exosome isolated from 
MSCs-differentiated ODCs could reduce pathological 
symptoms in EAE mice [203]. Analysis indicates that 
BDNF, GDNF, and ciliary neurotrophic factor (CNTF) 

Table 1  (continued)

Condition Model Cell source Administration route Results Ref.

Stroke Rat UCB Intravenous Triggering the functional recovery [180]

Stroke Rat AT Intravenous Attenuation of the ischemic brain injuries by targeting miR-21-3p/MAT2B axis [181]

Stroke Rat BM Intravenous Promoting the axon–myelin remodeling by exosomal miR-17-92 [182]

Stroke Mice BM Intravenous Reducing inflammation, pathological alterations and apoptosis by exosomal miR-
221-3p

[183]

MSCs mesenchymal stromal cells, TBI traumatic brain injury, SCI spinal cord injury, AT adipose tissue, BM bone marrow, UCB umbilical cord (UC) blood, miRNAs 
microRNAs, IL interleukin, TNFα tumor necrosis factor α, BSCB blood–spinal cord barrier, GDNF glial cell-derived neurotrophic factor, NF-κB nuclear factor kappa B, TLRs 
toll-like receptors, BBB blood–brain barrier, TRAF6 TNF receptor-associated factor 6, IRAK1 interleukin 1 receptor-associated kinase 1, BDNF brain-derived neurotrophic 
factor, NA not applicable
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delivery concomitant with boosted remyelination, as evi-
denced by evaluating MBP and ODCs transcription fac-
tor levels, play a key role in this regard [203].

AD
Alzheimer’s disease (AD) is described by extracellular 
aggregates of amyloid β (Aβ) plaques and intracellular 
neurofibrillary tangles (NFTs) created by hyperphospho-
rylated τ-protein in the brains’ cortical and limbic regions 
[204, 205]. Such aggregates inspire cytotoxicity versus 
neurons by stimulating pore formation, which leads to 
the leakage of ions, disturbance of cellular calcium lev-
els, and impairment of membrane potential [206]. These 
events instigate apoptosis, synaptic loss, and cytoskel-
eton impairments and finally yield cognitive, learning, 
behavioral, and motor dysfunctions [207]. Concerning 
the biochemical and neuropathological studies, microglia 
are infiltrated and then activated to meet the clearance of 
Aβ. The continual activation of the microglia and other 
immune cells potentiates neuroinflammation and facili-
tates AD progress [208].

In 2021, Chen et  al. showed that systemic injection 
of 50  μg of purified Wharton’s jelly (WJ)-MSC-derived 
exosomes promoted neuronal memory/synaptic plas-
ticity and reduced cognitive deficits in AD mice. It was 
found that these effects were mediated by down-regula-
tion of histone deacetylase 4 (HDAC4), a negative regu-
lator of neural plasticity gene expression [209]. However, 
they indicated that the injected dose of exosomes was not 
sufficient to degrade the aggregates in treated mice [209]. 
Also, exosome treatment caused a pro-survival effect on 
neuronal cells by reducing the Bax/Bcl-2 ratio, inactivat-
ing cleaved caspase-3, and restoring mitochondrial dys-
functions in the AD in  vitro model [210]. Notably, the 
intervention led to diminished Aβ40 and Aβ42 levels and 
induced neuritis growth in the AD mice model, mak-
ing them a valued therapeutic source to down-regulate 
Aβ-inspired neuronal loss in AD [210]. Another study 
also indicated that AT-MSCs-derived exosomes include 
active neprilysin (NEP), the chief Aβ-degrading enzyme 
in the brain [211]. These exosomes thus could stimulate 
Aβ degradation and consequently reduce related neu-
ral loss post-transplantation [211]. Mice with NEP defi-
ciency display impairment in spatial working memory, 
suffer from astrocytosis, and show an enhanced level 
of soluble Aβ42 and extracellular Aβ deposition [212]. 
Another report also implied that hUCB-MSCs could 
diminish Aβ42-induced synaptic deficits by potentiating 
thrombospondin-1 (TSP-1) secretion, thereby offering 
a capable alternative therapeutic strategy for early-stage 
AD [213]. TSP-1 is secreted typically by astrocytes and 
serves as a modulator of synaptogenesis and neurogen-
esis. Its expression is diminished in AD brains; however, 

TSP-1 exogenous administration into AD model mouse 
brains may attenuate the destructive effects of Aβ on 
synaptic proteins [214]. In  vivo, the injection of TSP-1 
enriched hUCB-MSCs-derived secretome up-regulated 
the expression of synaptic density markers, such as syn-
aptophysin (SYP) and post-synaptic density protein-95 
(PSD-95), in hippocampal neurons of Aβ42-treated 
mice [213]. Indeed, TSP-1 could induce the expression 
of α2δ-1, a voltage-activated Ca2 + channel subunit, and 
the synaptic adhesion molecule neuroligin-1 (NLGN1), 
leading to potentiated synaptogenesis in animal models 
[213]. Neuroligins adjust synapse formation and func-
tion, and down-regulation of their activation results in 
synaptic and memory deficits, as shown in AD mice [215, 
216]. Thereby, restoration of their expression and func-
tion as facilitated by administration of MSCs-derived 
exosome may attenuate AD-associated pathological 
symptoms. On the other hand, it appears that iNOS may 
serve as the initiator of Aβ deposition and AD progres-
sion [217]. There is clear evidence verifying the correla-
tion between improved iNOS levels with cerebral plaque 
creation, astrocytosis, and microgliosis [218]. Wang et al. 
(2018) displayed that intracerebroventricular administra-
tion of MSC-derived exosome potently reduced iNOS 
expression [219]. As a result, intervention ameliorated 
cognitive behavior and supported synaptic transmis-
sion of hippocampal CA1 neurons in APP/PS1 mice 
[219]. Besides, secretion of GDF-15 at measurable levels 
has strongly been proved from MSCs. Normally, GDF-
15 can be secreted by damaged neurons and microglial 
cells, mainly contributing to the Aβ clearance capacity of 
microglial cells [220]. Interestingly, Kim and coworkers 
(2018) showed that administration of GDF-15 contain-
ing UCB-MSCs-derived exosome reduced Aβ plaques 
in the brains of 5XFAD mice [221]. Molecular analysis 
exhibited that GDF-15 could increase the expression of 
insulin-degrading enzyme (IDE) in microglial cells and 
thereby heighten their capacity to degrade Aβ plaques 
[221]. IDE act as the primary regulator of Aβ levels in 
neuronal and microglial cells. IDE − / − mice experience 
enhanced cerebral plaques of endogenous Aβ [222]. As 
a result, exosomal GDF-15 up-regulates IDE activations 
and consequently attenuates neural loss in treated AD 
mice. Likewise, GDF-15-enriched BM-MSCs-derived 
exosomes intensified NEP and IDE expression by induc-
ing AKT/GSK-3β/β-catenin pathway. Enhanced NEP 
and IDE expression results in degrading Aβ42 protein in 
treated AD rodents [220]. These two reports confer an 
encouraging therapeutic plan for AD by targeting pro-
teins complicated in Aβ degradation.

Apart from the cited biomolecules, miRNA contents of 
MSCs-derived exosomes play essential roles in electing 
favored outcomes post-transplantation in AD preclinical 
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models. For example, miR-223 containing exosomes 
reduced neural cell loss in an AD in vitro model by sup-
pressing PTEN expression and thus stimulating PI3K/
Akt pathway. PI3K/Akt pathway plays a crucial role in 
neuroprotection, increasing cell survival by inspiring cell 
proliferation and delaying apoptosis [28]. Also, several 
reports have shown that exosomal miR-146a [223] and 
miR-29 [224] secreted by MSCs could suppress NF-κB 
pathways. Down-regulation of NF-κB pathways inhibits 
the expression of the various pro-inflammatory cytokine 
and consequently reduces Aβ-mediated cytotoxicity in 
AD murine models [224].

PD
Parkinson’s disease (PD) is characterized by motor symp-
toms like tremor, rigidity, slowness of movement, gait 
problems, fatigue, depression, pain, and cognitive defi-
cits [225]. Dopaminergic (DA) neuron loss in the sub-
stantia nigra (SN), reduction in striatal dopamine levels, 
and intracellular aggregates of α-synuclein are the chief 
PD neuropathological hallmarks [226]. The correspond-
ing molecular pathogenesis comprises various pathways 
and mechanisms: α-synuclein proteostasis, mitochon-
drial dysfunctions, aberrant oxidative stress, deregu-
lated calcium homeostasis, impaired axonal transport, 
and neuroinflammation [227]. Recent results in the 
6-hydroxydpomanie (6-OHDA) rat PD model revealed 
that intrastriatal administration of BM-MSCs-derived 
secretome could ameliorate motor behavior and increase 
DA neurons in SN and fibers in the striatum [101]. 
In  vitro, BM-MSCs-derived secretome also improved 
the differentiated neurons frequency, as evidenced by 
enhancement in MAP-2 staining [101]. Another study in 
a Caenorhabditis elegans model of PD showed that BM-
MSCs-derived exosome could markedly reduce α-syn-
induced DA neuron loss [228]. Interestingly, in silico 
investigations verified the presence of potent suppressors 
of α-syn proteotoxicity, such as BDNF and VEGF-B, in 
these exosomes [228]. Such growth factors intensify the 
effects of peroxisome proliferator-activated receptor-γ 
coactivator 1-α (PGC1α), which acts as a neuroprotec-
tive factor and alleviates the damaging effects of a-syn 
on neuronal cells [229]. VEGF improves neuroprotection 
indirectly through induction of the proliferation of glia 
and triggering angiogenesis in PD experimental mod-
els [230]. Besides, BDNF improves the survival of DA 
neurons and sustains dopaminergic neurotransmission 
and motor function [231]. In other studies, neurobehav-
ioral deficits, neuroinflammation, oxidative stress, and 
neural cell apoptosis were alleviated in the 6-OHDA 
murine model of PD following injections of MSCs-
derived exosome [232]. Further studies to clarify the 
corresponding mechanism behind the exosome-elicited 

anti-inflammatory and pro-survival effects on the PD 
animal model have conferred the key role of miR-188-3p 
[233]. The exosomal miR-188-3p derived from MSCs 
could inhibit both cyclin-dependent kinase 5 (CDK5)-
mediated autophagy and NLRP3-mediated inflamma-
tion in PD rodent models, thus inducing neuroprotection 
against PD-associated toxicities [233]. Exosomes also 
mediate antioxidant effects by the transportation of the 
mitochondrial NAD-dependent deacetylase sirtuin-3 
(SIRT3) [234]. The SIRT3 largely contributes to adjust-
ing mitochondrial quality control in neuronal mitochon-
dria [235]. It constrains degeneration of DA neurons 
and corrects behavioral abnormalities by increasing the 
functional potential of mitochondria [236]. As described, 
mitochondrial dysfunction in the DA neurons is a com-
mon pathological event observed in PD patients. The 
mitochondrial dysfunction is mainly characterized by 
ROS generation, decreased activity of mitochondrial 
complex I enzyme, enhanced cytochrome-c release, ATP 
exhaustion, and caspase-3 activation [237, 238]. These 
events, in turn, lead to DA degeneration. Significantly, 
SIRT3 alleviates oxidative stress-mediated damages by 
inducing several antioxidant factors, such as forkhead 
box O3 (FOXO3), and superoxide dismutase (SOD) 
[239]. Thereby, SIRT3 likely can be an effective disease-
modifying approach for PD patients.

In addition to the induction of neurogenesis and neu-
roprotection, MSCs-derived exosome was found to 
enable the recovery of PD by promoting intracellular 
adhesion molecule-1 (ICAM1)-mediated angiogenesis of 
human brain microvascular endothelial cells (HBMECs) 
in a mice model of PD [240]. HBMECs are a dominant 
component of the microvasculature that shape the BBB 
and defense the brain versus toxins and immune cells by 
paracellular, transcellular, transporter, and ECM proteins 
[241]. Potentiated angiogenesis of HBMECs following 
exosome therapy might be attributable to activating the 
SMAD family member 3 (SMAD3) and P38MAPK axis 
[240]. Chen et  al. (2020) also demonstrated that induc-
ing autophagy is another tool by which MSCs-derived 
exosome facilitates the amelioration of apomorphine-
induced asymmetric rotation [242]. Exosome-mediated 
autophagy also could reduce DA neuron loss in SN and 
improve dopamine levels in the striatum of the PD rodent 
model [242]. In  vitro, exosome could increase the level 
of 6-OHDA-induced SH-SY5Y cell autophagy, as docu-
mented by promoted expression of LC3B-II/I and Bec-
lin-1 [242]. As neuronal autophagy is the primary process 
for the degradation of an abnormal protein aggregate 
[243, 244], it appears that exosome treatment stimu-
lates neuroprotection against toxic proteins by stimulat-
ing the autophagy process in neuronal cells. But, other 
reports suggest that dysregulation of autophagy inspires 
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the accumulation of abnormal proteins and/or damaged 
organelles [142]. Further studies are required to clarify 
the therapeutic values of targeting autophagy for neuro-
logical disease therapy.

ALS
Amyotrophic lateral sclerosis (ALS) is typically charac-
terized by the destruction of the large pyramidal neurons 
in the motor cortex and related corticospinal tracts [245, 
246]. Of course, lower motor neurons (MNs) are also 
damaged during this disease. The clinical appearances 
of ALS show death of both upper and lower MNs with 
muscle denervation [247]. Although ALS etiology is still 
partially elucidated, that mutation in the Cu/Zn super-
oxide dismutase SOD1 gene is shown in about 20% of 
patients with familial ALS [248]. Current clinical trials 
have evidenced the safety and modest efficacy of MSCs 
administration in ALS patients, which is mainly achieved 
by suppressing neuroinflammation and improving MNs 
survival [249–251].

In 2018, Bonafede et al. indicated the neuroprotective 
role of AT-MSCs-derived exosome in an in  vitro model 
of ALS [252]. The analysis revealed suppression of pro-
apoptotic proteins Bax and cleaved caspase-3 expres-
sion in association with improved anti-apoptotic protein 
Bcl-2 expression in treated models post-transplantation 
[252]. These alterations in the expression profile of apop-
tosis-associated protein reflect the strong potential of 
MSCs-derived exosomes to deliver pro-survival effects 
on target MNs, thus favoring neuroprotection [252]. 
Likewise, AT-MSCs-derived exosomes (0.2  µg/ml) pro-
tected NSC-34 cells from hydrogen peroxide-induced 
oxidative damage, which is suggested as the dominant 
mechanism of injury in ALS [253]. The observed effects 
could potently be induced by miRNA21, miRNA222, and 
miRNAlet7a, which have previously been identified in 
MSCs-derived exosomes. These miRNAs act as negative 
regulators of apoptosis as well as an inducer of prolifera-
tion [254]. MSC-derived conditioned medium (CM) also 
could up-regulate the expression of neurotrophic factors 
(e.g., GDNF and CNTF) in astrocytes and VEGF in NSC-
34 cells [255]. GDNF possesses a high affinity for MNs 
and can avert their death and prohibit muscle atrophy 
upon many insults [256]. The connection of GDNF to its 
receptors, in turn, activates multiple intracellular signal-
ing axes and leads to supporting the development and 
preservation of neuron–neuron and neuron–target tissue 
interactions [257]. Thus, it appears that MSCs-derived 
exosomes moderate MN and glial response to apoptosis 
and inflammation, proposing them a preferred therapeu-
tic strategy to treat ALS [255, 258, 259]. As well, another 
study in SOD1G93A mice, the most common ALS animal 
model, also exposed the efficient potential of exosome to 

treat ALS [260]. Upon intravenous and intranasal admin-
istration, implanted exosomes were capable of restoring 
motor function, protecting lumbar MNs and neuromus-
cular junction (NMJ) accompanied by mitigation of glial 
cells activation in  vivo [260]. These results provide fur-
ther knowledge for the capable application of MSCs-
derived exosome in ALS patients.

A summary of main reports depending on exosome 
treatment in animal models of chronic neurodegenera-
tion is provided in Table 2.

Conclusion and future directions
Although various clinical trials based on the application 
of naive MSCs for neurological disease therapy have been 
conducted or are ongoing, MSCs-derived exosome ther-
apy has become a promising approach for treating neu-
rological diseases. Growing experimental/clinical proofs 
imply that MSC-derived exosomes may become novel 
cell-free therapy agents with encouraging superiority 
over MSCs, such as no risk of tumor formation and low 
immunogenicity. Exosome also exhibits the better capa-
bility to convey therapeutic biomolecules. They mediate 
intercellular communication by conveying biologically 
active cargo to target cells in both physiological and 
pathological circumstances. In the context of emerging 
therapeutics in neurological disease, exosomes can be 
loaded with multiple cargoes to modify gene expression 
and protein activities in recipient cells. They may ulti-
mately result in immunomodulation, angiogenesis, neu-
rogenesis, neuroprotection, and degradation of protein 
inclusions. Albeit, given the limited quantity of procured 
exosomes, progress in exosomes’ isolation and design-
ing novel approaches to acquiring a higher amount of 
exosomes is urgently required. In this light, it has been 
revealed that parental MSCs’ expansion in hollow fiber 
three-dimensional (3D) culture system [217, 218] or their 
seeding on biomaterial like 45S5 Bioglass® (BG) [219, 
220] or Avitene Ultrafoam collagen hemostat might ena-
ble the release of exosome at higher levels [221].

MSCs-derived exosomes have some disadvantages 
compared to MSCs. The lack of standard isolation and 
purification protocol and rapid clearance from blood 
after administration in  vivo is the most critical draw-
back [272]. As the conventional isolated approaches 
mainly rely on density and size, some substances like 
lipoproteins and viruses may overlap with their fea-
tures, leading to incomplete removal. To improve the 
progress of effective biomarkers for exosomes, sen-
sitive, accurate, and rapid quantitative means are 
needed. Additionally, designing dependable potency 
tests to determine the therapeutic effects of MSCs-
derived exosomes accompanied by defining the opti-
mized administration route and doses is of paramount 
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importance. Also, electing a more appropriate cell 
source is critical because the therapeutic benefits of 
MSC-derived exosomes, such as improving neuritis 
growth, may in part differ depending on the origin of 
MSCs [273]. As well, obesity attenuates the anti-inflam-
matory impacts of human AT-MSCs, challenging their 
application in neuroinflammation-related neurological 
diseases [274]. Finally, donor demographics can be pre-
dominantly significant when ascertaining proper stem 
cells for treatment.
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Condition Model Cell source Administration route Results Ref

AD Mice BM Intranasal Stimulation of neuroprotection in part through inhibition of neuroinflammation [99]

AD Mice BM Intravenous Attenuation of Aβ levels and provoking anti-inflammatory impact leading to the 
amelioration of learning and memory functions

[261]

AD Mice BM Intravenous Reducing cognitive deficits through exosomal miR-146a [262]

AD Rat BM Intravenous Induction of neurogenesis [263]

MS Mice PDL Intravenous Inhibition of NLRP3 inflammasome activation [189]

MS Mice BM Intravenous Attenuation of demyelination lesion area and reducing diseases severity [186]

MS Mice BM Intravenous Triggering remyelination and attenuation of the neuroinflammation [198]

MS Mice BM Intravenous Reducing diseases severity by HGF delivery [201]

MS Mice AT Intravenous Improving the Tregs population and IL-4 levels [264]

MS Mice PDL Intravenous Improving IL-37 expression causing down-regulation of the pro-inflammatory 
cytokines levels

[265]

MS Mice SHEDs Intravenous Attenuation of demyelination and axonal injury, inhibition of inflammatory cell 
infiltration and also promoting M2/M1 macrophage ratio

[266]

PD Rat BM Intravenous Reducing the deterioration of DA neuron in SN and thus promoting dopamine 
levels in striatum

[100]

PD Rat BM Intravenous Induction of the protective effect on DA neuron [101]

PD Mice AT Intravenous Mitigation of autophagy and pyroptosis [233]

PD Mice AT Intraperitoneal Eliciting the HBMECs angiogenesis [102]

PD Rat AT Intravenous Exerting antioxidant effects by improving sirtuin 3 levels [267]

PD Rat BM Intravenous Amelioration of motor activities [268]

PD Rat BM Intranigral
Intrastriatal

Promoting neural plasticity [269]

PD C. elegans BM NA Decreasing α-syn aggregates in striatum [228]

HD Mice AM Intraperitoneal Amelioration of motor functions [270]

ALS Mice AT Intravenous
Intranasal

Down-regulation of glial cells function, favoring motor neurons, and eliciting 
protective effect on neuromuscular junctions (NMJs)

[271]
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