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Biological characteristics and pulp 
regeneration potential of stem cells from canine 
deciduous teeth compared with those 
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Abstract 

Background:  Clinical studies have demonstrated that dental pulp stem cells isolated from permanent teeth (PT-
DPSCs) are safe and efficacious for complete pulp regeneration in mature pulpectomized permanent teeth with 
complete apical closure. Moreover, dental pulp stem cells from deciduous teeth (DT-DPSCs) have also been shown to 
be useful for pulp regenerative cell therapy of injured immature permanent teeth. However, direct comparisons of the 
pulp regenerative potential of DT-DPSCs and PT-DPSCs from the same individual have not been performed. This study 
aimed to compare the differences in stem cell properties and pulp regenerative potential of DT-DPSCs and PT-DPSCs 
of identical origin.

Methods:  DT-DPSCs and PT-DPSCs were isolated from the same individual dogs at 4 months and 9 months of age, 
respectively. The expression of cell surface antigen markers, proliferation and migration activities, and gene expression 
of stem cell markers, angiogenic/neurotrophic factors and senescence markers were compared. The effects of condi-
tioned medium (CM) derived from these cells on cellular proliferation, migration, angiogenesis, neurite outgrowth and 
immunosuppression were also compared. Autologous transplantation of DT-DPSCs or PT-DPSCs together with G-CSF 
was performed to treat pulpectomized teeth in individual dogs. The vascularization and reinnervation of the regener-
ated pulp tissues were qualitatively and quantitatively compared between groups by histomorphometric analyses.

Results:  The rates of positive CXCR4 and G-CSFR expression in DT-DPSCs were significantly higher than those in PT-
DPSCs. DT-DPSCs migrated at a higher rate with/without G-CSF and exhibited increased expression of the stem cell 
markers Oct3/4 and CXCR4 and the angiogenic factor VEGF and decreased expression of the senescence marker p16 
than PT-DPSCs. DT-DPSC-derived CM promoted increased cell proliferation, migration with G-CSF, and angiogenesis 
compared with PT-DPSC-derived CM; however, no difference was observed in neurite outgrowth or immunosuppres-
sion. The regenerated pulp tissues in the pulpectomized teeth were quantitatively and qualitatively similar between 
the DT-DPSCs and PT-DPSCs transplant groups.
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Background
Dental pulp is a rich and convenient source of mesen-
chymal stem cells (MSCs) [1]. Dental pulp stem cells 
(DPSCs) can be easily isolated from the dental pulp of 
discarded teeth without raising ethical concerns. In the 
context of regenerative therapies, DPSCs have great 
potential for supporting the regeneration of pulp and 
dentin with remarkable biological properties [2]. We 
have demonstrated the safety and efficacy of the use 
of autologous DPSCs derived from permanent teeth 
for pulp regenerative therapy in permanent mature 
pulpectomized teeth in preclinical and clinical stud-
ies [3, 4]. DPSCs are an optimal cell source; compared 
with alternative MSCs, such as bone marrow-derived 
MSCs and adipose-derived MSCs isolated from the 
same individual dogs and autologously transplanted 
into the same individuals, DPSCs have higher potential 
for pulp regeneration, vascularization and reinnerva-
tion and lower risk of mineralization in the root canal 
[5]. Human discarded permanent teeth that are suit-
able for DPSC isolation are sound teeth without deep 
caries, and DPSC are conventionally obtained from 
freshly extracted third molars (wisdom teeth), super-
numerary teeth or teeth extracted during orthodontic 
treatments. However, the limited availability of dis-
carded permanent teeth can be a limitation that must 
be overcome for the use of autologous DPSCs. Another 
potential disadvantage of autologous MSCs might be 
that their stem cell properties are adversely affected 
by age and by some systemic diseases, such as diabe-
tes and rheumatoid arthritis, which limit their thera-
peutic potential [6, 7]. Therefore, an alternative source 
of DPSCs needs to be identified. The stem cells from 
human exfoliated deciduous teeth (SHEDs) [8] dem-
onstrate very low morbidity, are not associated with 
ethical concerns regarding their isolation, and are con-
sidered candidate progenitor cells due to their intrinsic 
regenerative capacity [9]. DPSCs isolated from decidu-
ous teeth exhibit higher expression of stem cell markers 
(Oct3/4) and higher proliferative capacity than DPSCs 
derived from permanent teeth [9, 10]. A recent clini-
cal trial showed that human autologous DPSCs isolated 
from deciduous teeth are able to regenerate whole den-
tal pulp with increased root length and reduced apical 
foramen width in the treatment of injured immature 
permanent teeth without any adverse events [11].

A case report also demonstrated the effectiveness of 
allogeneic SHEDs for the treatment of periapical lesions 
and open apex of immature permanent teeth [12]. 
Recently, stem cell banking has become popular, and 
various institutions have established cell banks to facili-
tate the treatment of challenging diseases and injuries 
that can occur throughout a lifetime [13]. Replacement 
of deciduous teeth can create the perfect opportunities 
to store DPSCs in a stem cell bank [14], which provides 
a guaranteed donor match for life. Thus, DPSCs isolated 
from deciduous teeth can be a potential alternative to 
DPSCs isolated from permanent teeth for the clinical 
application of pulp regenerative cell therapy to treat per-
manent mature teeth with complete apical closure.

Our previous study demonstrated that transplanted 
DPSCs secrete various angiogenic/neurotrophic and 
immunomodulatory factors without being directly incor-
porated into vessels, nerves and pulp tissue cells. These 
paracrine trophic factors are able to induce the migration 
of endogenous resident cells from the tissue surrounding 
the teeth into the root canal, inhibit/modulate inflamma-
tion and stimulate angiogenesis and reinnervation and 
G-CSF showed stimulatory effects on migration, antia-
poptosis, proliferation, immunosuppression in pulp stem 
cell culture and DPSCs together with G-CSF enhanced 
pulp regeneration [3]. Thus, stem cell properties, includ-
ing strong migratory abilities, strong immunomodula-
tory/anti-inflammatory effects and enhanced migration 
and angiogenesis/neurite extension capabilities, might be 
desirable for pulp regenerative cell therapy. The high pro-
liferative activity and low senescence of DPSCs are also 
considered beneficial for stem cell banking [15, 16].

DPSCs isolated from deciduous teeth and DPSCs 
isolated from permanent teeth differ in terms of their 
immunophenotype and differentiation potential, 
although they share many biological characteristics [17]. 
These differences, however, may depend on the inherent 
heterogeneity of the two populations or different isola-
tion and culture methods [18]. There are no reports that 
have directly compared the stem cell properties and pulp 
regeneration efficacy of DPSCs isolated from decidu-
ous teeth and DPSCs isolated from permanent teeth of 
the same individuals. It is important to clarify whether it 
is more useful to isolate and culture autologous DPSCs 
from deciduous teeth before they fall out and then store 
these DPSCs in a cell bank for future pulp regenerative 

Conclusions:  These results demonstrated that DT-DPSCs could be a potential clinical alternative to PT-DPSCs for pulp 
regenerative therapy. DT-DPSCs can be preserved in an individual cell bank and used for potential future pulp regen-
erative therapy before the supply of an individual’s own sound discarded teeth has been exhausted.
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therapy than to use autologous DPSCs isolated from per-
manent teeth that are discarded after extraction when 
root canal treatment is needed. Thus, the present animal 
model study aimed to examine the difference in the stem 
cell properties and pulp regenerative potential of DPSCs 
isolated from deciduous teeth and DPSCs isolated from 
permanent teeth. The two cell populations were isolated 
from 4-month-old deciduous teeth and 9-month-old 
permanent teeth of the same individual dogs and cul-
tured based on an accurate standard operating proce-
dure. Their cell characteristics, including the expression 
of cell surface antigen markers, proliferation rate, migra-
tion activity, and gene expression of stem cell markers, 
trophic factors and senescence markers, were compared. 
Pulp regeneration abilities were also quantitatively and 
qualitatively compared after the autologous transplanta-
tion of these cell populations into pulpectomized teeth of 
the same individual dogs. Our results demonstrated that 
DPSCs isolated from deciduous teeth could be a poten-
tial clinical alternative to DPSCs isolated from perma-
nent teeth for use in pulp regenerative cell therapy.

Methods
Culture of DT‑DPSCs and PT‑DPSCs
This study was approved and conducted in accordance 
with the guidelines of the Animal Protocol Committees 
of the National Center for Geriatrics and Gerontology, 
Research Institute (approval #30-19) and Aichi Medical 
University (approval #31-17). Young female beagle dogs 
(n = 3, Kitayama Lab, Ina, Japan) were used for DPSC iso-
lation; DT-DPSCs were isolated from maxillary decidu-
ous canines at 4  months of age, and PT-DPSCs were 
isolated from the permanent maxillary premolars of the 
same dogs at 9 months of age. DT-DPSCs and PT-DPSCs 
were cultured under hypoxic conditions in a closed con-
tainer (Animal Stem Cell, Tokyo, Japan) as described pre-
viously [19]. The primary colony-derived DT-DPSCs and 
PT-DPSCs were expanded up to the 4th passage, and the 
cells were detached and cryopreserved at 1 × 106 cells/
mL in a stem cell banker (ZENOAQ Co., LTD., Fukush-
ima, Japan) for further experiments.

Flow cytometric analysis
When the DT-DPSCs and PT-DPSCs reached the 4th 
passage, they were characterized by a FACSAriaTM II 
flow cytometer (BD Biosciences) as described previously 
[20]. Briefly, the characteristics of DT-DPSCs were com-
pared with those of PT-DPSCs by staining with antibod-
ies against CD29 (PE-cy7, eBioscience), CD 31 (FITC, BD 
Bioscience), CD 44 (PE-cy7, eBioscience), CD 105 (PE, 
BioLegend), CXCR4 (APC, R&D Systems) and G-CSF 
(FITC, R&D Systems). After incubation for 60  min at 

4 °C, the samples were analyzed by a FACS Canto-II flow 
cytometer (BD Biosciences).

Doubling time
To measure the population doubling time, the cell num-
ber from the 2nd passage to the 3rd passage was calcu-
lated by trypan blue staining and using a hemocytometer.

Odontoblast Differentiation assay
For odontogenic differentiation, DT-DPSCs and PT-
DPSCs (3 × 105 cells) were seeded in 6-well cell culture 
plates (Falcon, Corning, Tewksbury, MA, USA), at 70% 
confluence, cells were cultured in an odontoblast differ-
entiation medium containing L-ascorbic acid-2-phos-
phate (50  µg/mL; Sigma-Aldrich, St. Louis, MO, USA), 
β-glycerophosphate (10  mM; Sigma-Aldrich), and dexa-
methasone (100  nM; Sigma-Aldrich) for 14  days. Min-
eral nodules were stained with alizarin red stain (Wako 
Pure Chemical Industries, Japan) after 4% paraformalde-
hyde fixation for 10 min at room temperature. The area 
of each alizarin red staining positive region was observed 
with a DM-6000B fluorescence microscope (Leica, Ger-
many) and quantified with image J software (version 1.52, 
imagej.nih.gov).

Real‑time reverse transcription‑polymerase chain reaction 
analysis
Total RNA isolation and real-time RT–PCR were per-
formed as described previously [19]. To examine the 
mRNA expression of stem cell markers, angiogenic/neu-
rotrophic factors and immunomodulatory markers, real-
time PCR analysis was performed with canine-specific 
primers [Additional file 3: Table S3]. Target gene expres-
sion was examined in DT-DPSCs and PT-DPSCs after 
normalization to β-actin expression.

Enzyme‑linked immunosorbent assay (ELISA)
DT-DPSCs and PT-DPSCs were seeded into 96-well cul-
ture plates at a density of 1.0 × 105 cells/well and culture 
supernatants were collected after 24 h. BDNF and VEGF 
in culture supernatants were detected using specific 
enzyme-linked immunosorbent assay (ELISA) kits from 
R&D systems (Minneapolis, MN, USA). Immunoenzy-
matic detection was performed according to the protocol 
described by the manufacturer.

Migration activity of DT‑DPSCs and PT‑DPSCs
Migration assay of DT-DPSCs and PT-DPSCs was per-
formed as described previously [19]. Briefly, 1 × 105 
DT-DPSCs and PT-DPSCs were incubated in the upper 
insert of transwell membrane (Corning- Transwell- poly-
carbonate membrane cell culture inserts, Sigma-Aldrich, 
Missouri, USA) in 100  µl DMEM. DMEM containing 
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2% FBS with or without G-CSF (100  ng/ml) was placed 
in the lower well of 24-well plates. After 24 h incubation, 
cells on the upper part of insert were removed and the 
migrating cells in the lower part of insert were fixed with 
methanol and stained with 1% Giemsa stain for 15 min. 
After washing cells twice with PBS, stained cells were 
counted using an inverted bright-field microscope (Leica, 
6000B-4, Leica Microsystems GmbH, Wetzlar, Germany) 
at × 100 magnification.

The effect of the CM on angiogenesis and neurite 
extension
When the DT-DPSCs and PT-DPSCs reached 70% con-
fluence, the culture medium was replaced with DMEM, 
and the CM was collected after 48 h. The CM was con-
centrated by approximately 25-fold with an Amicon 
Ultra-15 Centrifugal Filter (Millipore, Billerica, MA, 
USA). The protein concentration of the CM was meas-
ured using a BCA protein assay kit (Pierce, Rockford, 
IL), and each conditioned medium was used at a final 
protein concentration of 5 µg/ml. To assess the effect of 
CM on angiogenesis, human umbilical vein endothelial 
cells (HUVECs, clone 7F3415, Lonza) were plated on 
Matrigel (BD Biosciences, San Jose, CA, USA) in DMEM 
with or without CM, and Endothelial Cell Growth Basal 
Medium (EBM) (Lonza) supplemented with 5 µg/ml hep-
arin (Lonza, Basel, Switzerland), 5  µg/ml ascorbic acid 
(Lonza), 5 µg/ml hydrocortisone (Lonza), 5 µg/ml VEGF 
(Lonza), 5 µg/ml R3-IGF (Lonza), 5 µg/ml hEGF (Lonza), 
5 µg/ml GA-1000 (Lonza), and 5 µg/ml hFGF-B (Lonza) 
was used as a positive control. After 6 h, tube-like struc-
tures were observed by an inverted microscope, and the 
mean length was measured using ImageJ software (ver-
sion 1.52, imagej.nih.gov).

To examine the effect of CM on neurite extension, 
human neuroblastoma cells (TGW, clone JCRB 0618, 
Health Science Research Resources Bank, Japan) were 
stimulated with DMEM with or without CM, and 50 ng/
ml Neurotrophin-3 (Peprotech, London, UK) was used 
as a positive control. After 24 h, the mean neurite exten-
sion length was measured under an inverted microscope 
using ImageJ software.

The effect of the combination of CM and G‑CSF 
on migration
The migratory effects of DT-DPSC- and PT-DPSC-
derived CM together with G-CSF were compared with 
those of CM or G-CSF alone in human periodontal liga-
ment fibroblasts [hPdLF 30,315, CC-7049, Lonza (Basel, 
Switzerland)] as described previously [3]. Briefly, 1 × 105 
of hPdLF were plated in the upper insert of transwell 
membrane in 100 µl DMEM. DMEM containing 2% FBS 
supplemented with 5 µg/ml CM with or without 100 ng/

ml of G-CSF was placed in the lower well of 24-well 
plates. DMEM with 2% FBS were used as a negative con-
trol and G-CSF containing 2% FBS were used as a posi-
tive control. After 24 h, the migrating cells were stained 
as previously described.

Mixed lymphocyte reactions (MLR) assay
To assess the immunomodulatory effect of CM, a mixed 
lymphocyte reaction (MLR) assay was performed after 
collecting canine peripheral blood mononuclear cells 
(PBMCs) with a BD Vacutainer ® CPT™ Tube (BD, Bio-
sciences). Mitomycin C (Nacalai Tesque, Kyoto, Japan) 
(final concentration: 10  mg/ml) was used to stimulate 
allogenic PBMCs for the MLR for 3  h in a humidified 
37 °C incubator. Autologous PBMCs and allogenic stimu-
lator PBMCs were cocultured at densities of 5 × 104 cells 
per well in 96-plates in RPMI-1640 supplemented with 
10% FBS (Sigma–Aldrich). In addition, autologous and 
allogenic stimulator PBMCs treated with 5  μg/ml con-
ditioned medium were added to observe the inhibitory 
effect on PBMCs growth. After 2 h of incubation, Presto-
Blue (Thermo Fisher Scientific, Japan) cell viability rea-
gent was added to each well, and the cell numbers were 
determined at 0, 12, 24 and 36 h using a spectrophotom-
eter at 450 nm.

Cell proliferation assay
To assess the proliferative effect of CM, hPdLF were 
plated at a density of 2.5 × 103 cells per well in 96-well 
plates with or without 5  µg/ml conditioned medium. 
After 24, 48 and 72 h, the medium was removed, and 90 
µL of normal medium was added to each well and incu-
bated for 30 min at 37 °C in 5% CO2. Then, ten microlit-
ers of PrestoBlue reagent were added to each well. After 
2  h of incubation, fluorescence was measured using a 
SpectraMax Gemini XPS/EM Plate Reader (Molecu-
lar Devices, San Jose, CA, USA) at an excitation wave-
length of 535 and an emission wavelength of 615.

Transplantation of DT‑DPSCs and PT‑DPSCs 
into pulpectomized teeth in dogs
Transplantation of DT-DPSCs and PT-DPSCs into 
the pulpectomized teeth of dogs was performed as 
described previously [19]. Briefly, upper first and sec-
ond incisors, a total of 12 teeth, from three 1-year-old 
young female beagle dogs (Kitayama Lab, Ina, Japan) 
were used. Transplantation of 5 × 105 DT-DPSCs or 
PT-DPSCs at together with G-CSF (Neutrogin) in 20 μl 
of atelocollagen scaffold (1% atelocollagen implant; 
Koken, Tokyo, Japan) was performed to promote pulp 
regeneration in the pulpectomized teeth. Four weeks 
after cell transplantation, the teeth were extracted, and 
paraffin sections of the regenerated tissues of the teeth 
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were examined by histology. The regenerated tissue was 
outlined in on-screen image of the histological prepara-
tions of each four sections (n = 6) by a binocular micro-
scope (Leica, M 205 FA Leica Microsystems, Wetzlar, 
Germany), and its relative amount to the root canals or 
morphometric analysis was determined by using Leica 
Application Suite software (Leica, version 3.4.1). For 
neovascularization and innervation analyses, Fluores-
cein Griffonia (Bandeiraea) Simplicifolia Lectin 1/flu-
orescein-galanthus nivalis (snowdrop) or anti-PGP9.5 
(Ultra Clone) (1: 10,000) were used, respectively. The 
number of odontoblasts, thickness and ratios of newly 
formed capillary area and neurite extension area to the 
regenerated pulp area were measured, respectively, by 
Dynamic cell count BZ-HIC (KEYENCE, Osaka, Japan).

The dogs were observed to monitor clinical symptoms, 
daily food consumption, and weekly weight change for 
toxicology assessment. Urinalysis was performed by 
Clinitek AtlasXL (Sparton Medical Systems, Strongsville, 
OH, USA) at 4 weeks.

Statistical analysis
All the data are reported as the mean ± standard devia-
tion (SD). P values were calculated using Student’s t test 
and Tukey’s multiple comparison test in SPSS 25.0 (IBM, 

Armonk, NY). A p value less than 0.05 was considered 
statistically significant.

Results
Flow cytometric analysis of DT‑DPSCs and PT‑DPSCs
Evaluation of the “stemness” of DT-DPSCs was per-
formed by flow cytometric analysis, and the results were 
compared with those of PT-DPSCs (Additional file  1: 
Fig.  S1). Both DT-DPSCs and PT-DPSCs were posi-
tive for CD29 (99.2 & 97.2%), CD44 (100 & 99.4%), and 
CD105 (88.4 & 86.7%) expression and negative for CD31 
(Table 1) expression, which are minimal criteria for iden-
tifying mesenchymal stem cells (MSCs). Notably, the per-
centages of DT-DPSCs expressing CXCR4 and G-CSFR 
(26.5 and 60.1%, respectively) were significantly higher 
than those of PT-DPSCs (21.2 and 39.8%, respectively) 
(Table 1).

Doubling time of DT‑DPSCs and PT‑DPSCs
The doubling time of DT-DPSCs was lower than that of 
PT-DPSCs (Fig.  1b). However, there was no significant 
difference between the two groups. Additionally, there 
was no morphological difference between DT-DPSCs 
and PT-DPSCs (Fig. 1a).

Odontogenic differentiation ability
The quantification of odontogenesis was identified by the 
alizarin red staining of calcium phosphate precipitates in 
DT-DPSCs and PT-DPSCs. DT-DPSCs revealed similar 
mineral deposition compared to PT-DPSCs (Fig.  1c, d). 
These results indicate similar odontogenic differentiation 
potentials between DT-DPSCs and PT-DPSCs.

Enhanced migratory activity of DT‑DPSCs
Compared to PT-DPSCs, DT-DPSCs were demonstrated 
to exhibit enhanced migratory activity without G-CSF 
(p < 0.05) (Fig. 1e, f ). Compared with that of PT-DPSCs, 
the number of migrating DT-DPSCs was significantly 
higher in the presence of G-CSF (p < 0.01) (Fig.  1e, f ). 
Significant differences were also observed between the 
group treated with 2% FBS alone as a control and the 
group treated with 2% FBS together with G-CSF; these 
differences were observed in DT-DPSCs and PT-DPSCs 

Table 1  Expression of cell surface markers in canine deciduous 
tooth stem cells (DT-DPSCs) compared with canine permanent 
tooth stem cells (PT-DPSCs)

All data are expressed as the means ± SD (n = 3). The experiment was repeated 
three times, and one representative experiment is presented
a p < 0.05 versus PT-DPSCs
b p < 0.01 versus PT-DPSCs

DT-DPSCs PT-DPSCs

CD 29 99.2 ± 0.8 97.2 ± 0.4

CD 31 0.2 ± 0.2 0.3 ± 0.1

CD 44 100 ± 0.0 99.4 ± 0.3

CD 105 88.4 ± 2.0 86.7 ± 2.5

CXCR4 26.5a ± 0.3 21.2 ± 0.4

G-CSFR 60.1b ± 2.8 39.8 ± 0.2

Fig. 1  Stem cell properties of DT-DPSCs compared with those of PT-DPSCs. a Representative cell morphology at the 3rd passage of culture. 
b Proliferative activity demonstrated by doubling time. c Representative images of the Odontoblast differentiation by Alizarin red staining d 
Statistical analysis Alizarin red positive area e Migration activity inresponse to G-CSF f Migration ability in response to G-CSF were statistically 
analyzed. *p = 0.03, **p < 0.01, and ***p < 0.001. g Gene expression of stem cell markers, angiogenic/neurotrophic factors, pulp tissue markers, 
immunomodulation markers, senescence markers, and proinflammatory cytokines. Oct 3/4 *p = 0.01, CXCR4 *p = 0.04, BDNF *p = 0.04, TRH-DE 
*p = 0.01, p 16 *p = 0.03 h BDNF expression analyzed by ELISA i VEGF expression analyzed by ELISA **p < 0.01. The data are shown as averages of 3 
independent experiments. All the data are expressed as the mean ± standard deviation (n = 3)

(See figure on next page.)
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(p < 0.001 and p < 0.01, respectively) (Fig.  1f ). These 
results suggested that higher levels of the G-CSF receptor 
may be expressed by DT-DPSCs than by PT-DPSCs.

Expression of stem cell markers, trophic factors, 
senescence‑related genes and immunomodulatory genes
The mRNA expression levels of the stem cell markers 
Oct3/4 and CXCR4 (Fig.  1g) were higher in DT-DPSCs 
than in PT-DPSCs (p < 0.05), indicating greater enrich-
ment of stem cell properties. However, other markers, 
STAT3 and NANOG, were expressed at similar levels 
between these two cell populations (Fig. 1g). No signifi-
cant difference in the expression of the angiogenic factors 
VEGF and GM-CSF was observed in DT-DPSCs and PT-
DPSCs (Fig. 1g). The expression of the neurotrophic fac-
tor BDNF, but not GDNF or NGF, was significantly higher 
in DT-DPSCs than in PT-DPSCs (p < 0.05) (Fig. 1g). The 
expression level of a pulp marker, TRH-DE, was higher in 
DT-DPSCs than in PT-DPSCs (p < 0.05); this result sug-
gested greater pulp regenerative potential of DT-DPSCs 
(Fig.  1g). Furthermore, RT–PCR analysis demonstrated 
that the expression of the senescence marker p16 was 
significantly lower in DT-DPSCs than in PT-DPSCs 
(p < 0.05), but the expression of the immunomodula-
tory factors IDO, P21, IL-1β and IL-8 and the hypoxic 
marker HIF-1a was similar in DT-DPSCs and PT-DPSCs 
(Fig. 1g).

Expression of BDNF and VEGF
ELISA results of cell culture supernatants exhibit simi-
lar expression of BDNF in DT-DPSCs and PT-DPSCs 
(Fig.  1h). However, significantly higher level of VEGF 
secretion was observed in culture supernatants of DT-
DPSCs compared to that of PT-DPSCs (Fig.  1i). These 
results indicate that DT-DPSCs might have higher angio-
genic ability.

In Vitro Effects of Conditioned Medium
We next examined the effect of DT-DPSC- and 
PT-DPSC-derived CM together with G-CSF on migra-
tion ability of hPdLF (Fig. 2a). CM with G-CSF promoted 
greater migration than CM alone (p < 0.05) (Fig.  2b). 
DT-DPSC-derived CM with G-CSF resulted in higher 

migratory abilities (p < 0.01), and PT-DPSC-derived 
CM with G-CSF also resulted in higher but less signifi-
cant (p < 0.05) migration than G-CSF alone (Fig. 2b). The 
number of migrated cells was higher after incubation 
with DT-DPSC-derived CM than after incubation with 
PT-DPSC-derived CM; however, no significant differ-
ence between the hPdLF incubated with DT-DPSC- and 
PT-DPSC-derived CM was observed. The migratory 
abilities of hPdLF incubated with DT-DPSC-derived CM 
with G-CSF was higher (p < 0.05) than those of hPdLF 
incubated with PT-DPSC-derived CM with G-CSF 
(Fig.  2b). These results demonstrated the combination 
of DT-DPSC-derived CM with G-CSF exerted a stronger 
effect than the combination of PT-DPSC- derived CM 
with G-CSF.

We further analyzed the effect of DT-DPSC- and 
PT-DPSC-derived CM on angiogenic and neurite exten-
sion abilities. DT-DPSC-derived CM exerted a signifi-
cantly stronger stimulatory effect on angiogenic tube 
formation than PT-DPSC-derived CM (p < 0.05), and 
both DT-DPSC- and PT-DPSC- CM promoted signifi-
cantly stronger (p < 0.01 and p < 0.05, respectively) angio-
genesis compared with the control medium (Fig.  2c, d). 
These results indicate that the angiogenic potential of 
DT-DPSCs was better than that of PT-DPSCs and that 
DT-DPSCs may promote angiogenesis more rapidly in 
stem cell-mediated dental pulp regeneration. The effects 
of DT-DPSC- and PT-DPSC-derived CM on neurite out-
growth/neurogenesis were significantly stronger than 
those of the control medium (Fig.  2e, f ), but no signifi-
cant difference in neurite outgrowth and neurite num-
bers was observed between human neuroblastoma TGW 
cells incubated with DT-DPSC- or PT-DPSC-derived CM 
(Fig. 2f, g).

To examine the effect of DT-DPSC- and PT-DPSC-
derived CM on cellular proliferation, the proliferation 
rate was evaluated by a PrestoBlue cell viability reagent 
(Fig. 2h). The proliferation assay showed that DT-DPSC-
derived CM significantly increased the proliferative 
capacity of hPdLF when compared to the non-CM con-
trol after 24 (p < 0.05), 48 and 72 h (p < 0.01). These results 
suggest that DT-DPSC-derived CM enhances cellular 
proliferation more rapidly than PT-DPSC-derived CM.

(See figure on next page.)
Fig. 2  Trophic effects of conditioned medium (CM) from DT-DPSCs compared with that from PT-DPSCs. a Migration activity of hPdLF toward 
the CM with or without G-CSF b Enhanced migration of hPdLF toward CM with or without G-CSF after 24 h was statistically analyzed, G-CSF 
#p = 0.04, DT-DPSCs CM #p = 0.03 and PT-DPSCs CM #p = 0.04 versus non, G-CSF *p = 0.04 versus PT-DPSCs CM + G-CSF, DT-DPSCs CM *p = 0.02 
versus DT-DPSCs CM + G-CSF, DT-DPSCs CM + G-CSF *p = 0.04 versus PT-DPSCs CM + G-CSF, PT-DPSCs CM *p = 0.04 versus PT-DPSCs CM + G-CSF, 
G-CSF versus DT-DPSCs CM + G-CSF **p < 0.01, ##p < 0.01 and.###p < 0.001 versus non. c Enhanced angiogenic activity of HUVECs, showing network 
formation after 6 h. d Statistical analysis of total tube length. EGM *p = 0.01, PT-DPSCs CM *p = 0.04 and DT-DPSCs CM **p = 0.002 versus Non. 
DT-DPSCs CM *p = 0.02 versus PT-DPSCs CM. e Enhanced neurite outgrowth of the TGW cell line. f Statistical analysis of neurite length. DT-DPSCs 
CM *p = 0.02, PT-DPSCs CM *p = 0.01 versus Non and **p = 0.008. g Statistical analysis of neurite numbers. NT-3 *p = 0.02, DT-DPSCs CM *p = 0.03, 
PT-DPSCs CM *p = 0.04 versus Non h Enhanced effect of CM on the proliferative activity of hPdLF. *p = 0.015, **p < 0.01. i Mixed lymphocyte reaction 
(MLR) assay (MMC, treated with mitomycin C) with PBMCs after 24 h. **p < 0.01. All the data are expressed as the mean ± standard deviation (n = 3)
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In the mixed lymphocyte reaction assay, DT-DPSC- 
and PT-DPSC-derived CM induced significant reduc-
tions in immunosuppression at 36  h compared to 
non-CM control (p < 0.01) (Fig. 2i). No significant differ-
ence was observed in immunosuppression in the groups 
incubated with DT-DPSC- or PT-DPSC-derived CM. 
These results suggest that the in  vitro trophic effects of 
DT-DPSC-derived CM are similar to those of PT-DPSC-
derived CM, leading to high immunosuppressive and 
immunomodulatory properties.

Similar Pulp regenerative potential
The pulp regeneration efficacy of DT-DPSCs and PT-
DPSCs was examined in pulpectomized dog teeth. 
Morphologically similar pulp tissue (Fig. 3a, b, c, d) and 
well-vascularized (Fig. 3f, g) and well-innervated (Fig. 3i, 
j) loose connective tissue were observed 4  weeks after 
DT-DPSCs and PT-DPSCs transplantation. Odontoblast-
like cells were aligned along the dentinal wall in DT-
DPSCs and PT-DPSCs transplants (Fig. 3l, m). There was 
no significant difference in the morphometric analysis 
(Table 2) and ratio of the regenerated pulp area (Fig. 3e) 
between the DT-DPSCs transplants and the PT-DPSCs 
transplants. Furthermore, no significant difference in 
neovascularization (Fig.  3h) or reinnervation (Fig.  3k) 
and odontoblasts cell number (Fig.  3n) or thickness 
(Fig. 3o) was demonstrated between the DT-DPSCs and 
PT-DPSCs transplants.

No adverse effects
No adverse effects on appearance, clinical symptoms, 
food consumption, or body weight were observed in 
the toxicology assessment for 4  weeks after DT-DPSC 
transplantation. The values of serum and urine chemis-
try parameters were within normal ranges for 4  weeks 
(Additional file  3: Tables S1 & S2). No abnormalities 
were observed in any organs or tissues assessed by histo-
pathological examination at 4 weeks. These results dem-
onstrate that DT-DPSC transplantation might be safe for 
pulp regeneration.

Discussion
There was no difference in the quality and quantity of 
regenerated pulp tissue, neovascularization and rein-
nervation between DT-DPSCs and PT-DPSCs trans-
plants in our current in vivo study which indicate similar 
regenerative potential of DPSCs from permanent and 
deciduous teeth. Transplantation of atelocollagen only 
shows less amount of regenerated pulp tissue (Additional 
file 2: Fig. S2) [3] but large area of regenerated pulp tis-
sue was observed after transplantation of pulp stem cells 
with G-CSF in atelocollagen scaffold in the present study. 
Besides pulp regeneration, odontoblast differentiation 

was also examined and compared, however, no signifi-
cant difference was observed between DT-DPSCs and 
PT-DPSCs. These results indicated that deciduous teeth 
could be a potential source of DPSCs which may over-
come the limited availability of pulp tissue or DPSCs 
from permanent teeth that hinders the autologous trans-
plantation approach. For example, the isolation of stem 
cells from potentially discarded teeth, such as third 
molars, has certain limitations; for example, these teeth 
can be congenitally missing or impacted and sometimes 
function in occlusion. Furthermore, the reduction in 
pulp size or pulp stones that is often observed in elderly 
patients also limits DPSC isolation. Therefore, DPSCs 
isolated from human exfoliated deciduous teeth are 
important and convenient stem cell sources [8] because 
for child, there is an opportunity to isolate DPSCs from 
primary teeth when they naturally fall out and to store 
these cells in a cell bank for future autologous transplan-
tation if it becomes necessary. Previous in  vitro stud-
ies have already compared the stem cell properties and 
cytokine profiles of DPSCs and SHEDs [22, 23]. However, 
these cells were derived from different individuals. Thus, 
our current study was the first to compare stem cell prop-
erties in vitro and pulp regenerative potential in vivo of 
DPSCs and SHEDs from the same individuals.

Previous reports have characterized “stemness” as high 
expression of CXCR4, which indicates high migration 
potential [24], and high expression of the pluripotency 
marker OCT4 [25]. In the present study, a significantly 
higher number of CXCR4-positive cells and higher 
mRNA expression of CXCR4 and Oct 3/4 were observed 
in the DT-DPSC population than in the PT-DPSC pop-
ulation. These findings suggested a higher potential of 
DT-DPSCs for migration, self‐renewal and multilineage 
differentiation than PT-DPSCs. Another very impor-
tant characteristic of mesenchymal stem cells is their 
high capacity for proliferation, and recent studies have 
demonstrated that SHEDs have much higher prolifera-
tion potential than DPSCs [9, 22]. We consistently found 
that DT-DPSCs had a higher proliferative capacity than 
PT-DPSCs and that DT-DPSC-derived CM significantly 
increased hPdLF proliferation compared to PT-DPSC-
derived CM. In these respects, DT-DPSCs may be more 
suitable for storage in cell banks and clinical application 
in pulp regenerative therapy.

The migration of resident stem cells from the surround-
ing tissue is one of the critical mechanisms underlying 
pulp regenerative cell therapy, and G-CSF promotes the 
migration of transplanted DPSCs and resident stem cells 
[3]. In the present study, the DT-DPSC population had 
significantly higher percentage of G-CSFR-positive cells, 
as shown by flow cytometry, and higher migratory ability 
in the presence of G-CSF than PT-DPSCs; additionally, 
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DT-DPSC-derived CM had stronger effects on hPdLF 
migration toward G-CSF than PT-DPSC-derived CM. 
Thus, G-CSF could enhance the migration of trans-
planted DT-DPSCs to a greater extent, and DT-DPSCs 
together with G-CSF might also enhance the migration of 
resident stem cells from the surrounding microenviron-
ment more than PT-DPSCs.

Angiogenesis plays an important role in pulp regen-
eration after pulpectomy [26], and the angiogenic effects 
of SHEDs are stronger than those of DPSCs [27]. In the 
present in vitro study, no significant difference in VEGF 
mRNA expression but significant difference in pro-
tein expression was observed between DT-DPSCs and 
PT-DPSCs. This contrary expression is probably due to 
the various complex post-transcriptional mechanisms 
implicated in turning mRNA into a protein. DT-DPSC-
derived CM induced significantly greater angiogenic tube 
formation in HUVECs after plating on Matrigel than 
PT-DPSC-derived CM, indicating a higher angiogenic 
effect of DT-DPSC-derived CM.

Reinnervation is also important for the functional 
recovery of regenerated pulp tissue, and BDNF and NGF 
are two of the major factors that regulate reinnerva-
tion [19]. A recent in  vitro study performed a cytokine 
array and reported that BDNF and GDNF expression 
was upregulated in SHEDs and that NGF was highly 
expressed in DPSCs [23]. In this study, no difference in 
NGF and GDNF mRNA expression and significantly 
higher mRNA expression of BDNF in DT-DPSCs but 
similar protein expression of BDNF was demonstrated 
in DT-DPSCs compared to PT-DPSCs. These results 
might have occurred due to the different sources of the 
cells used in other studies, and the results of a quantita-
tive analysis of cytokine production may not be directly 
related to cell properties. The similar effect of DT-DPSC-
derived CM and PT-DPSC-derived CM on neurite 
extension in TGW cells observed in this study might 
have occurred due to the similar expression of BDNF in 
DT-DPSCs and PT-DPSCs culture supernatants. Fur-
ther investigations are necessary to confirm the factors 
critical for neurodifferentiation that are released from 

DT-DPSCs and PT-DPSCs to enhance the reinnervation 
of regenerated pulp tissue.

Age-associated decreases in stemness, self-renewal, 
and regenerative potential of stem cells and age-associ-
ated increases in the expression of the senescence marker 
p16 have been described in DPSCs [28]. Our present 
study revealed significantly lower mRNA expression of 
p16 in DT-DPSCs than in PT-DPSCs. Thus, decreased 
expression of senescence markers may improve the ther-
apeutic effects of stem cells, and DT-DPSCs may be con-
sidered as cells with reduced senescence characteristics.

Anti-inflammatory properties are important factors 
that enhance the therapeutic potential of DPSCs in pulp 
regenerative cell therapy [29]. DT-DPSC-derived CM and 
PT-DPSC-derived CM exerted similar immunosuppres-
sive effects on canine PBMCs, indicating that DT-DPSCs 
are a potential substitute for PT-DPSCs.

In the present in  vivo study, the pulp regenerative 
potential, angiogenesis, reinnervation and odontogenic 
potential of DT-DPSCs were similar to those of PT-
DPSCs isolated from the same individuals, while higher 
expression of some stem cell markers, higher angiogenic, 
migration potential and identical neurogenic potential 
were observed in vitro. These results might have occurred 
due to the young age (1 year) of the experimental dogs, 
which have resident stem cells with high regenerative 
potential and a surrounding microenvironment that pro-
motes pulp regeneration. Transplanted stem cells release 
trophic factors to promote tissue regeneration rather 
than to differentiate into properly functional cells them-
selves [30]. However, the levels of trophic factors derived 
from transplanted DPSCs that enhance resident stem 
cell migration, cell survival, anti-inflammatory mecha-
nisms, pulp regeneration, angiogenesis and reinnervation 
might exceed the levels required for the establishment 
of an optimal microenvironment for pulp regeneration 
in young dogs. Thus, further study in aged dogs may be 
needed to reach proper conclusions.

DT-DPSCs are easily accessible with the patient’s 
safety assured, posing less ethical issues and dental pulp 
of deciduous teeth is present before birth and is main-
tained before eruption of permanent teeth, this period 

Table 2  Morphometric analysis of regenerated pulp tissue

All data are expressed as the means ± SD (n = 3)

9FW 1396 9FW 1324 9FW 1319

DT-DPSC PT-DPSC DT-DPSC PT-DPSC DT-DPSC PT-DPSC

Height (mm) 5.837 ± 1.4 6.257 ± 1.4 6.587 ± 0.6 5.019 ± 1.1 4.649 ± 0.6 5.459 ± 1.2

Width (mm) 1.607 ± 0.8 2.034 ± 0.4 1.438 ± 0.3 1.234 ± 0.6 1.211 ± 0.3 1.786 ± 0.4

Diameter(mm) 13.24 ± 2.5 14.2 ± 3.2 14.54 ± 1.9 11.11 ± 0.4 10.37 ± 0.8 12.32 ± 1.6

Area (mm2) 2.836 ± 0.8 3.95 ± 1.6 4.279 ± 1.7 2.962 ± 0.6 2.371 ± 0.6 2.776 ± 1.0
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is characterized by maintenance of an active niche rich 
in stem cells, which are not yet heavily affected by the 
intensifying effect of genetic and/or environmental fac-
tor [31]. Recently, cell banking and preservation of dental 
stem cells have become a promising and advanced scien-
tific topic not only in tooth regeneration but also in other 
regenerative medical fields [32, 33]. To overcome the lim-
ited availability of discarded permanent teeth and inad-
equate sources of DPSCs from older donors and donors 
with systemic diseases, including diabetes and rheu-
matoid arthritis, SHEDs are the best candidates for cell 
banking [34]. Our present results demonstrated signifi-
cantly lower expression of p16 in DT-DPSCs than in PT-
DPSCs, indicating the stability of the stem cell phenotype 
after prolonged cell culture, rendering these cells suitable 
for cell banking.

Conclusions
In the present study, DT-DPSC shows higher expression 
of some stem cell markers, angiogenic potential and iden-
tical neurogenic potential in vitro and in vivo there was 
no difference in pulp regenerative, angiogenic and rein-
nervation potential between DT-DPSCs and PT-DPSCs 
derived from the same individuals, indicating that DT-
DPSCs are a potential substitute for PT-DPSCs as a stem 
cell source.
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