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Abstract 

Brain tumors are one of the most mortal cancers, leading to many deaths among kids and adults. Surgery, chemo-
therapy, and radiotherapy are available options for brain tumor treatment. However, these methods are not able to 
eradicate cancer cells. The blood–brain barrier (BBB) is one of the most important barriers to treat brain tumors that 
prevents adequate drug delivery to brain tissue. The connection between different brain parts is heterogeneous and 
causes many challenges in treatment. Mesenchymal stem cells (MSCs) migrate to brain tumor cells and have anti-
tumor effects by delivering cytotoxic compounds. They contain very high regenerative properties, as well as support 
the immune system. MSCs-based therapy involves cell replacement and releases various vesicles, including exosomes. 
Exosomes receive more attention due to their excellent stability, less immunogenicity and toxicity compare to cells. 
Exosomes derived from MSCs can develop a powerful therapeutic strategy for different diseases and be a hopeful 
candidate for cell-based and cell-free regenerative medicine. These nanoparticles contain nucleic acid, proteins, lipids, 
microRNAs, and other biologically active substances. Many studies show that each microRNA can prevent angio-
genesis, migration, and metastasis in glioblastoma. These exosomes can—act as a suitable nanoparticle carrier for 
therapeutic applications of brain tumors by passing through the BBB. In this review, we discuss potential applications 
of MSC and their produced exosomes in the treatment of brain tumors.
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Background
Tumor is an uncommon growth of cells and mainly has 
two types: malignant (cancerous) and benign (noncan-
cerous) [1]. Among the various cancer types, brain tumor 
caused many deaths in kids and adults [2–5]. In 2016 

the brain tumor was the highest tumor-related death in 
ages 0–14 and the third most common cancer in teen-
ager groups [6]. According to the latest World Health 
Organization (WHO) report, 700,000 people have been 
diagnosed with brain tumors. Among these 700,000 
cases, 30.1% have diagnosed with malignant tumors. The 
approximated number of deaths due to brain tumors is 
16,830 cases, which is an average survival rate of 35% 
[4]. Brain tumors can destroy healthy cells and enhance 
inflammation in the brain. The malignant tumors are 
divided into two types (a) the first tumor from within 
the brain itself and (b) the secondary tumor or metas-
tasis that originates from other parts of the body [7–9]. 
The most common brain tumor is meningioma, gliomas, 
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and glioblastoma multiforme (GBM). Meningiomas are 
tumors of meninges, managed by surgical and high-risk 
ones combined with chemotherapy and radiation ther-
apy. Glioblastomas are more prevalent and malignant of 
the primary tumor that rarely response to treatment [10].

In spite of the vast progress in cancer treatment, the 
central nervous system (CNS) tumors have unique fea-
tures that differentiate them from other neoplasms in the 
body [11]. Available treatments are not efficient against 
brain tumors. Because of within brain capillaries, there is 
a brain–blood barrier (BBB) and endothelial membranes 
with substantial transendothelial electrical resistance. 
These barriers strongly control the transcellular and par-
acellular permeability of molecules in the systemic circu-
lation [11, 12]. Malignant brain tumors such as GBM, the 

most invasive malignant brain still remain lethal [13, 14]. 
Thus, there is a necessary need for practical, low-toxicity 
therapies for brain tumors [14]. Regenerative medicine 
and cell therapy aim to repair malfunctioning, damaged, 
and missing tissues, and organs [15]. This review focuses 
on the characterization of exosomes derived from mes-
enchymal stem cells (MSCs) and their perspective in cell-
free brain tumors therapeutic applications (Fig. 1).

Regenerative medicine as a new therapeutic 
strategy in brain tumors
Regenerative medicine is a branch of medicine that in 
particular has two aims: primary, transferring stem cells 
into damaged tissues and organs with the maximum 
safety and efficiency, which may one day replace the 

Fig. 1  Engineered mesenchymal stem cells (MSCs) derived exosomes inhibit brain tumor progression. The figure was generated by the authors—
adobe illustrator version 26.4.1
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transplantation of an entire organ; and secondary, devel-
oping strategies to improve the regenerative potential 
and function of adult stem cells found in various organs 
[15].

In the last decades, considerable evidence demon-
strated that stem cell-based therapies might be hopeful in 
this field based on the potential therapeutic applications 
of these cells in damaged organs. Stem cell therapy can be 
a prospective way for irreversible and incurable diseases 
[16–18]. Stem cells are undifferentiated cells with self-
renewal and multiple differentiation potential that can 
differentiate into several types of adult cells. Stem cells 
include induced pluripotent stem cells (iPSCs), embry-
onic stem cells (ESCs), and adult stem cells. Adult stem 
cells, also known as resident stem cells or somatic stem 
cells, are present in small numbers in many adult tissues, 
such as hematopoietic stem cells (HSC), epithelial stem 
cells, neural stem cells (NSCs), and mesenchymal stem 
cells (MSCs) [19].MSCs are one of the most used cell 
types for regenerative medicine. MSC-based therapies 
have emerged as a promising strategy in this field [20, 21].

Mesenchymal stromal/stem cells (MSCs)
MSCs are part of the most crucial pool of adult stem 
cells that support tissue regeneration under both physi-
ologic and pathologic settings. They contribute to tissue 
homeostasis, in a dynamic and specialized microenviron-
ment with a distinct design called the "stem cells niche" 
[22, 23]. Multipotent MSCs present in multiple tissues, 
including the umbilical cord (UC) [24], bone marrow 
(BM) [25], adipose tissue (AT) [26], dental pulp [27], 
placenta [28], skin, heart, lungs, brain, kidneys, thymus, 
liver, and pancreas. These cells can self-recover and dif-
ferentiate into multiple tissues, including bone, muscle, 
cartilage, fat cells, and connective tissue [20].

These cells are immuno-advantaged because of their 
low expression of CD40, CD80, CD86, major histocom-
patibility complex I (MHC I), and the lack of MHC II 
expression, which can be used to treat other organs [29, 
30]They reduce encephalitis and restore the blood–brain 
barrier in the brain (BBB) [31].

MSCs has attracted attention as promising drug car-
rier for the treatment of brain diseases. For instance, the 
use of MSCs as a vehicle for targeted gene therapy to the 
tumor is a novel therapeutic technique [32]. Studies have 
demonstrated the ability and efficiency of these cells in 
transferring genes to some tumors such as GBM, breast 
cancer, and small cell non-cell lung cancer. Due to MSCs 
strong regenerative activity, immunosuppressive, and 
immunomodulatory [33, 34]. It seems that applied bone 
marrow MSC transplantation containing herpes simplex 
virus thymidine kinase (HSV-TK) gene in combination 

with prodrug ganciclovir (GCV) would be safe and feasi-
ble in the treatment of patients with GBM [32].

One study has indicated that MSC reduced the growth 
of patient-derived glioma cells and glioma cell lines. 
Human bone-marrow-derived MSCs impaired endothe-
lial progenitor cell (EPC) to angiogenesis. Phosphoryl-
ated Akt, IL-1b, and cathepsin B proteins decreased in 
co-cultured MSC/glioma through PDGF/PDGFR axis 
(which has a critical role in angiogenesis). The antitumor 
effect is mediated by the secretion of soluble factors [35].

MSCs modulate immune function not only via inter-
acting with immune cells such as dendritic cells (DCs), 
T and B cells, neutrophils, natural killer (NK), and mac-
rophages but also by a powerful paracrine influence [36]. 
The main active components of paracrine secretion are 
extracellular vesicles (EVs). Exosomes derived from MSC 
(MSC-exosomes), have been critically studied to diag-
nose, prevent, and treat many diseases [37, 38].

Mesenchymal stem cell‑derived exosomes (MSC‑E)
Extracellular vesicle (EVs) are lipid‐bilayer vesicles in the 
20–1000 nm diameter naturally released from most cell 
types into the extracellular space [39]. They act as sign-
aling organelles, facilitating intercellular communica-
tion by transporting biomolecules like as RNA, proteins, 
and lipids [40]. EVs are classified into three kinds based 
on their size and biogenesis. (a) Exosomes are small 
EVs (40–150  nm in diameter) released by the fusion of 
multivesicular bodies (MVBs) with the plasma mem-
brane; (b) ectosomes or microvesicles are medium EVs 
(150–1000  nm in diameter) secreted by the direct bud-
ding of the plasma membrane; and (c) apoptosis bodies 
are random EVs (50–2000 nm in diameter) released dur-
ing programmed cell death–apoptosis [41, 42]. Among all 
of EVs, exosomes have attracted much interest in the last 
decades [43].

Exosomes are a small particle extracellular vesicle that 
contain protein, nucleic acid, lipid, 5’-nucleotide enzyme 
etc. [44]. They have a crucial role in biophysical processes 
in various disease [45, 46]. Environmental factors or 
pharmacological treatments can modulate the levels of its 
produced by cultured cells. Due to this reason, its profile 
alters in different diseases, and the treatment with drugs 
has alters their content [45]. Exosomes are endosomal 
origin and contain MHC-I and MHC-II, heat-shock pro-
tein, GTPase (EEF1A1, EEF2) membrane-associated pro-
tein (CD81, CD82, CD9, and CD63), metabolic enzyme 
(GADPH, LADH, PKM, aldolase, PGK1), cytoskeletal 
proteins, and carrier proteins (e.g., albumin) (Fig. 2) [46]. 
Transportation needs some markers, noticeably CD63 
and CD9 [47]. Many studies have demonstrated that peo-
ple with various cancer have increased exosomes in their 
blood. The determination cargo of exosomes assists us in 
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diagnostic, pathophysiological, and therapeutic roles; for 
example, miR-21, miR-219, LRP6, REST1, and cavoline1 
increase in their cargo in central nervous system diseases, 
and in cardiovascular disorder miR-194, miR-133, miR-
499, miR-208, miR-34a, miR-192 is up-regulated [44].

Studies have revealed (MVBs) prefer to be in the vicin-
ity of RNA-induced silencing complexes (RISCs). RISC 
is involved in miRNA biogenesis and plays a key role in 
miRNA synthesis [48, 49].

MSCs are a rich source of exosomes. MSC-derived 
exosomes (MSC-E) tend to house damaged tissue, dem-
onstrating that these exosomes like the MSCs from 
which they are formed, can also home to brain malignan-
cies [50, 51]. According to recent studies MSCs naturally 
package miRNAs into exosomes. As a result, MSCs could 
potentially be employed to package exogenous thera-
peutic miRNAs [52]. Exosomes act as carriers to inhibit 
tumors by transporting proteins, miRNAs, and chemical 

drugs. MSC-E contain proteins, mRNAs, miRNAs, 
and other bioactive molecules. MSC-E proteome con-
tains almost 2000 types of proteins that divide into two 
groups; First, membrane proteins such as tetraspanins 
and GPI‐anchored proteins. Second, soluble proteins 
including signaling proteins, chaperones, heat shock pro-
teins, cytokines, and interleukins [53, 54]. The exosome 
particle is important for stem cell function because it 
allows genetic information to be transmitted horizontally 
between stem cells and tissue-damaged cells. Stem cell-
derived Exosomes have features that are similar to those 
of parent stem cells. It has speculated that stem cell-
derived exosomes are a promising treatment approach in 
regenerative medicine [55]. MSC-E increasingly play an 
important role in intracellular communication mecha-
nisms, tissue regeneration, and clinical application. With 
the potential to reduce undesirable side effects and infu-
sional toxicities, uncontrolled cell growth and possible 

Fig. 2  Exosome production and structure. Exosomes are a subtype of the extracellular vesicle with a phospholipid bilayer membrane. These 
nanoparticles are secreted from cells after the fusion of multivesicular bodies (MVBs or late endosomes) with the plasma membrane. The exosomes 
contain a wide range of proteins, lipids, mRNAs, RNAs, and DNA molecular cargoes. Tetraspanin family of proteins (CD9, CD63, CD81, and CD82) are 
common exosome-specific markers. The figure was generated by the authors—adobe illustrator version 26.4.1
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tumor formation may supply significant advantages than 
live cells [56]. Exosomes are incapable of mutating, dupli-
cating, or causing metastasis. These making exosomes 
transplantation seem less risky and providing the oppor-
tunity for cell uses. These have been tested in different 
animal models for human diseases. Their functions have 
been discovered to be quite similar to MSCs. Exosomes 
are extra-vesical secreted by these cells and create tissue 
regeneration and cell-free development treatment [43, 
57, 58].

microRNA
MicroRNAs (miRNAs) are non-coding RNAs that play 
an important role in gene regulation [59]. In human 
cells, almost 2588 mature miRNAs have been discov-
ered. Some miRNAs are strong tumor suppressors and 
can target several mRNAs. Deregulation of numerous 
miRNAs has been linked to a variety of clinical disor-
ders, including benign and malignant tumors, for exam-
ple GBM [14, 60]. MiRNAs play various roles in disease 
pathology and physiology. Many cancers have been found 
to have miRNA dysfunction [61]. Evidence suggests 
that miRNAs have a role in glioma formation, and that 
genetically modified MSC can slow the growth of glioma 
tumors [62]. The regulatory functions of miRNAs have 
a significant role in GBM by affecting cell proliferation 
[63], progression [64–66], apoptosis [67], drug resistance 
[68], and metastasis [69]. It can limit tumor progression 
by restoring the expression of these miRNAs, indicating 
a new strategy to tumor therapy [70, 71]. Some microR-
NAs have been acted as cancer-suppressor [14]. Extra-
cellular exosomes contain many miRNAs, which can be 
transported from cell to cell by releasing and absorbing 
exosomes which leads to cross-cellular gene regulation 
[69]. The effect of MSCs related to secreted consider-
able amounts of exosomes containing functional miR-
NAs [72]. It has been also shown that the expression of 
miR-4731-5p is decreased in glioblastoma. MiR-4731-5p 
shows an antitumor feature and has been suggested that 
adipose tissue-derived MSCs (Ad-MSCs) express this 
miRNA that inhibits GBM cancer cell lines (U87 and 
U-251) and increases apoptosis in these cells by arresting 
G1/S phases. miR‐4731 regulates the peripheral myelin 
protein 22 (PMP22) and CCNA2 (Cyclin A2) genes [67].

Exosomes are able to cross the blood–brain barrier 
(BBB)
There are two mechanisms for exosomes to enter the 
CNS. First, exosomes can absorbed by endothelial cells, 
then transcytosed into the cell, and transported to the 
target cell [73]. Secondly, exosomes can pass via endothe-
lial cells’ intercellular connections and enter the CNS 
[74].

Exosome-related miR-105 has been shown to suppress 
the expression of ZO-1, a crucial molecular compo-
nent of tight junctions, and thereby remove endothelial 
cells’ barrier function [74]. Exosomal miR-181c has been 
demonstrated to inhibit 3-phosphoinositide-dependent 
protein kinase-1 (PDPK1) expression, resulting in lower 
levels of phosphorylated cofillin and abnormal actin 
polymerization in brain endothelial cells [75]. In addi-
tion, exosomes can cause vascular leakiness, which allows 
them to access the target tissue [76].

Exosomes released from pathologic cells can change 
vascular permeability and sometimes BBB integration in 
degenerative neurological diseases. However, it should be 
noted that increased BBB permeability is associated with 
several neurological disorders. More study is still needed 
to uncover the possible advantages and disadvantages 
of exosomes’ therapeutic potentials with regard to BBB 
penetrance modulation [76]. Penetration of the BBB and 
delivery of anti-cancer drugs to the tumor at therapeutic 
levels is an important challenge in treating brain cancers. 
Finding a precise delivery approach that is minimally 
invasive allows maximum efficiency to improve drug 
delivery across the BBB and the successful treatment 
of brain cancers. Numerous nanoparticles have been 
employed for drug delivery, including liposomes, hydro-
gel, and micelles. However, these particles show critical 
challenges like high toxicity and low bioavailability. In 
contrast, exosomes are organotropism, bioavailab, with 
low toxicity, and low immune responses [77–81].

According to the evidence, Exosomes deliver mes-
sages to target cells via at least three mechanisms; first, 
exosomes can bind to adhesion molecules and receptors 
on the recipient cell surface with high specificity (with-
out membrane fusion), resulting in receptor activation 
and a downstream signaling cascade in the target cell 
[82]. Heparan sulfate (HS) proteoglycans (HSPGs) are 
surface receptors for exosome adhesion and internaliza-
tion [83]. Second, exosome content is incorporated into 
recipient cells following endocytosis. It is the fusion of 
the exosome membrane with the endosomal membrane. 
Third, the direct fusion of the exosome membrane with 
the plasma membrane of the target cells causes their con-
tents to be transferred into these cells’ cytoplasm [82].

Mesenchymal stem cell‑derived exosomes (MSC‑E) 
for brain diseases therapy
Because of MSCs potential to differentiate in neural cells 
and potent angiomodulatory and immunosuppressive 
capabilities, they have been described as a new thera-
peutic agent for treating neurocognitive disorders [84]. 
A large number of pre-clinical and clinical research have 
shown that mesenchymal stem cell-derived exosomes 
(MSC-E) can improve the treatment of neurological 
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diseases relied upon the activity of MSC-sourced bioac-
tive substances (enzymes, lipids, chemokines, cytokines, 
immunoregulatory proteins, trophic, and growth factors, 
and miRNAs) which effectively induced neo-angiogen-
esis, modulated immune response, and increased repair 
and regeneration of damaged neurons [85].

These neuroprotective and immunosuppressive agents 
are present within MSC-E, which due to their lipid enve-
lope and nano-sized dimension, easily enter neural tis-
sue and reach the target cells [82]. MSCs function not 
through a direct cell but via paracrine activity. It has been 
shown that exosomes are a vital component in regulat-
ing the paracrine action of MSCs. Through direct cell 
membrane fusion, MSC-E delivers its content to recipi-
ent cells’ cytoplasm and modulates their phenotypic and 
function [83, 86]. Interaction between MSCs and brain 
cells induces the production of neurotrophins such as 
brain-derived neurotrophic factor, nerve growth factor, 
vascular endothelial growth factor and the anti-inflam-
matory cytokines that can potentially regenerate nerve 
growth. This can also stimulate neurologic recovery. Var-
ious research studies have demonstrated that the admin-
istration of MSCs-E can induce neurogenesis in the 
hippocampus’s subventricular zone (SVZ) and dentate 
gyrus (DG) and decrease the cognitive impairments asso-
ciated with traumatic brain injury, stroke, and Parkinson’s 
disease [76, 87]. MSCs-E are also a part of a therapeutic 
strategy to treat Alzheimer’s disease by reducing inflam-
matory activity, promoting neurogenesis, and improving 
disease-related cognitive deficits [88–90]. MSC-E con-
tain lipids, nucleic acids (4150 miRNAs and 4850 gene 
products were discovered using microarray analysis and 
mass spectrometry), proteins (cytokines, chemokines). 
MiRNAs, notably miR-21 and miR-146, have the poten-
tial to modify the phenotypic, function, and viability of 
neural and immune cells. This is thought to be critical for 
the beneficial effects of MSC-E in treating neuro-inflam-
matory disorders [83, 91]. Because there is a minimum 
side effects associated with the experimental and clinical 
application of MSCs-E in animals and patients treated 
with MSC-E. These nano-particles are considered a via-
ble replacement for MSCs in the treatment of degenera-
tive and inflammatory neurological disorders [82].

Mesenchymal stem cell‑derived exosomes (MSC‑E) 
for brain tumors therapy
Engineered MSC-derived exosomes decrease resistance 
to radiotherapy, chemotherapy, and anti-angiogenesis 
therapy (Fig.  3). The neurotropic properties of dental 
pulp-derived MSC (DP-MSCs) are considered in treat-
ing a large number of neurological diseases in regen-
erative medicine. DP-MSCs are known for their high 
proliferative potential for self-renewability, elasticity, and 

multi-potential capabilities. Genetically modified human 
DP-MSCs with yeast uracil phosphoribosyltransferase 
(UPRT) secrete exosomes can invade and kill glioblas-
toma cells in the presence of prodrug 5-fluorocytosine 
(5-FC). The yeast cytosinedeaminase::uracilphosphoribo
syltransferase (yCD::UPRT) mRNA was detected in the 
DP-MSCs exosome’s cargo. Thus, the exosomes inter-
nalized in tumor cells acted by translating yCD::UPRT 
mRNA to enzyme changing 5-FC to 5-FU. The potential 
of yCD::UPRT-expressing DP-MSCs to convert the rela-
tively non-toxic (5-FC) into the highly toxic antitumor 
drug 5-fluorouracil (5-FU) combined with their poten-
tial to accumulate into tumor sites and micrometasta-
ses, making these cells designated therapeutic stem cells 
(ThSCs) a unique tool for converting prodrugs to cyto-
toxic drugs directly inside the tumor mass, thus prevent-
ing systemic toxicity. Intranasal stem cell delivery is a 
promising noninvasive method of delivering neural stem/
progenitor cells to the brain to treat ischemic brain dam-
age or target intracerebral glioma [92]. The synergistic 
antitumor study demonstrated that exosomes isolated 
from MSCCXCR4+TRAIL (exosomeCXCR4+TRAIL) were essen-
tial as a cooperative agent with carboplatin (an antican-
cer drug) in an MDA-MB-231Br SCID mouse model, 
potentially creates a new strategy to advance the treat-
ment of breast cancer brain metastases. In human cancer 
cells, CXCR4 is the most common chemokine receptor. 
The SDF-1/CXCR4 is important in MSC homing for 
tumor cell diffusion and metastasis. (TRAIL, also known 
as Apo2L) can selectively cause apoptosis in tumor cells 
while causing minimal toxicity in normal cells. This novel 
use of CXCR4/TRAIL-enriched exosomes to improve 
chemotherapy efficacy opens up a new avenue for devel-
oping a synergistic protocol with anticancer agents to 
treat brain disease [93].

Glioblastoma stays a fetal tumor with an insignificant 
outcome (14.5–16.6  month survival rate) an unusual 
expression of some microRNAs (miR-Let-7f and miR-
584-3P) related to this disorder [94, 95] Several studies 
suggest that MSC-E act as carriers to treat brain tumors 
by delivering synthetic miRNAs due to MSCs naturally 
package miRNAs into exosomes. MSCs-E that have been 
investigated to migrate glioma cells and exert antitumor 
properties as possible tumor therapy.

MiR-199a is less expressed in glioma tissues than in 
normal brain tissues, while the GTPase domain, ankyrin 
repeat and PH domain 2 (AGAP2) are highly expressed. 
The AGAP2 is a target gene for miR-199a. hMSCs deliv-
ered miR-199a to the glioma cells via the exosomes, 
which suppressed glioma cell proliferation, migration, 
and invasion. They also increased temozolomide chemo-
sensitivity and reduced tumor development in vivo. It has 
been shown that miR-199a, when transported by hMSCs 



Page 7 of 12Ghasempour et al. Stem Cell Research & Therapy          (2022) 13:527 	

derived exosomes, can negatively influence AGAP2 
expression, thus preventing proliferation and increasing 
glioma cell apoptosis. There is still insufficient evidence 
to support the efficient delivery of miR-199a from MSCs 
to glioma cells via exosomes. In conclusion, additional 
research is needed to validate and substantiate our find-
ings from this study [62].

MiR-512-5p and Jagged1 (JAG1) expression patterns, 
as well as their interactions in glioblastoma, were stud-
ied. In 2021 a study showed that bone marrow stem cell 
(BMSC)-derived exosomes via transporting miR-512-5p 
alter tumor phenotypes. In glioblastoma tissue and cells, 
miR-512-5p was downregulated, and its target gene is 
JAG1. JAG1 expression is increased by silencing miR-
512-5p. JAG1 expression in GBM is inhibited by BMSC-
exosomal miR-512-5p. JAG1 silencing has been shown 
to reduce cyclin D1 expression. These findings shed light 
on the molecular therapy mechanism for GBM treat-
ment and highlight the potential for BMSC-Exo to trans-
port miR-512-5p into GBM [70]. Moreover, cyclin D1 

regulates the cell cycle by binding to cyclin-dependent 
kinase (CDK4, CDK6). miR-512-5p by targeting JAG1 
reduces G1-arrest-relevant cell cycle regulators to pre-
vent GBM development. Exosome therapy in the long 
term will include merging targeted exosomes with anti-
cancer drugs [70, 96].

One of the miRs that express very high in common 
brain tissue constraint the glioma is miR-29a-3p. One 
in-vitro study demonstrated miR-29a-3p inhibits migra-
tion of glioma cells and their angiogenesis. Roundabout 
homolog 1 protein, encoded by Roundabout Guidance 
Receptor 1(ROBO1) is the target of this microRNA. To 
take advantage of miR-29a-3p’s anti-tumor effects, they 
modified MSCs to act as a "bio-factory" for exosomes 
expressing miR-29a-3p [97].

One study to show MSCs can release synthetic miRs 
uses MSCs that have been investigated to migrate gli-
oma cells and exert antitumor properties as possible 
tumor therapy. The- tested MSCs derived from placenta, 
umbilical cord, adipose tissue, and bone marrow which 

Fig. 3  Engineering exosome as a novel Strategy for Treatment. Regulating network of exosomal proteins and miRNAs in brain tumors. The figure 
was generated by the authors—adobe illustrator version 26.4.1
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can carry synthetic miRNAs to the tumor environment. 
Using flow cytometry and in  situ hybridization showed 
MSCs delivered miR-145 and miR-124 to co-culture 
medium via releasing exosomes. This delivered miR-145 
and miR-124 notably decreased the migration of glioma 
cells by targeting Synaptonemal Complex Protein 1 (SCP-
1) and SRY-Box Transcription Factor 2 (Sox2) genes. 
Antisense, siRNA, and miRNA small RNAs are emerg-
ing as promising therapeutic agents for various diseases. 
The efficient delivery of these molecules is critical to 
their clinical success [98]. The other study demonstrated 
that miR-146b expressed lower in GBM and transfected 
MSCs with exosome of miR-146b then injected intra-
tumor. The study showed miR146b decreased motility 
and invasion of glioma cells, and its target being Epider-
mal Growth Factor Receptor (EGFR) mRNA. EGFR gene 
was duplicated in 40% of glioblastoma multiforme and 
increased its related glioma invasiveness and malignancy. 
MiR-146b decreased expression of EGFR, glioblas-
toma cell migration and viability. These findings imply 
that exporting specific therapeutic mRNA into MSC 
exosomes can be a new treatment strategy for malignant 
glioma [52]. The roles of human marrow stromal cells 
(hMSCs) in glioblastoma growth are still argumentative. 
In 2018, Sheng-Ze Deng in 2018 analyzed the effect of 
these cells and their regulatory hMSC exosomal miR-375 
in glioblastoma. They demonstrated that exosomal miR-
375 decreased the progression of glioma cells through 
suppress Solute Carrier Family 31 Member 1 (SLC31A1) 
and is suitable for the treatment of glioma. Thus, serve 
as a promising novel drug delivery method and target for 
developing therapeutic modalities against gliomas [99].

MSC can release exosomes, and these cells have a criti-
cal role in the promotion of glioblastoma. In  vivo stud-
ies used mice injected with U87 cells and then exposed 
MSC-derived exosomes. MiR-584 suppresses various 
cancer include glioblastoma, by attaching to 3-UTR 
on Cytochrome P450 Family 2 Subfamily J Member 2 
(CYP2J2) reduced proliferation and invasion of glio-
blastoma cells. They show that miRNA merge into 
MSC-derived exosomes with glioblastoma cells. These 
exosomes contain miR-584 that could modulate tumor 
development. These discoveries provide a new approach 
to therapy in glioblastoma cancer. Malignant gliomas 
were reduced after exposure to exosomes derived from 
miRNA-584 transfected MSCs; the treatment did not 
affect the animals’ body weight [100].

Frederick M.  Lang et  al. demonstrated that ex-vivo 
bone-marrow-derived MSCs could pack miRs in the 
engineered exosome and deliver to glioma tumors. West-
ern blotting, electron microscopy, and Nanosight tech-
niques showed that the isolated vesicles were exosomes. 
These particles containing miR-124a showed significantly 

decreased viability and clonogenicity of tumor cells. In-
vitro and in-vivo studies showed that miR-124a by silenc-
ing FOXa2 malapropos the lipid accumulation and have 
anti-glioma properties. As a result, it supports the idea 
that miR-124a downregulation of FOXA2 reduces GSC 
viability due to an induced inability to utilize lipids [101].

Sharif et  al. [102] demonstrated that Wharton’s jelly-
MSCs (WJ-MSCs) have the potency to transfer micro-
RNAs to glioblastoma cells. They showed that through 
a dependent or exosome-independent process, miR-124 
was delivered with WJ-MSCs to U87. Delivered miR-124 
reduced the luciferase activity of the CDK6 gene. Addi-
tionally, increased the chemosensitivity to temozolomide 
and reduced the migration of glioblastoma cells. As an 
outcome, combining WJ-MSCs with delivered miR-124 
and TMZ can be a new and effective treatment for GBM 
cancer. The other study received findings that showed 
exosomes from MSC carrying miR-133b decreased gli-
oma size through the Wnt/β-catenin pathway by silenc-
ing Enhancer of Zeste 2 Polycomb Repressive Complex 
2 Subunit (EZH2). In glioma tissues, MiR-133b was 
downregulated, but EZH2 was increased. Therefore, 
silencing EZH2 caused decreased proliferation, migra-
tion, and invasion of glioma cell. U87 were co-cultured 
with MSCs to investigate the pattern of miR-133b and 
EZH2 using RT-qPCR. These findings demonstrated 
that MSC-derived exosomes transferring miR-133b into 
glioma cells could potentially inhibit EZH2 expression by 
blocking the Wnt/β-catenin signaling pathway, thereby 
suppressing glioma cell proliferation, migration, and 
invasion [103]. Munoz et al. [104] publications reported 
that miR-9 in tumor with TMZ-resistant increase. MiR-9 
was rolled in the expression of p-glycoprotein (drug 
transporter), and Anti-miR-9 reversed the expression 
of drug transporter. It also sensitized the glioma cell to 
temozolomide, as demonstrated increased caspase activ-
ity and cell death. They investigated the influential role of 
MSCs in the delivery of synthetic anti-miR-9 to increased 
chemo resistance of glioma cells by extra vesicle includ-
ing exosomes. They discovered that secreted exosomes 
play a role in MSC-GBM cell communication.

One study demonstrates the effect of hBMSC released 
exosomes containing miR-34a. The efficacy of exosomal 
miR-34a in nude mice with GBM cells was detected. The 
result showed that miR-34a in exosome from hBMSC 
negatively regulate the N-myc proto-oncogen or basic 
helix-loop-helix protein 37 (MYCN) in GBMs cell and 
reduce their proliferation, migration, invasion, and, 
finally, tumorigenesis in-vitro and in-vivo experimenta-
tion [105]. Glioma stem cells (GSCs) have been linked 
to resistance to radiotherapy and chemotherapy [106, 
107].The main reasons for the poor treatment outcome 
are issues accurately delivering therapeutic agents to the 
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target GBM brain tumors. Liposomes and viral vectors 
currently used for miR delivery are unsuitable due to low 
efficiency and safety [108]. MSCs-E can deliver peptides 
[109], prodrugs [109, 110], oncolytic viruses, and miRNA 
mimics to glioma cells and GSCs in culture, as well as 
glioma xenografts in vivo. These synthetic miRNA mim-
ics can function as physiologically functional molecules, 
silencing genes in ways similar to cellular miRNAs. As a 
result, based on these findings, MSCs-E provide a novel 
approach for the targeted delivery of anti-cancer car-
goes [99]. Despite the importance of this issue, clinical 
trials on MSC-E in the field of brain disease are limited. 
An Open-Label Clinical Trial titled exosome derived 
from allogeneic mesenchymal stem cells in patients with 
acute ischemic stroke in Phase I/II (ClinicalTrials.gov 
identifier: NCT03384433) purpose to explore improving 
these patients who received MSC-E enriched by miR-
124 through Stereotaxis/Intraparanchymal one month 
after the attack. Another single-center, open-label Clini-
cal Trial titled the Safety and the Efficacy Evaluation 
of Allogenic Adipose MSC-E in Patients with Alzhei-
mer’s Disease in Phase I/II (ClinicalTrials.gov identifier: 
NCT04388982) aims to investigate the safety and efficacy 
of the allogenic adipose MSCs-E in the treatment of mild 
to moderate dementia caused by Alzheimer’s Disease. 
The results of these studies are not posted on ClinicalTri-
als.gov.

Conclusion
Brain cancer treatment is still one of the biggest chal-
lenges in oncology [111]. Among different methods for 
diagnoses, MRI has a common noninvasive technique 
because it has high resolution and high helpful con-
trast for soft tissue [106, 107]. The prospect and therapy 
approach for primary brain tumors remained uncleared, 
despite drug findings and anticancer therapy improve-
ment [108]. The process of drug delivery and efficient 
treatments are the main-goals [109]. EVs regulate cell-
to-cell communication. EVs encompass mRNA, proteins, 
and miRNA. They transfer functional molecules to the 
side of cells [110, 112]. Exosomes are nanoparticles with 
the therapeutic feature for increase antitumor and drug 
delivery [113]. Currently, there is evidence demonstrat-
ing that exosomes produced by various stem cell sources, 
particularly MSCs, have neurotherapeutic future and can 
be successfully used to treat several brain tumors [114]. 
These particles impact progress tumor development and 
modulate the main properties of the tumor by delivery of 
spatial microRNAs [115]. MSCs are immense in regener-
ation, but these cells have a contradictory effect on tumor 
development [116, 117].

Despite significant efforts to use exosomes as tar-
geted therapeutic carriers in clinical applications, 

there are substantial challenges that future research 
should address. A significant limiting factor is the 
lack of a standardized method for isolating and puri-
fying an enriched population of exosomes. Conven-
tional isolation techniques necessitate multiple steps 
of ultracentrifugation. However, these methods are 
time-consuming, and obtained exosomes are frequently 
contaminated with non-exosomal EVs. As the exosome-
based drug/gene delivery systems, the presence of other 
types of EVs will reduce therapeutic efficiencies.

Another limiting factor is their low production of 
exosomes which limits their therapeutic potential. 
Various methods have been developed to increase 
exosomes’ therapeutic use including engineering, 
genetic manipulation, and three-dimensional cul-
ture (3DDC) of these cells. According to new stud-
ies, exosomes produced by MSC in 3DCC spheroids 
increased significantly compared to Two-dimensional 
culture (2DCC)-derived exosomes. Third, cell culture-
derived exosomes can vary and exhibit inconsistent 
properties even when the same type of donor cells are 
used. As a result, precise and efficient characterization 
studies of exosomes are required before using them as 
therapeutic carriers [118–120]. It is better to continue 
future studies with caution and focus on modifying the 
exosomes to precisely orient them toward the desired 
target, as it may lead to optimal therapeutic outcomes 
with minimal side effects.
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