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Abstract 

Pulmonary fibrosis (PF) is a fatal chronic disease characterized by accumulation of extracellular matrix and thickening 
of the alveolar wall, ultimately leading to respiratory failure. PF is thought to be initiated by the dysfunction and aber‑
rant activation of a variety of cell types in the lung. In particular, several studies have demonstrated that macrophages 
play a pivotal role in the development and progression of PF through secretion of inflammatory cytokines, growth 
factors, and chemokines, suggesting that they could be an alternative therapeutic source as well as therapeutic target 
for PF. In this review, we describe the characteristics, functions, and origins of subsets of macrophages involved in PF 
and summarize current data on the generation and therapeutic application of macrophages derived from pluripotent 
stem cells for the treatment of fibrotic diseases. Additionally, we discuss the use of macrophage-derived exosomes to 
repair fibrotic lung tissue.
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Introduction
Macrophages are immune cells that originate from pro-
genitors in the bone marrow (BM) that circulate in the 
peripheral blood and migrate into different tissues [1–4]. 
Macrophages are the foremost controllers of both innate 
and acquired immunity and are activated by different 
endogenous and exogenous signals to mediate immune 
homeostasis [5]. Macrophages are major mediators of 

inflammation, tissue repair, and immune function due 
to their ability to secrete an array of soluble cytokines, 
chemokines, and growth factors. Specialized mac-
rophages in different tissues are referred to by different 
names: liver macrophages that promote tissue remod-
eling and immune responses are called Kupffer cells, 
macrophages that maintain the immunity of the brain 
by eliminating dead neurons are referred to as neuronal 
macrophages or microglia, macrophages that eliminate 
dysfunctional or old red blood cells (RBCs) are called 
splenic macrophages, while macrophages that phagocy-
tose dead cells or bacteria in lung tissue are referred to as 
lung macrophages [6].

Macrophages are abundant in the lung microenvi-
ronment and comprise a heterogeneous population of 
cells with diverse functions and phenotypic plasticity 
dependent on the inflammatory signals they encounter 
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in the lung microenvironment. Lung macrophages are 
important sentinels that are critical to pulmonary host 
defenses. Two macrophage populations reside within 
lungs: alveolar macrophages (AMs) and interstitial mac-
rophages (IMs), which differ in the expression of surface 
markers as well as their localization and functional phe-
notype [7, 8]. AMs are primary effector cells that possess 
both pro-inflammatory and anti-inflammatory properties 
and express low levels of CD11b and high CD11c lev-
els and colonize the airway space in lungs. By contrast, 
high CD11b- and CD11c-expressing IMs reside in the 
lung parenchyma and maintaining immune homeosta-
sis in the respiratory tract [9]. Inflammatory responses 
of macrophages are associated with the development of 
acute and chronic pulmonary pathologies including idi-
opathic pulmonary fibrosis (IPF) [10, 11]. In this review, 
we describe the characteristics, functions, and origins 
of subsets of macrophages and discuss the importance 
and regulation of macrophage polarization in the devel-
opment of IPF. Additionally, we summarize the current 
state of knowledge regarding the therapeutic use of pluri-
potent stem cell-derived macrophages to treat fibrotic 
diseases and macrophage-derived exosomes to repair 
fibrotic lung tissue.

Role of macrophages in lung fibrosis
IPF
IPF is the most common lung disease and is character-
ized by the progressive deposition of collagen and extra-
cellular matrix, resulting in damaged and scarred lung 
tissue. The scarring associated with IPF can lead to 
impaired gas exchange, breathlessness, decreased static 
lung compliance, and respiratory failure [12–14]. A num-
ber of genetic and non-genetic factors contribute to the 
development of IPF [15]. Non-genetic factors such as cig-
arette smoking, dust exposure, and infection are believed 
to increase the risk of IPF [16, 17]. Genetic studies in 
familial and sporadic IPF patients have revealed an asso-
ciation between IPF susceptibility and telomerase-related 
genes [18], surfactant-associated genes [19, 20], mucin 
5B gene, toll interacting protein (TOLLIP), and the signal 
peptide peptidase like 2C (SPPL2C) [21, 22]. Additionally, 
matrix metalloproteinase 1 (MMP1) and matrix metallo-
proteinase 7 (MMP7) are found in the peripheral blood 
of individuals with IPF and are highly overexpressed in 
lung fibrosis and reflect disease progression [23]. The 
activation of multiple wound-healing pathways is also a 
characteristic of IPF progression. Necrosis and/or apop-
tosis of alveolar epithelial cells is a consistent finding in 
patients with lung fibrosis [24–26]. Macrophages are 
involved in the wound-healing response in the lung and 
subsequent IPF development. The involvement of mac-
rophages in IPF is another aspect of lung disease that 

needs evaluation to understand the role played by these 
inflammatory cells in the development of IPF.

Macrophages in IPF
Although there is a continuum of macrophage polariza-
tion beyond the simplified, discrete, in vitro-based clas-
sification system, pulmonary macrophages can also be 
broadly classified into classically activated macrophages 
(M1 macrophages) and alternatively activated mac-
rophages (M2 macrophages) depending on their func-
tional phenotypes and biological activities [27]. M1 
macrophages are induced by lipopolysaccharide (LPS), 
IFN-γ, and granulocyte–macrophage colony-stimulating 
factor (GM-CSF) and produce mediators aimed at elimi-
nating foreign materials and debris. The transcription 
factor interferon regulatory factor 5 (IRF-5) promotes 
the M1 phenotype during early inflammatory stages to 
protect against intracellular pathogens by inducing nitric 
oxide synthase (iNOS) and proinflammatory cytokines 
such as IL-1b, IL-12b, IL-23, and TNF [28–30]. However, 
sustained inflammatory responses can trigger fibrotic 
responses in the lung. By contrast, M2 macrophages, 
which are induced by IL-4, IL-13, TGF-b, and IL-10 [31], 
are known to release mediators that downregulate the 
inflammatory response and promote the resolution of 
injury and tissue repair. M1 and M2 macrophages have 
distinct roles in the pathogenesis of pulmonary fibrosis 
due to their different cytokine expression profiles [10]. 
Usually, after alveolar epithelial injury, M1 macrophages 
heal the wound while M2 macrophages are responsible 
for completing the healing processes or inflammatory 
responses in the lung [10]. The reaction to unrelenting 
lung injury is alteration of wound healing process, which 
ultimately can result in IPF. Lung fibrosis progression has 
not been successfully halted by previous therapies due to 
a lack of knowledge of the exact mechanisms by which 
the balance between M1/M2 macrophage phenotype can 
be manipulated. Hence, future studies need to focus on 
the interactions between macrophages and fibroblasts.

Macrophages derived from pluripotent stem cells
Methods to derive macrophages from monocytes 
and TRMs
Several advancements have led to the development of 
different methods to derive generic macrophages, but 
there are very few methods available for the functional 
analysis of human M0s. The earliest method for mac-
rophage generation involved direct isolation of tissue 
resident macrophages (TRMs) from relevant tissues 
[32–35]; however, insufficient yield and poor cell qual-
ity are major limitations of this method [36]. The use of 
immortalized cell lines from hemato-oncological patients 
such as THP-1 or U937 cells is a cheap and robust way to 
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derive resting macrophages (M0s). However, the genet-
ics of these malignant cells limits the application of this 
approach [37, 38]. Another method widely used for the 
generation of M0s exploits CD14 + monocytes derived 
from peripheral blood mononuclear cells. Monocytes are 
induced by growth factors or cytokines (mainly M-CSF) 
to generate M0s [39, 40]. An advantage of this method is 
the ready availability of human peripheral blood samples 
and the high quantity of monocyte-derived macrophages 
(MDMs) obtained from individual donors. However, 
MDMs cannot be used to model TRMs and are unable 
to proliferate and be maintained under culture conditions 
for long periods of time [4, 7, 41–44].

Methods to derive macrophages from PSCs
Macrophages have also been derived from pluripotent 
stem cells (PSCs) such as embryonic stem cells (ESCs) 
and induced human pluripotent stem cells (iPSCs). Most 
of the methods used follow the common principle of 
stepwise differentiation of PSCs into M0s through the 
formation of mesoderm, hemogenic endothelium (HE), 
hematopoietic progenitors, and monocytic cells, mim-
icking embryonic hematopoiesis [45–48]. Generation of 
M0s from PSCs has several advantages over previously 
established human M0 models.

This approach can be used to generate ideal TRM 
models compared with MDMs due to the easy acces-
sibility and scalability of PSCs. Several protocols have 
been established to differentiate PSCs into M0s (iMphs), 
all of which comprise four major stages: (1) mesoderm 
commitment and HE specification (M/HEstage); (2) 
endothelial-to-hematopoietic transition and the genera-
tion of hematopoietic progenitors (HP stage); (3) myeloid 
specification and the formation of monocyte-like cells 
(MY stage); and (4) terminal differentiation of iMphs 
(MF stage). There are several protocols that differ in the 
methods used to culture and differentiate PSCs that are 
outlined below. In 2D-OP9 protocols, PSCs are co-cul-
tured with stromal cells to differentiate into M0s. S17, 
OP9, C166, UG26, and AM20.1B4 are different types of 
stromal cells that secrete factors that promote the prolif-
eration of hematopoietic cells [49]. OP9 was successfully 
used for iMph differentiation due to its ability to prevent 
early monocyte/M0s bias and differentiation into differ-
ent types of hematopoietic lineages. Given that OP9 cells 
are derived from the bone marrow cells of osteopetrosis 
mice, the use of xenogeneic cells limits its therapeutic 
applications. Stromal cell-independent protocols were 
developed later and there are three different protocols 
based on the induction of mesoderm commitment and 
HE specification (M/HE). Embryoid body (EB)–based 
three-dimensional (3D) spontaneous protocols (EB-S) 
generate EBs by culturing PSCs under low-adherent 

conditions while M/HE differentiation is achieved with-
out the addition of exogenous factors [50–53]. Further, 
HP and MY differentiation are induced simultaneously 
by treatment with a combination of cytokines (IL-3 and 
M-CSF). EB-based 3D factor-assisted protocols (EB-
F) involve exposure of EBs to several exogenous factors 
such as BMP4, SCF, and VEGF to achieve M/HE speci-
fication [48, 51]. HP and MY differentiation are induced 
simultaneously with IL-3 and M-CSF. Some EB-F proto-
cols sequentially differentiate the HP stage into the MY 
stage. HP differentiation is achieved by treating cells with 
hematopoietic factors without M-CSF followed by con-
ditional MY differentiation using hematopoietic factors 
along with M-CSF. EB-independent two-dimensional 
(2D) factor-assisted protocols (2D-F) rely on culturing 
PSCs on matrix-coated plates (matrigel) with several 
external factors (BMP-4, VEGF, SCF, FGF2, CHIR99021, 
and activin A) for M/HE specification [54–57], followed 
by sequential differentiation into HP and MY stages. 
Finally, all protocols involve terminal differentiation from 
monocyte-like cells to iMphs by cultivating cells in the 
presence of M-CSF. The schematic representation for the 
protocols and the detailed information of the exogenous 
factors supplemented along with the culture medium are 
discussed in Fig. 1 and Table 1, respectively.

PSC‑derived macrophages as disease models
Several studies have identified the potential of using PSC-
derived macrophages in disease modelling of several dis-
eases. iMph-based disease models are generated mainly 
through two major approaches. In the first approach, 
iMphs are generated using patient-derived iPSCs. This 
method has been used to model Gaucher disease, familial 
Mediterranean fever, Alzheimer disease, Tangier disease, 
chronic granulomatous disease (CGD), and Parkinson’s 
disease [58–62]. In the second approach, iMphs are gen-
erated using healthy donors-derived iPSCs mutated to 
carry the disease-associated mutations. This method has 
been successfully used to model CGD [63] and very-early 
onset bowel disease (VEOBD) [64, 65].

PSC-derived macrophages have also been used as a 
standard model to study macrophage-pathogen interac-
tions and determine the role of human genetics in disease 
outcomes. Two closely related mosquito-transmitted 
flaviviruses (Zika virus and Dengue virus) have been 
studied using iMphs [66]. PSC-derived macrophages are 
highly relevant to study infectious agents that require 
macrophages as a source of persistence and replication, 
such as Chlamydia [67], Salmonella [68], and HIV [69]. 
These studies suggest that M0s models can therefore be 
utilized to determine the impact of infectious agents on 
disease pathogenesis and persistence.
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Recent emergence of three-dimensional (3D) model 
systems, such as organoids and spheroids, and hydrogel 
systems have advanced our understanding of the tissue 
microenvironment better than two-dimensional (2D) 

models. The intact 3D structure allows replication of 
cell–cell and cell–matrix interactions to study regenera-
tive medicine, disease modelling, and drug development 
in a variety of diseases. In this review, we outline the 

Fig. 1  Schematic representation for the generation of iMphs from PSCs using different protocols. In all the protocols, the differentiation of PSCs 
into iMphs goes through four main stages as described. Embryoid Body-Spontaneous (EB-S) Step-1, PSCs culturing- PSCs are cultured and expanded 
on MEFs. Stage 1, M/HE stage- The mesoderm or hemogenic endothelium (M/HE) is induced through the EB formation in ultra-low adhesive (ULA) 
culture dishes. Stage 2 and Stage 3, HP and MY stages, the EBs formed in stage 1 are transferred to matrix-coated plates and cultured in medium 
supplemented with IL-3 and M-CSF under normoxia conditions. The floating monocyte-like cells (iMCs) are collected and transferred to new culture 
plates for their terminal differentiation. Stage 4, MF terminal differentiation- The cells collected from stage 3 are cultured using RPMI medium 
supplemented with M-CSF for their terminal differentiation into macrophages-derived from iPSCs (iMphs). Embryoid Body-Factors (EB-F) HP + MY: 
Step-1, PSCs culturing- PSCs are cultured and expanded on matrix-coated culture plates. Stage 1, M/HE stage- The mesoderm/HE specification in 
EBs is directed by externally supplied factors under normoxia condition. Stage 2 and Stage 3, HP and MY stages, the EBs from stage 1 are transferred 
to new plates and cultured in medium supplemented with IL-3 and M-CSF. Similar to EB-S protocol, the floating cells are collected and transferred 
to new culture plates for their terminal differentiation. Stage 4, MF terminal differentiation- The cells collected from stage 3 are cultured using RPMI 
medium supplemented with M-CSF for their terminal differentiation into iMphs. Embryoid Body-Factors (EB-F) HP → MY Step-1, PSCs culturing- PSCs 
are depleted from the MEFs before subjecting to differentiation. Stage 1, M/HE stage- The mesoderm/HE specification in EBs is directed by 
combination of exogenous factors under normoxia or hypoxia conditions. Stage 2, HP stage- The EBs obtained from stage 1 are transferred to 
either ULA or matrix-coated plates and cultured in the presence of specific exogenous factors to induce HP stage. Stage 3, MY stage- In the MY 
stage, the composition of exogenous factors is modified for the generation of iMCs. Stage 4, Stage 4, MF terminal differentiation- The floating iMCs 
cells are collected from stage 3 and cultured with M-CSF for their terminal differentiation into iMphs. Embryoid Body-independent 2D-Factors Step-1, 
PSCs culturing- PSCs are cultured on Matrigel-coated plates. Stage 1, M/HE stage- The M/HE is induced by culturing cells in M/HE-specific factors 
on matrigel coated plates under normoxia or hypoxia condition. Stage 2, HP stage- The HP specification is achieved in the presence of HP-specific 
factors. Stage 3, MY stage- For MY differentiation, the cells are either transferred to ULA plates or matrigel-coated plates and cultured under a set 
of exogenous factors for further differentiation into iMCs. Stage 4, MF terminal differentiation-The floating iMCs cells are collected from stage 3 and 
cultured with M-CSF for their terminal differentiation into iMphs
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current 3D models to elucidate cellular and molecular 
cues in IPF and drug discovery.

3D models of IPF and drug discovery
Despite significant research, the development of effec-
tive therapies for IPF faces challenges due to the lack of 
in vitro models to mimic disease pathophysiology. Lung 
3D cultures including precision cut lung slices (PCLS), 
hydrogels, and lung organoids have emerged as valuable 

tools for drug discovery and testing in a variety of pulmo-
nary diseases including IPF[70–73]. PCLS maintain the 
native lung environment and is a relevant in vitro model 
to study lung fibrosis and drug testing in a diseased tissue 
condition [74]. Hydrogels are water-swollen cross-linked 
networks of polymers and offer another in vitro model to 
study IPF. Hydrogels can be customized to model normal 
or diseased microenvironments by altering biomaterials 
and crosslinking mechanisms [73]. The generation of lung 

Table 1  Culture medium and exogenous factors supplied during iPSCs differentiation into iMphs

Protocol Stage Exogenous differentiation factors Medium

EB-S PSC expansion FGF2 KO-DMEM

DMEM/F12

AdvDMEM

Stage 1 NA KO-DMEM

DMEM/F12

AdvDMEM

Stage 2 and 3 IL3 + M-CSF X-VIVO 15

Stage 4 M-CSF X-VIVO 15 RPMI

EB-F HP + MY PSC expansion FGF2 mTeSR1

DMEM/F12

Stage 1 BMP4/VEGF/SCF mTeSR1

DMEM/F12

Stage 2 and 3 IL3 + M-CSF X-VIVO 15

Stage 4 M-CSF X-VIVO 15 + RPMI

EB-F HP → MY PSC expansion FGF2 DMEM/F12

AdvDMEM

Stage 1 BMP4/VEGF/SCF/ FGF2/Flt3L/TPO/CHIR/ActA StemPro-34

mTeSR1

(KO-DMEM)

Stage 2 VEGF/SCF/ FGF2/Flt3L/TPO/IL3/M-CSF StemPro-34

Stage 3 VEGF/SCF/ FGF2/Flt3L/IL3/IL6M-CSF/GM-CS StemPro-34

RPMI

Stage 4 M-CSF RPMI

2D-F PSC expansion NA mTeSR1

E8

TeSR-E8

Stage 1 BMP4/VEGF/ FGF2/ CHIR/ActA/S B/SCF StemPro-34

mTeSR1

E8

IMDM/F12

Stage 2 VEGF/ FGF2/SCF/TPO/Flt3 L/IL3/IL6 StemPro-34

IMDM/F12

(DMEM/F12)

Stage 3 FGF2/SCF/Flt3 L/IL3/IL6/ MCSF StemPro-34

IMDM/F12

(DMEM/F12)

Stage 4 M-CSF IMDM/F12

RPMI
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organoids using hPSCs is a recent method to study the 
development of fibrosis and to screen novel drugs. hPSC-
derived lung organoid models retain patient gene muta-
tions and allow an improved understanding of molecular 
mechanisms of fibrosis. Strikoudis et al. demonstrate the 
importance of hPSC-derived lung organoids to model 
fibrotic lung disease wherein they identified the thera-
peutic potential of interleukin-11 (IL-11) in lung fibrosis 
[75]. Korogi et al. also provide insight into the potential 
role of hiPSC-derived lung organoids in disease model-
ling [76]. Cystic fibrosis patient-specific iPSC-derived 
lung epithelial cells have been used as an in vitro model 
to test novel small-molecule compounds called cystic 
fibrosis correctors [77]. The therapeutic value of NP-011 
in assessing the anti-fibrotic potential of milk fat globule-
EGF factor 8 (MFG-E8) protein has been demonstrated 
by hPSC-derived multicellular alveolar organoids con-
taining functional alveolar epithelial and mesenchymal 
cells as an in  vitro model for pulmonary fibrosis [70]. 
hPSC-based alveolar organoids also served as a relevant 
in vitro model to evaluate the toxic effect of particulate 
matter (PM2.5) on fetal alveolar development and acute 
respiratory syndrome coronavirus clade 2 (SARS-CoV-2) 
susceptibility [78].

A major drawback of these organoids is lack of immune 
cell components, such as macrophages, which limits the 
recapitulation of in vivo cellular physiology to model IPF 
and design subsequent drug screening approaches. Mul-
ticellular alveolar organoids with macrophages (Mac-
AOs) exhibit phenotypic and functional resemblance to 
human macrophages and can demonstrate critical pul-
monary fibrosis pathological features such as inflamma-
tion, collagen accumulation.

Macrophage‑derived extracellular vesicles
Macrophages are blood immune cells that reside 
in all tissues and constitute the first line of defense 
against invading pathogens. Any abnormality in mac-
rophage responses may result in uncontrolled inflam-
mation and immune disorders, which are implicated 
in many diseases including renal inflammation and 
fibrosis [79]. Activated macrophages communicate 
with target cells via direct cell-to-cell contact and/
or release of cytokines and extracellular vesicles (EVs) 
to exert their immunomodulatory functions. EVs are 
membrane-enclosed vesicles that can be classified as 
large oncosomes (LOs, ~ 1–10  μm), apoptotic bodies 
(ABs, ~ 1–5  μm), microvesicles (MVs, ~ 200–1000  nm), 
exosomes (Exos, ~ 30–200 nm), or exomeres (< 50 nm) 
on the basis of their size [80]. EVs exhibit similar prop-
erties to their parent cells and function as vital carri-
ers to transfer cargo such as proteins, nucleic acids, 
and metabolites from parent cells to recipient cells. The 

role of macrophage-derived EVs, especially exosomes, 
has been widely investigated in different diseases to 
determine the roles played by EVs in disease progres-
sion. In this review, we primarily focus on the roles of 
macrophage-derived exosomes in disease and therapy 
(Fig. 2).

Exosomes are cell-secreted, nanosized, bi-lipid vesicles 
continuously secreted from various types of cells includ-
ing alveolar epithelial cells, fibroblasts, and inflammatory 
cells [81]. Exosomes contribute to biological processes 
by transporting various bioactive molecules, such as 
nucleic acids (including miRNAs), proteins, and lipids 
[82–87]. Exosomes regulate various inflammatory and 
angiogenic pathways by transferring miRNAs from a 
donor to a recipient cell [83, 88–90]. Exosomes are con-
sidered to promote the polarization of macrophages [91, 
92]. A large proportion of microvesicles in the blood are 
derived from macrophage-derived exosomes [93]. Exoso-
mal-enclosed miRNAs have been shown to play crucial 
roles in inflammation, tissue repair, and fibrogenesis [94]. 
MicroRNAs are small non-coding single-stranded RNAs 
containing 18–25 nucleotides that are widely distributed 
in various organisms from viruses to humans [95] To 
date, more than 1000 human miRNAs have been found. 
These molecules act as regulators of gene expression by 
inhibiting protein translation, and play key roles in sig-
nal transduction, tissue and organ development, and 
other biological processes [96, 97]. Previous studies have 
demonstrated that exosomes play a pivotal role in various 
pulmonary diseases such as IPF, chronic obstructive pul-
monary disease (COPD), and asthma [98–100].

COPD
COPD is a chronic inflammatory lung disease caused by 
significant exposure to noxious particles or gases and is 
characterized by obstructive airflow resulting in breath-
ing abnormalities. The symptoms of COPD are further 
exacerbated by several environmental factors such as 
smoking. Bronchial epithelial cells (BECs), the primary 
cells in contact with external stimuli such as cigarette 
smoke, play a critical role in airway homeostasis and are 
considered to be major EVs producer in the lung. Ele-
vated levels of exosomes have been found to correlate 
with C-reactive protein (CRP), soluble tumor necrosis 
factor receptor-1 (sTNFR1), and interleukin (IL)-6 levels; 
all these molecules are plasma biomarkers of systemic 
inflammation with a potential pathophysiological role in 
COPD [101]. Exosomes secreted in COPD patients con-
tain miRNAs (miR-210) that promote inflammation and 
alter the gene expression of target cells. Moreover, miR-
NAs from plasma-derived vesicles can serve as biomark-
ers in smokers and COPD patients [102].
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Asthma
Asthma is a common lung disease that affects both chil-
dren and adults and that causes recurrent episodes of 
wheezing, breathlessness, and chest tightness [103]. Cells 
such as bronchial epithelial cells, dendritic cells, eosino-
phils, mast cells, and T-cells release cytokines in this dis-
ease [104–106]. Eosinophil-derived exosomes activate 
structural lung cells and contribute to the pathogenies 
of asthma [107]. Levels of serum exosomes containing 
miRNA-125b have been found to be higher in patients 
with asthma and may serve as a marker of asthma sever-
ity [108]. Studies in mice have revealed a protective role 

for M2 macrophage-derived exosomes. Under asth-
matic conditions induced by ovalbumin, miR-370 levels 
were found to be reduced in M2 macrophage-derived 
exosomes and were found to be correlated with improved 
OVA-induced lung fibrosis and inflammatory responses 
[91].

IPF
IPF is a chronic, progressive, and idiopathic interstitial 
pneumonia characterized by the replacement of healthy 
tissue by altered extracellular matrix and an impaired 
alveolar structure. Therapy for IPF focuses mainly on 

Fig. 2  A representative scheme for macrophage generation from iPSCs and their current and prospective applications in genomic analysis of lung 
disorders, lung disease modelling, drug screening specific to lung disorders and macrophage-based cell therapeutics to lung disorders



Page 8 of 12Rasaei et al. Stem Cell Research & Therapy          (2022) 13:433 

prolonging the life expectancy of patients by slowing 
down disease progression [109, 110]. For this reason, new 
pharmacological treatments and biomarkers to ensure 
better outcomes and diagnose patients early are needed. 
A recent study investigated the quantity of microRNAs in 
serum extracellular vesicles, including exosomes, of mice 
with bleomycin-induced lung fibrosis, and reported sig-
nificant up-regulation of serum EV miR-21e5p in both 
the acute and chronic fibrotic phases. Furthermore, as 
miR-21e5p promotes TGF-b signaling, which is a key 
signaling pathway in IPF, miR-21e5p was suggested to be 
a potential biomarker of IPF [111]. EVs were also found 
to promote the proliferation and activation of fibroblasts 
in lungs and participate in the pathogenesis of IPF by 
mediating WNT5A signaling [112]. In another study, 
two types of miRNAs were found to be associated with 
IPF: (1) sputum macrophages were found to contain 
elevated levels of exosomal miR-142-3p in IPF while (2) 
macrophage-derived exosomes exerted a protective effect 
against pulmonary fibrosis progression via the delivery of 
antifibrotic miR-142-3p [83].

Therapeutic potential of exosomes in chronic 
respiratory diseases
The therapeutic potential of exosomes extends to many 
diseases, including those of the lung, liver, kidney, and 
heart. Exosomes have been widely studied by several 
pharmaceutical companies to create products with thera-
peutic applications. MSC-derived exosomes developed 
by Aegle Therapeutics are under phase 1/2 clinical trials 
for dermatological disorders (NCT04173650). Another 
company, Carmine Therapeutics, derived EVs from RBCs 
to develop next-generation gene therapies to overcome 
the limitations of existing viral-based therapies such as 
low transgene capacity, immunogenicity, and other man-
ufacturing challenges.

Exosome-based therapy is currently also being pursued 
in lung diseases such as IPF, COPD, acute lung injury 
(ALI), acute respiratory distress syndrome (ARDS), 
and bronchopulmonary dysplasia (BPD). MSC-derived 
exosomes have been used to treat ARDS [113] and pro-
tect against cigarette smoke-induced damage [114]. 
Intranasal delivery of exosomes derived from human 
amnion epithelial cells (hAECs) targets inflammatory 
and regenerative cascades of IPF to reverse lung fibro-
sis and enhance endogenous lung repair [115]. Similarly, 
inhalation of lung spheroid cell-secretomes (LSC-Sec) 
and exosomes (LSC-Exo) has been shown to be benefi-
cial in treating lung fibrosis by reversing alveolar dam-
age and decreasing myofibroblast proliferation and 
collagen accumulation [116]. Endothelial progenitor cell 
(EPC)-derived exosomes containing miR-126 attenu-
ated LPS-induced ALI/ARDS and restored pulmonary 

integrity in a rat model of lung injury [117]. A mouse 
model study of hypoxia-induced pulmonary hyperten-
sion revealed that the cyto-protective role of MSCs in 
the lung is mediated by exosomes [118]. Exosomes have 
also been used to treat neonatal lung diseases. Treat-
ment of a neonatal mouse model of hyperoxia-induced 
BPD with MSC-exosomes significantly improved lung 
morphology and associated pulmonary fibrosis [119]. 
Blood plasma-derived exosomes for early diagnosis of 
lung cancer (NCT04529915) and exosome-based iden-
tification of malignant and benign pulmonary nodules 
(NCT04182893) are currently being investigated in clini-
cal trials. However, more research is needed to explore 
the therapeutic potential and niche of exosomes.

Conclusions
Macrophages are critical players in maintaining homeo-
stasis and immune responses to the external environ-
ment. Different types of macrophages secrete various 
pro-inflammatory and anti-inflammatory signals and 
affect several processes ranging from immune protec-
tion to wound healing [120–127]. The pro-inflammatory 
and anti-inflammatory functions of macrophages depend 
on the cellular microenvironment, which enables fine-
tuning of the transcriptomic and functional response 
according to homeostatic needs. Any dysregulation in 
this balance can lead to inflammation, cancer initiation, 
cardiovascular disorders, and development of fibrosis. 
Thus, macrophages are potential therapeutic targets in 
various disorders; however, the lack of efficient models 
to replicate macrophages has limited their therapeutic 
value.

The groundbreaking discovery by Takahashi and 
Yamanaka of stem cells has led to their use to model 
disease progression, test drugs, and design individual-
specific treatments. PSC-derived macrophages have 
become a highly attractive source for cell and gene ther-
apy. The iMph approach has been successful used to cor-
rect genetic mutations and improve phagocyte functions 
in CGD and VEOBD [64, 65]. The development of novel 
therapeutic targets for diseases involving macrophages 
such as pulmonary alveolar proteinosis and liver fibro-
sis further expands the therapeutic applications of PSC-
derived macrophages. Pulmonary transplantation of 
gene-edited host macrophages into a murine model of 
hereditary pulmonary alveolar proteinosis had benefi-
cial therapeutic effects [128]. Transplantation of human 
iPSC-derived macrophages upon intrapulmonary devel-
opment into AM-like cells resulted in a striking reduc-
tion of alveolar protein and surfactant D deposition and 
attenuated the hereditary pulmonary alveolar proteino-
sis (herPAP) phenotype [129]. TALEN-mediated inte-
gration of the corrected gene granulocyte–macrophage 
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colony-stimulating factor receptor alpha-chain (CD116) 
into patient-specific iPSCs resulted in functionally com-
patible macrophages [130]. Intratracheal injection of 
human iMphs in an acute P. aeruginosa infection model 
enhanced pulmonary immunity [50]. Therapeutic appli-
cation of macrophages significantly reduced the amount 
of hepatic fibrosis in a model of liver injury [131]. Fur-
ther, the identification of an active compound against M. 
tuberculosis using iMphs to screen a 3,716-compound 
library expanded the therapeutic uses for PSC-derived 
macrophages as drug testing models [132]. Together, 
these studies suggest that PSC-derived macrophages are 
promising biomaterials for the treatment of several dis-
eases (Fig. 2).

EVs derived from macrophages have become widely 
accepted as disease biomarkers and therapeutic tools. For 
example, the presence of immune molecules on the sur-
face of EVs [133] and elimination of macrophage-associ-
ated risks such as cytokine release syndrome [134] have 
highlighted the potential of macrophage-derived EVs in 
therapeutics. Future research should focus on establish-
ing efficient protocols to generate economically feasible, 
high-yield, clinically-applicable generic macrophages. 
Elucidating the specific roles of lung macrophages in 
fibrotic lung disorders would facilitate the development 
of effective macrophage-based therapeutics.
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