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Abstract 

Background:  Traumatic brain injury (TBI) is a disease with high mortality and morbidity, which leads to severe neuro-
logical dysfunction. Neurogenesis has provided therapeutic options for treating TBI. Brain derived neurotrophic factor 
(BDNF) plays a key role in neuroblasts migration. We aimed to investigate to the key regulating principle of BDNF in 
endogenous neuroblasts migration in a mouse TBI model.

Methods:  In this study, controlled cortical impact (CCI) mice (C57BL/6J) model was established to mimic TBI. The 
sham mice served as control. Immunofluorescence staining and enzyme-linked immunosorbent assay were per-
formed on the CCI groups (day 1, 3, 7, 14 and 21 after CCI) and the sham group. All the data were analyzed with 
Student’s t-test or one-way or two-way analysis of variance followed by Tukey’s post hoc test.

Results:  Our results revealed that neuroblasts migration initiated as early as day 1, peaking at day 7, and persisted till 
day 21. The spatiotemporal profile of BDNF expression was similar to that of neuroblasts migration, and BDNF level fol-
lowing CCI was consistently higher in injured cortex than in subventricular zone (SVZ). Reactive astrocytes account for 
the major resource of BDNF along the migrating path, localized with neuroblasts in proximity. Moreover, injection of 
exogenous CC chemokine ligand 2 (CCL2), also known as monocyte chemoattractant protein-1, at random sites pro-
moted neuroblasts migration and astrocytic BDNF expression in both normal and CCI mice (day 28). These provoked 
neuroblasts can also differentiate into mature neurons. CC chemokine ligand receptor 2 antagonist can restrain the 
neuroblasts migration after TBI.

Conclusions:  Neuroblasts migrated along the activated astrocytic tunnel, directed by BDNF gradient between SVZ 
and injured cortex after TBI. CCL2 might be a key regulator in the above endogenous neuroblasts migration. Moreo-
ver, delayed CCL2 administration may provide a promising therapeutic strategy for late neurogenesis post-trauma.
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Background
Traumatic brain injury (TBI) is a disease with high mor-
tality and morbidity, which leads to severe neurological 
dysfunction, such as severe motor, neural psychologi-
cal, and cognitive disabilities [1–4]. Despite extensive 
researches, there is still no ideal treatment for TBI due to 
multiple complications during pathogenesis [2, 4].

Lost neurons in adult brain could not be replaced was 
once a neurological dogma in the nineteenth century. 
However, this belief was subverted when postnatal and 
adult stem cells from the mammalian subventricular zone 
(SVZ) and subgranular zone (SGZ) had been rediscov-
ered [5]. Up to now, stem cell therapy and neurogenesis 
have provided therapeutic options for treating TBI [4, 6].

In the adult brain, immature neurons called neuro-
blasts are continuously generated in the SVZ [7–9]. 
These neuroblasts migrate rapidly through the rostral 
migratory stream (RMS) to the olfactory bulb, where 
they mature and are integrated into the neuronal circuit 
[8]. After brain injury, some of the neuroblasts in the 
SVZ migrate toward the site of injury to repopulate the 
injured tissues [5, 10, 11]. Lee et  al. [12] described that 
the neural progenitors in ischemic striatum were sig-
nificantly increased on days 5 and 7 post-subarachnoid 
hemorrhage. Grade et al. [13] reported that many neural 
progenitors migrated from the SVZ into ischemic area at 
2 weeks after ischemic stroke. In aspiration lesion model, 
neuroblast migration started 2 days post-lesion, and this 
migration appeared to be persistent even 2 months after 
lesion [10]. Apparent discrepancy in these previous stud-
ies might arise from differences in lesion models. So far, 
the spatiotemporal profile of neuroblasts migration fol-
lowing TBI in a controlled cortical impact (CCI) model 
remains largely unknown.

The notable migratory capacity of SVZ-derived neuro-
blasts is essential for efficient neuronal regeneration in 
remote areas of the brain. As these neurons migrate for 
long distances through adult brain tissues, they are sup-
ported by various guidance cues (Brain derived  neuro-
trophic  factor (BDNF) [5, 9, 12–19], Vascular endothelial 

growth factor (VEGF) [9, 19], Angiopoietin-1(Ang-1) [9, 
19], Stromal cell derived factor-1 alpha (SDF-1α) [5, 9, 
19–21]) as chemoattractants. BDNF and its receptors are 
found to play important roles in the guidance of neural 
migration [14, 16, 19, 22, 23]. However, it is unclear how 
BDNF affects the migration of neuroblasts after TBI.

In the present study, we established CCI mice models 
to investigate (i): the pattern and mechanism of endog-
enous neuroblasts migration after TBI; (ii): the key reg-
ulating principle of BDNF in endogenous neuroblasts 
migration after TBI; (iii): the reprogramming of neuro-
blasts migration by artificial intervention on such steps 
was further attempted for clinical treatment of TBI, espe-
cially late phase TBI.

Material and methods
Animals
A total of 483 adult male C57BL/6J mice, aged 
8–12 weeks and weighing 20–25 g, were purchased from 
the Experimental Animal Center of Chongqing Medi-
cal University [Chongqing, China; license No. SYXK-
(Yu)-2018-0003]. All mice were housed in a standard 
animal facility under controlled temperature (21 °C) and 
photoperiod (12 h light/12 h dark) with food and water 
available ad  libitum. All experiments were approved by 
the Chongqing Medical University Administrative Panel 
on Laboratory and the Ethics Committee of the First 
Affiliated Hospital of Chongqing Medical University. All 
experiments were designed and reported in accordance 
with the Animal Research: Reporting of In Vivo Experi-
ments (ARRIVE) guidelines. All surgeries were per-
formed under anesthesia, and mice were anesthetized 
by inhalation with 3% isoflurane (flow rate 3  L/minute, 
Yuyan Instruments, Shanghai, China) in 67% N2O/30% 
O2 until they did not respond to a tail pinch. Then, 1.5% 
isoflurane (flow rate 0.5 L/min) was used for anesthesia 
maintenance. Throughout the experiment, the feeding 
and killing of animals met the requirements of scientific 
research ethics, maximize the safety and avoid unneces-
sary harm of the animals.

Highlights 

1.	 Neuroblasts migrated along the activated astrocytic tunnel, directed by BDNF gradient between SVZ and 
injured cortex after TBI. CCL2 might be a key regulator in the above endogenous neuroblasts migration.

2.	 Exogenous CCL2 promoted neuroblasts migration and reactive astrocytes-derived BDNF expression not only in 
normal mice but also in mice on day 28 after CCI.

3.	 Notably, these neuroblasts also possessed the potential to differentiate into mature neurons.

Keywords:  Traumatic brain injury, Neuroblast, Neuronal migration, Brain-derived neurotrophic factor, CC chemokine 
ligand 2, Monocyte chemoattractant protein-1
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Experimental design
The experimental process is shown as follows. Randomi-
zation was performed in the grouping of mice, accord-
ing to the table of random numbers. The investigators 
were blinded to the experimental approaches and further 
analysis.

Experiment I
To investigate the spatiotemporal profile of neuroblasts 
migration after TBI, the mice were used to establish con-
trolled cortical impact (CCI) models of TBI as previously 
described [3, 24]. Immunofluorescence staining of anti-
doublecortin antibody (DCX, a marker of neuroblasts) 
was performed on the CCI groups (day 1, 3, 7, 14 and 21 
after CCI) and the sham group (n = 6/per group).

Experiment II
To explore the role of BDNF in the orientation of neu-
roblasts migration, immunofluorescence staining of anti-
BDNF antibody and enzyme-linked immunosorbent 
assay were performed on the CCI groups (day 1, 3, 7, 14 
and 21 after CCI) and the sham group (n = 6/per group).
Then, brain sections from CCI mice were immunostained 
with anti-BDNF, anti-NeuN (a marker of mature neu-
ron), anti-GFAP(a marker of reactive astrocyte), anti-
Iba-1 (a marker of microglia), and anti-CD31 (a marker 
of endothelial cell) antibodies to identify which antibody 
dominates the expression of BDNF within migrating 
path.

Experiment III
We attempted to seek potential regulators of neuroblasts 
migration with following criteria: polyergic control of 
astrocyte activation and BDNF secretion, by review-
ing related literatures [25–40]. We found four cytokines 
[CC chemokine ligand 2 (CCL2), also known as mono-
cyte chemoattractant protein-1(MCP-1), TNF-α, IL-6 or 
IL-1β]. Then, a series of experiments were carried out. 
Firstly, exogenous CCL2, TNF-α, IL-6 or IL-1β at differ-
ent concentrations (50  ng/mL, 100  ng/mL and 500  ng/
mL; 2  μl/per mouse) were injected with 5-µl needle 
into the cortex (coordinates: anterior–posterior 4  mm; 
medial–lateral 3 mm; dorsal–ventral 2–3 mm) of normal 
mice. Immunofluorescence staining of anti-DCX, anti-
GFAP, anti-NeuN and anti-BDNF were performed on day 
3, 7 and 14 after injection (n = 6/time point). The exog-
enous chemoattractant CCL2 showed maximal effects 
to provoke neuroblast migration. Next, CCL2 with the 
optimum concentration was injected into the cortex near 
lesion in mice on 28 days after CCI. Immunofluorescence 
staining of anti-DCX antibody, anti-GFAP and anti-
BDNF were performed on day 7 after injection (n = 6/
time point).

Experiment IV
To identify the spatiotemporal character of CCL2 after 
TBI, immunofluorescence staining of anti-CCL2 anti-
body and enzyme-linked immunosorbent assay were per-
formed on the CCI groups (day 1, 3, 7, 14 and 21 after 
CCI) and the sham group (n = 6/per group).

Experiment V
To test whether blocking CCL2/CCR2 signaling pathway 
can attenuate the above neuroblasts migration after TBI, 
mice were divided into the TBI group and TBI-CCR2 
antagonist group (n = 6/per group). Immunofluorescence 
staining of anti-DCX antibody was performed on day 7 
after CCI.

Drugs
PF-4136309, a CC chemokine ligand receptor 2 (CCR2) 
antagonists (0.05  mg/mL; MCE, Shanghai, China), was 
first intraperitoneally injected pre day 1 before CCI, at a 
dose of 0.3 mg/kg, and was then injected daily for 5 con-
secutive days after CCI.

Controlled cortical impact (CCI)
As previously described [3, 41, 42], CCI was performed 
to mimic moderate TBI in the right parietal cortex and 
underlying hippocampus, with pronounced behavioral 
deficits but virtually no mortality. A circular craniotomy 
(5 mm in diameter) was performed at 2.0 mm posterior 
to bregma and 1.0  mm lateral from the sagittal suture 
over the right parietal cortex. Following the craniotomy, 
a CCI model was established with a TBI-0310 TBI model 
system (Precision Systems and Instrumentation, USA) 
and the impact parameters were set as follows: 5.0-m/
second velocity, 100-ms dwelling time, 2.0-mm depth 
and 3.0-mm diameter impactor. The sham mice under-
went craniotomy without impact. Mice maintained nor-
mal body temperature throughout the entire procedure. 
The rate of mice survival was 99% after CCI.

Immunofluorescence staining
Immunofluorescence was performed according to pre-
vious studies [2]. In brief, mice were killed on days 
1,3,7,14, and 21 after CCI, and perfused with PBS and 
4% paraformaldehyde. The collected brains were post-
fixed in 4% paraformaldehyde overnight at 4 °C, and then 
were cryoprotected in graded sucroses (10%, 20%, and 
30%). Next, the brains were embedded in optimal cut-
ting temperature compound and cut into 15  μm frozen 
coronal sections. Slides were washed, treated with anti-
gen retrieval, and blocked with 5% bovine serum albu-
min at room temperature for 60 min. The sections were 
then incubated overnight at 4  °C with primary antibod-
ies, including rabbit polyclonal anti-doublecortin (DCX; 
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1:100; Abcam; a marker of newly generated immature 
neurons called neuroblasts), goat monoclonal anti-
doublecortin (DCX; 1:100; Novus Biologicals), mouse 
monoclonal anti-doublecortin (DCX; 1:100; Santa Cruz), 
mouse monoclonal anti-GFAP (1:400; BD Biosciences; a 
marker of reactive astrocytes), mouse monoclonal anti-
ionized calcium-binding adaptor molecule 1 (Iba1; 1:25; 
GeneTex; a marker of microglia), mouse monoclonal 
anti-neuronal nuclear antigen (NeuN; 1:200; Novus Bio-
logicals, Littleton, NH, USA; a marker of mature neu-
rons), mouse monoclonal anti-CD31 (1:100; Abcam; 
a marker of endothelial cells), rabbit monoclonal anti-
BDNF (BDNF; 1:100; Abcam), and rabbit CC chemokine 
ligand 2 (CCL2; 1:100; Abcam). Slides were then washed 
and incubated at room temperature for 60 min with the 
appropriate secondary antibodies: IFKine™ Red Donkey 
Anti-Goat IgG (1:200; Abbkine), goat anti-rabbit DyLight 
594 (1:200; Abbkine), goat anti-mouse DyLight 488 
(1:200; Abbkine), goat anti-rabbit DyLight 488 (1:200; 
Abbkine), goat anti-mouse DyLight 594 (1:200; Abbkine), 
and goat anti-mouse DyLight 405 (1:200; Beyotime Bio-
technology). Cell nuclei were stained with 4′,6-diamid-
ino-2-phenylindole (DAPI; Sigma-Aldrich). Images were 
captured using a fluorescence microscope (Leica, Wet-
zlar, Hesse, Germany).

Microscopical analysis and image quantification
Lesion cortex was screened for 15-µm coronal sections 
at − 0.9,  − 0.6, + 0.0, + 0.6, + 0.9 and + 1.2  mm from 
bregma. To maintain consistency for image analysis, the 
same imaging threshold and exposure time were applied 
for each condition and each time point. Approximately 
4–5 randomized images at 20 × magnification in the 
region of interest (ROI) (ROI: DCX-positive cells in CC 
and cortex; BDNF-positive cells in peri-lesion cortex 
or in peri-SVZ; BDNF/GFAP-positive cells or CCL2-
positive cells in the cortex) were captured from each 
coronal section. The immune-positive cell numbers were 
calculated with ImageJ software (NIH, Bethesda, MD, 
USA) and were presented as the mean number of cells 
per square millimeter. The results were further analyzed 
using GraphPad Prism 8.0.1.

Enzyme‑linked immunosorbent assay
Tissue samples were weighed immediately after col-
lection to obtain the wet weight, snap frozen in liquid 
nitrogen and stored at − 80  °C until analysis. Each sam-
ple was transferred to ice-cold homogenization buffer 
and homogenized for 1 min in a tissue homogenizer. The 
lysate from each sample was centrifuged at 5000  g for 
20  min at 4  °C and the supernatant solutions were col-
lected. The supernatant from each sample was frozen for 
subsequent measurements of ELISA kit (MEIKE, Jiangsu, 

China) following the manufacturer’s protocol. In brief, 
50  µL of standards or 50  µL samples were added into 
each flat-bottom wells, covered with an adhesive strip, 
and incubated for 120 min at 37  °C. Wells were washed 
3 times with 300  µL of diluted wash buffer. Diluted 
biotinylated mouse anti-BDNF or anti-CCL2 mono-
clonal antibody (100  µL) was added to each well, cov-
ered with an adhesive strip, and incubated for 60 min at 
37  °C. Wells were washed again 3 times with 300  µL of 
diluted wash buffer. Dilution of streptavidin-HRP con-
jugate solution (50 µL) was added to each well, covered 
with an adhesive strip, and incubated for 20 min at room 
temperature. Wells were washed 3 times with 300 µL of 
diluted wash buffer. About 50  µL of substrate solution 
was added to each well and incubated at 37 °C for 15 min. 
Reaction was stopped by adding 50 µL of stop solution to 
each well. The wells were read immediately using ELISA 
plate reader at 450 nm. Optical density (OD) of standard 
solution was plotted against known concentration of the 
standards to get the standard curve. Unknown concentra-
tion of BDNF or CCL2 in the samples was calculated by 
plotting their OD values into the standard curve. Finally, 
data were expressed as pg/g tissue and group mean was 
determined.

Statistical analysis
PASS software was used to predetermine the sample 
sizes. No animals or data points were excluded from the 
analysis. All the data are presented as mean ± standard 
error of mean (SEM). All statistical analyses were per-
formed with GraphPad Prism 8.0.1 software (Graph-
Pad Software, San Diego, CA, USA). All the data were 
analyzed with Student’s t-test or one-way or two-way 
analysis of variance followed by Tukey’s post hoc test. P 
values < 0.05 was considered statistically significant.

Results
Spatiotemporal profile of neuroblasts migration after TBI
Compared with the sham group, DCX-positive cells were 
found in SVZ and corpus callosum (CC) on day 1 post-
TBI, in cortex on day 3 post-CCI, in lesion area on day 7 
post-CCI, indicating the orient migration of neuroblasts 
from SVZ to lesion(Fig. 1A, B). The number of DCX pos-
itive cells in CC and injured cortex peaked on day 7 post-
CCI (P < 0. 05) (Fig. 1A–C), and then decreased on day 14 
and 21 post-CCI (Fig. 1C).

BDNF gradient is responsible for the navigation 
of neuroblasts after TBI
BDNF-positive cells in the migrating path of neuroblasts 
increased on day 1 and 3 post-CCI (Fig.  2A, B), reach-
ing a peak expression on day 7 (Fig. 2A–C), and showed 
a downward trend on day 14 and 21 (Fig.  2A, B). The 
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number of BDNF-positive cells and the level of BDNF 
expression were significantly higher in peri-lesion area 
than in peri-SVZ area at different post-CCI time points 
(P < 0. 05) (Fig. 2D, E).

Reactive astrocyte dominates the expression of BDNF 
within migrating path after TBI
NeuN, GFAP, Iba-1 and CD31 were colocalized with 
BDNF respectively (Additional file  1: Fig. S1 A–D). 
Reactive astrocytes were found to be a major factor 

stimulating BDNF expression after CCI (P < 0. 05) (Addi-
tional file 1: Fig. S1 A, E).

GFAP-positive cells in cortex increased on day 1 and 3 
and showed a peak trend on day 7 (Fig. 3A). The GFAP-
positive cells were still remarkably found on day 14 and 
on day 21, and there was a tendency of glial scar forma-
tion in the lesion area (Fig. 3A). BDNF-positive cells and 
GFAP-positive cells were co-located at different post-CCI 
time points (Fig.  3B, C) and the number of co-located 
cells peaked on day 7 post-CCI (P < 0. 05) (Fig.  3B–D). 

Fig. 1  Spatiotemporal characteristics of neuroblasts migration after TBI. Coronal sections of forebrain were immunostained with anti-DCX antibody 
(red, neuroblasts) and DAPI (blue, nucleus). The level of neuroblast migration from SVZ into the CC and the perilesional cortex was determined 
by DCX/DAPI co-staining. A photomicrograph showing the distribution of DCX+ cells in the CCI groups (1, 3, 7, 14 and 21 days after CCI) and the 
sham group. The DCX-positive cells were found in CC on day 1 post-CCI, and in cortex on day 3, day 14 and day 21 post-CCI. The DCX-positive cells 
were present in lesion cortex on post-CCI day 7. In the sham group, DCX positive cells were only observed in SVZ. Scale bar = 5 μm (A1–A6), Scale 
bar = 125 μm (a1–a6). B Images of DCX+/DAPI+ cells on day 7 post-CCI. DCX positive cells were observed as spherical clusters (b1) or assembled 
in chains (b2) or individual cells (b3 and b4). Scale bar = 5 μm (B1), Scale bar = 125 μm (b1–b4). C The number of migrating cells (DCX+ of DAPI+ 
cells) in the CC and cortex at different CCI time courses (1, 3, 7, 14 and 21 days after CCI) and sham control. The number of DCX-positive cells 
increased above the baseline (sham control) level on day 1 and 3 post-CCI and increased significantly above the baseline on day 7 post-CCI (P < 0. 
05). The number of DCX-positive cells declined on day 14 and 21 post-CCI, but still above the baseline (sham control) level (P < 0.05). Data are 
expressed as the mean ± SEM, n = 6 for each time-point. *, P < 0.05; one way ANOVA with Tukey’s multiple comparisons test. CCI: controlled cortical 
impact; TBI: traumatic brain injury; SVZ: subventricular zone; DAPI: 4,6-Diamidino-2-phenylindole; CC: corpus callosum
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In addition, DCX positive cells, BDNF positive cells and 
GFAP positive cells were observed to be adjacent in the 
migrating path of neuroblasts after CCI (Fig. 3E).

CCL2 promotes neuroblasts migration and reactive 
astrocytes‑derived BDNF expression
Among the CCL2, TNF-α, IL-6 and IL-1β, CCL2 showed 
maximal effects to provoke neuroblast migration (unpub-
lished data). The neuroblasts were discovered in SVZ, 
corpus callosum, striatum and cortex adjacent to the 
injection canal in the CCL2 groups (Fig. 4A4–A6, a4–a6). 
CCL2 could provoke neuroblast migration at three dif-
ferent concentrations (50 ng/mL, 100 ng/mL and 500 ng/
mL), with 100  ng/mL being the optimal concentration 
(Fig. 4A7, a7-1, a7-2, a7-3). We injected CCL2 at concen-
tration of 100 ng/mL into the cortex near lesion in mice 
on 28 days after CCI. Likewise, more DCX-positive cells 
were observed along the injection track in CCL2 group 
(Fig.  4A8–A9, a8–a9). Furthermore, both astrocytes 
number and BDNF expression were elevated by CCL2 
treatment (Fig.  4B). Notably, DCX-positive cells were 
partially overlapped with NeuN within the injection track 
(Fig. 4C). In addition, the number of CCL2-positive cells 
and CCL2 level in CCI groups significantly increased 
compared with sham group. (P < 0.05), and CCL2 expres-
sion in cortex increased on day 1 and 3 post-CCI, peak-
ing on day 7, and remained high on day 14 and on day 21 
(Additional file 1: Fig. S2A–D).

CCR2 antagonist restrains neuroblasts migration in TBI 
mice
The DCX positive cells were found in SVZ, CC and 
injured cortex in the TBI-CCR2 antagonist group, while 
they were found only in SVZ and CC in the TBI group 

(Fig. 5A). Moreover, the number of DCX-positive cells in 
the CC and cortex was significantly smaller in the TBI-
CCR2 antagonist group than in the TBI group (P < 0.05, 
Fig.  5B). All the above results indicated that exogenous 
CCR2 antagonist can restrain the neuroblasts migration 
after TBI.

Discussion
At present, there are no effective therapeutic strate-
gies for severe neurological dysfunction in TBI patients. 
Numerous works have proven that stem cell therapy and 
neurogenesis can ameliorate brain injury in experimen-
tal models of TBI and other diseases [4–13]. However, 
the pattern and mechanism of endogenous neuroblasts 
migration after TBI is still unclear. We established a 
TBI model in mice and performed serial experiments to 
explore underlying mechanisms of injury-induced migra-
tion of neuroblasts.

Our results showed that neuroblasts migration initi-
ated as early as day 1 after CCI, peaking on day 7, and 
persisted till day 21 post-CCI. According to the motile 
path, these immature precursors crossed CC and finally 
arrived at injured cortex on day 7 after TBI. On the basis 
of these findings, we investigated the following essential 
questions.

Who regulates the orientation of neuroblasts from SVZ 
to cortex after TBI? As these neural progenitors migrate 
in long distance throughout brain tissue, they are sup-
ported by various guidance cues as chemoattractants. For 
example, vascular endothelial cells secrete chemoattrac-
tive/trophic factors for neuroblasts, such as SDF-1, Ang1, 
and BDNF [13, 14, 43], which may help recruit neuro-
blasts to the vicinity of the vessels. Likewise, the astro-
cytes attract neuroblasts by secreting or trapping soluble 

(See figure on next page.)
Fig. 2  Spatiotemporal characteristics of BDNF expression after TBI. Coronal sections of forebrain were immunostained with anti-BDNF antibody 
(red, BDNF-positive cells) and DAPI (blue, nucleus). The levels of BDNF in peri-SVZ and in peri-lesion cortex were determined by BDNF/DAPI 
co-staining and ELISA analysis. A photomicrograph showing the distribution of BDNF+ cells at different CCI time courses (1, 3, 7, 14 and 21 days 
after CCI) and sham control. We observed the BDNF-positive cells in the cortex nearby CC increased on day 1 post-CCI, and significantly increased 
on day 3. There was a peak expression on day 7 post-CCI. The BDNF-positive cells showed a downward trend on day 14 and on day 21 post-CCI. 
Scale bar = 5 μm (A1–A6), Scale bar = 50 μm (a1–a6). B photomicrograph showing the distribution of BDNF+ cells in peri-SVZ and peri-lesion 
at different CCI time courses (1, 3, 7, 14 and 21 days after TBI) and sham control. The number of BDNF-positive cells was significantly larger in 
peri-lesion area than in peri-SVZ area at different time courses post-CCI. Scale bar = 25 μm. C Images of BDNF+/DAPI+ cells on day 7 post-CCI. D 
The number of migrating cells (BDNF+/DAPI+ cells) in peri-SVZ and peri-lesion cortex at different CCI time courses (1, 3, 7, 14 and 21 days after 
CCI) and sham control. The number of BDNF-positive cells increased markedly relative to the baseline (sham control) in peri-lesion area on 7 days 
post-CCI. The number of BDNF-positive was markedly higher on 7 days than on 21 days post-CCI. E ELISA analysis was applied to measure the 
concentration of BDNF in peri-SVZ and peri-lesion cortex at different CCI time courses (1, 3, 7, 14 and 21 days after CCI) and sham control. The level 
of BDNF expression was significantly higher in peri-lesion area than in peri-SVZ area at different time courses post-CCI. Data are expressed as the 
mean ± SEM, n = 6 for each time-point. *, P < 0.05; two-way ANOVA with Tukey’s multiple comparisons test. CCI: controlled cortical impact; TBI: 
traumatic brain injury; SVZ: subventricular zone; DAPI: 4,6-Diamidino-2-phenylindole; CC: corpus callosum
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Fig. 2  (See legend on previous page.)
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factors including GABA and BDNF [9, 13, 14]. Moreo-
ver, BDNF was reported to control the direction of neu-
ral precursor cells movement or axon growth dependent 
on concentration difference [16, 17]. In this study, BDNF 
was highly expressed within migrating path, and the tem-
poral characteristics of BDNF expression was similar to 
that of neuroblasts migration. More intriguingly, the level 
of BDNF expression was much higher in peri-lesion than 
in peri-SVZ after CCI. Thus, we speculate that the BDNF 
gradient is responsible for the navigation of neuroblasts 
after TBI.

Who dominates the expression of BDNF within migrat-
ing path after TBI? BDNF has been previously shown to 
be secreted from several cell types, i.e. neurons, astro-
cytes, microglia and endothelial cells after brain injury 
[13, 44]. In our study, reactive astrocyte was the major 
resource of BDNF in the early phase after CCI, distrib-
uted within the migrating path. In the late phase, BDNF 
expression was decreased despite high ratio of astrocytes 
on day 14 and 21 (glial scar), indicating that astrocytes 
in glial scar may be functionally inactive. In physical 
mice, chains of neuroblasts were surrounded by astro-
cytic tunnels called glial tubes, and neuroblasts migrated 
along glial tube [9]. In our study, reactive astrocytes were 
also distributed in migrating path following CCI. More-
over, DCX, BDNF and GFAP were adjacently expressed 
in this path, indicating that there was close relationship 
among neuroblasts, BDNF and reactive astrocytes. Our 
results indicated that reactive astrocytes could act as 
BDNF producer and migrating scaffold for neuroblasts 
migration.

Who initiates and regulates above neuroblasts migra-
tion after TBI? We attempted to seek potential regula-
tors of neuroblasts migration with following criteria: 
polyergic control of astrocyte activation and BDNF 
secretion, and tested four cytokines (CCL2, TNF-1α, 

IL-6, and IL-1β). Among these cytokines, CCL2 exhib-
ited maximal effects to promote neuroblasts migration, 
and possessed even similar spatiotemporal profile to 
BDNF expression, suggesting that CCL2 might be one 
of the endogenous regulators of neuroblasts migra-
tion. To verify the effects of exogenous chemoattract-
ant in neuroblasts migration, the optimal concentration 
of CCL2 was injected into the different sites of hemi-
sphere in normal mice. Consequently, it duplicated 
the neuroblasts migration from SVZ to injection sites 
and promoted local astrocytes activation and BDNF 
expression. Next, to test the effect of CCL2 in endog-
enous neuroblasts migration in the late phase of brain 
injury, CCL2 was injected into peri-lesion cortex in 
mice on day 28 after TBI. Interestingly, we observed a 
small number of neuroblasts could still cross glial scar 
and arrived at the lesion area. Notably, these neuro-
blasts also possessed the potential to differentiate into 
mature neurons. However, further studies are war-
ranted regarding whether they finally work as func-
tional neurons [11, 45, 46]. If the new mature neurons 
are functional and their formation can be stimulated, a 
novel therapeutic strategy might be developed for TBI 
in humans. In addition, CCR2 antagonist can restrain 
the neuroblasts migration after TBI. All the results 
indicated that exogenous CCL2 is promising to restart 
neuroblasts migration even in both normal and CCI 
mice (day 28; the late phase of brain injury). CCL2 is 
known to be up-regulated under various pathologi-
cal conditions, including TBI, impairing the integrity 
of the blood–brain barrier (BBB) [47, 48]. CCL2 also 
initiates an inflammatory response after brain injury 
through recruitment of microglia and macrophage 
to the area of injury [49–51]. Whether and how these 
processes interfere with the endogenous mechanism of 

Fig. 3  Spatiotemporal characteristics of reactive astrocytes and reactive astrocyte-derived BDNF after TBI, and close relationship with migrating 
neuroblasts. Coronal sections of forebrain were immunostained with anti-GFAP antibody (green, reactive astrocytes), anti-BDNF antibody (red or 
green, BDNF-positive cells) and DAPI (blue, nucleus). A photomicrograph showing the distribution of GFAP + cells at different TBI time courses (1, 3, 
7, 14 and 21 days after TBI) and sham control. Scale bar = 5 μm (A1–A6), Scale bar = 50 μm (a1–a6). B photomicrograph showing the distribution 
of BDNF+/GFAP + cells at different CCI time courses (1, 3, 7, 14 and 21 days after TBI) and sham control. Scale bar = 5 μm (B1–B6), Scale bar = 50 μm 
(b1–b6). C Images of BDNF+/GFAP +/DAPI+ cells on day 7 post-CCI. Scale bar = 5 μm (C1), Scale bar = 50 μm (c1–c2). D The number of BDNF+/
GFAP+/DAPI+ cells in cortex at different CCI time courses (1, 3, 7, 14 and 21 days after CCI) and sham control. E1, e1 Images of DCX+/GFAP+ cells 
on day 7 post-CCI showing DCX+ and GFAP immunoreactivity as merged image. Scale bar = 25 μm (E1), Scale bar = 100 μm. (e1). E2, e2 Images of 
BDNF+/DCX+ cells on day 7 post-CCI showing DCX+ and GFAP immunoreactivity as merged image. Scale bar = 25 μm (E2), Scale bar = 100 μm 
(e2). E3, e3 Images of BDNF+/DCX+/GFAP+cells on day 7 post-CCI showing BDNF+, DCX+ and GFAP immunoreactivity as merged image. Scale 
bar = 25 μm (E3), Scale bar = 200 μm (e3, e3-1, e3-2, e3-3). The results revealed that the DCX-positive cells, BDNF-positive cells and GFAP-positive 
cells were accompanied at different time points post-CCI and showed a peak trend on day 7 post-CCI. Data are expressed as the mean ± SEM, n = 6 
for each time-point. *, P < 0.05; one way ANOVA with Tukey’s multiple comparisons test. CCI: controlled cortical impact; TBI: traumatic brain injury; 
SVZ: subventricular zone; DAPI: 4,6-Diamidino-2-phenylindole; CC: corpus callosum

(See figure on next page.)
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BDNF function and neuroblasts migration need further 
investigation. The capacity of neuroblasts migration is 
impaired under trauma condition, probably due to the 
detrimental microenvironment and glial scar obstruc-
tion [52–54], and optimal administrative protocol of 
CCL2 would be explored in the future work. Undoubt-
edly, we acknowledge that many other factors that were 
not considered here may influence neuroblast migra-
tion. In term of current mechanism, bioinformatic pre-
diction and proteomic screening is warranted to seek 
more candidate targets in the future.

Conclusions
The current study implicated a key step of neuroblasts 
migration following TBI: the neuroblasts migrate along 
the activated astrocytic network, directed by BDNF 
gradient between SVZ and injured cortex. Such process 
is under control of CCL2, which might act as a regulator 
of both spatial activation and BDNF secretion within 
astrocytes. Till now, implantation of exogenous stem 
cells in patients failed to pass the clinical trials. Thus, 
modulation of endogenous neurogenesis is regarded as 
a promising regimen for TBI therapy. Given CCL2 is a 
chemokine, early administration after TBI might trig-
ger inflammatory response and aggravate brain injury. 
The strategy of delayed administration may provide 
a novel solution for late neurogenesis post-trauma. 
However, due to species differences between mice and 
humans, preclinical trials are needed before applied to 
clinic practice.

Fig. 4  Exogenous CCL2 promoted neuroblasts migration and 
reactive astrocytes-derived BDNF expression in both normal and 
TBI mice (day 28). These provoked neuroblasts could differentiate 
into functional neurons. Coronal sections of forebrain were 
immunostained with anti-DCX antibody (red, neuroblasts), anti-BDNF 
antibody (red, BDNF-positive cells), anti-GFAP antibody (green, 
reactive astrocytes), anti-NeuN antibody (green, neurons) and DAPI 
(blue, nucleus). Yellow and pink arrows: injection pathway. A1–A6, 
a1–a6 Photomicrograph showing the distribution of DCX+ cells at 
different injection time courses (3, 7 and 14 days after injection) in 
normal mice with vehicle or CCL2 (100 ng/mL). Scale bar = 5 μm 
(A1–A6), Scale bar = 200 μm (a1–a6). A7, a7 Photomicrograph 
showing the distribution of DCX+ cells at 3 days after injection 
in normal mice with CCL2 (100 ng/mL). Scale bar = 5 μm (A7), 
25 μm (a7-1), 50 μm (a7-2), and 200 μm (a7-3). A9–A10, a9–a10 
Photomicrograph showing the distribution of DCX+ cells on day 7 
after injection in CCI mice with vehicle or CCL2 (100 ng/mL). Scale 
bar = 5 μm (A9–A10), 200 μm (a9–a10). B1, b1 Images of BDNF+/
GFAP+ cells in cortex of normal mice on day 7 post-injection with 
vehicle showing GFAP and BDNF immunoreactivity separately or 
as merged image. Scale bar = 12.5 μm (B1), 50 μm (b1). B2, b2 
Images of BDNF+/GFAP+ cells in cortex of normal mice on day 7 
post-injection with CCL2 (100 ng/mL) showing GFAP and BDNF 
immunoreactivity separately or as merged image. Scale bar = 12.5 μm 
(B2), 50 μm (b2). B3, b3 Images of BDNF+/GFAP+ cells in cortex 
of CCI 28d mice on day 7 post-injection with vehicle showing GFAP 
and BDNF immunoreactivity separately or as merged image. Scale 
bar = 12.5 μm (B3), 50 μm (b3). B4, b4 Images of BDNF+/GFAP+ cells 
in cortex of CCI 28d mice on day 7 post-injection with CCL2 (100 ng/
mL) showing GFAP and BDNF immunoreactivity separately or as 
merged image. Scale bar = 12.5 μm (B4), 50 μm (b4). C Images 
of DCX+/NeuN+/DAPI cells in cortex of normal mice on day 14 
post-injection with CCL2 (100 ng/mL) showing NeuN and DCX 
immunoreactivity separately or as merged image. Scale bar = 5 μm 
(C1), 50 μm (c1). Pink arrow: injection track. CCI: controlled cortical 
impact; TBI: traumatic brain injury; CC chemokine ligand 2 = CCL2; 
DAPI: 4,6-Diamidino-2-phenylindole; CC: corpus callosum

◂
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Fig. 5  CCR2 antagonist restrained neuroblasts migration in TBI mice (day 7). Coronal sections of forebrain were immunostained with anti-DCX 
antibody (red, neuroblasts) and DAPI (blue, nucleus). White arrows: DCX+ cells. A1, a1, a1-1 Photomicrograph showing the distribution of DCX+ 
cells in the TBI group. The DCX positive cells were found in SVZ, CC and injury cortex in the TBI-CCR2 antagonist group. Scale bar = 12.5 μm (A1), 
25 μm (a1), 50 μm (a1-1). A2, a2 Photomicrograph showing the distribution of DCX+ cells in the TBI-CCR2 antagonist group. The DCX positive 
cells were found only in SVZ and CC in the TBI group. Scale bar = 12.5 μm (A2), 25 μm (a2). B The number of migrating cells (DCX+ cells) in the CC 
and cortex was significantly smaller in the TBI-CCR2 antagonist group than in the TBI group (P < 0.05). Data are expressed as the mean ± SEM, n = 6 
for each time-point. *, P < 0.05; Student’s t-test. CCI: controlled cortical impact; TBI: traumatic brain injury; CC chemokine ligand 2 = CCL2; DAPI: 
4,6-Diamidino-2-phenylindole; CC: corpus callosum
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Additional file 1: Fig. S1. Cellar source of BDNF expression after TBI. 
Coronal sections of forebrain were immunostained with anti-BDNF 
antibody (red, neuroblasts), anti-GFAP (green, astrocyte), anti-NeuN (green, 
neuron), anti-Iba1 (green, microglia), anti-CD31 (green, endothelial cells) 
and DAPI (blue, nucleus) to analyze cellar source of BDNF expression after 
CCI. (A): Images of BDNF+/GFAP+ cells in the peri-lesion cortex on day 7 
post CCI showing BDNF (A2) and GFAP (A3) immunoreactivity separately 
or as merged image (A4). Scale bar = 50 μm. (B): Images of BDNF+/NeuN 
+ cells in the peri-lesion cortex on day 7 post CCI showing BDNF (B2) and 
NeuN (B3) immunoreactivity separately or as merged image (B4) .Scale 
bar =50 μm. (C): Images of BDNF+/Iba1+ cells in the peri-lesion cortex 
on day 7 post CCI showing BDNF (C2) and Iba1 (C3) immunoreactivity 
separately or as merged image (C4).Scale bar =50 μm. (D): Images of 
BDNF+/CD31+ cells in the peri-lesion cortex on day 7 post CCI showing 
BDNF (D2) and CD31 (D3) immunoreactivity separately or as merged 
image (D4). Scale bar =50μm.(A-D) indicated that neurons, astrocytes, 
microglia and endothelial cells all contributed to BDNF expression after 
CCI. (E): The percentage of BDNF+/GFAP+ cells, BDNF+/NeuN+ cells, 
BDNF+/Iba1+ cells, and BDNF+/CD31+ cells in BDNF+ cells on day 7 
post CCI. The results(a-e) indicated that astrocytes might be a major factor 
stimulating BDNF expression after CCI. Data are expressed as the mean ± 
SEM, n = 6 for each time-point. *, P < 0.05; one way ANOVA with Tukey’s 
multiple comparisons test. CCI: controlled cortical impact; TBI: traumatic 
brain injury; DAPI: 4,6-Diamidino-2-phenylindole. Fig. S2. Spatiotemporal 
characteristics of CCL2 expression after TBI. Coronal sections of forebrain 
were immunostained with anti-CCL2 antibody (red, CCL2-positive cells) 
and DAPI (blue, nucleus).The level of CCL2 in peri-lesion cortex was 
determined by CCL2/DAPI co-staining and ELISA analysis. (A): photomi-
crograph showing the distribution of CCL2+ cells at different CCI time 
courses (1, 3, 7, 14 and 21 days after CCI) and sham control. CCL2-positive 
cells in the cortex increased on day 1 post CCI, and significantly increased 
on day 3, with a peak expression on day 7 post CCI. The CCL2-positive cells 
showed a downward trend on day 14 and on day 21 post CCI. Scale bar = 
5μm (A1-A6), Scale bar = 25μm(a1-a6). (B): Images of CCL2+/DAPI+ cells 
on day 3 and day 7 post CCI. (C): The number of migrating cells (CCL2+/
DAPI+ cells) in peri-lesion cortex at different CCI time courses (1, 3, 7, 14 
and 21 days after CCI) and sham control. The number of CCL2-positive 
cells increased markedly compared with the baseline (sham control) in 
peri-lesion area on 7 days post CCI. (D): ELISA analysis was applied to 
measure the concentration of CCL2 in peri-lesion cortex at different CCI 
time courses (1, 3, 7, 14 and 21 days after CCI) and sham control. Data 
are expressed as the mean ± SEM, n = 6 for each time-point. *, P < 0.05; 
one way ANOVA with Tukey’s multiple comparisons test. CCI: controlled 
cortical impact; TBI: traumatic brain injury; CC chemokine ligand 2=CCL2; 
DAPI: 4,6-Diamidino-2-phenylindole.
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