
Zhang et al. Stem Cell Research & Therapy           (2023) 14:15  
https://doi.org/10.1186/s13287-023-03239-1

RESEARCH

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

Stem Cell Research & Therapy

Tumor stemness score to estimate 
epithelial‑to‑mesenchymal transition 
(EMT) and cancer stem cells (CSCs) 
characterization and to predict the prognosis 
and immunotherapy response in bladder 
urothelial carcinoma
Yanlong Zhang1†, Xin Zhang2,3†, Xuefeng Huang4†, Xiaomeng Tang4, Menghan Zhang4, Ziyi Li4, Xiaopeng Hu2,3, 
Min Zhang2,3,8*, Xi Wang5,6,7* and Yong Yan1*    

Abstract 

Background  A growing number of investigations have suggested a close link between cancer stem cells (CSCs), 
epithelial-to-mesenchymal transition (EMT), and the tumor microenvironment (TME). However, the relationships 
between these physiological processes in bladder urothelial carcinoma (BLCA) remain unclear.

Methods  We first explored biomarkers of tumor stemness (TS) by single-cell sequencing analysis. Then, subtypes of 
bladder urothelial carcinoma (BLCA) were identified using clustering analysis based on TS biomarkers. The TS score 
was constructed using principal component analysis to quantify tumor stemness in BLCA. Then, meta-analysis was 
performed to measure the hazard ratio of the TS score in BLCA cohorts. Moreover, we evaluated the clinical value of 
the TS score for predicting the response to tumor immunotherapy using immunotherapy cohorts. Finally, we built 
an EMT cell model by treating T24 cells with TGF-β and validated the relationship between the TS score and the EMT 
process in tumors by real-time quantitative PCR, cell invasion assays, and RNA-seq. In total, 3846 BLCA cells, 6 cell lines, 
1627 BLCA samples, and 9858 samples from 32 other types of tumors were included in our study.

Results  Three TS clusters and two TS-related gene clusters were identified with differential EMT activity status, CSC 
features, and TME characteristics in BLCA. Then, a TS scoring system was established with 61 TS-related genes to quan-
tify the TS. The prognostic value of the TS score was then confirmed in multiple independent cohorts. A high TS score 
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was associated with high EMT activity, CSC characteristics, high stromal cell content, high TP53 mutation rate, poor 
prognosis, and high tumor immunotherapy tolerance. The cell line experiment and RNA-seq further validated that our 
TS score can reflect the EMT and CSC characterization of tumor cells.

Conclusion  Overall, this research provides a better understanding of tumor invasion and metastasis mechanisms 
through an analysis of TS patterns with different EMT processes and CSC characteristics. The TS score provides an 
index for EMT and CSC research and helps clinicians develop treatment plans and predict outcomes for patients.

Keywords  Epithelial-to-mesenchymal transition (EMT), Bladder urothelial carcinoma (BLCA), Cancer stem cells (CSCs), 
Tumor immunology, Prognostic biomarker, Immunotherapy, Single-cell sequencing

Introduction
Epithelial-to-mesenchymal transition (EMT) is the 
reversible recoding of epithelial cells to mesenchymal 
cells [1, 2] (Fig. 1A). During EMT in embryonic develop-
ment, epithelial cells lose all vestiges of their epithelial 
origin and acquire a fully mesenchymal phenotype in a 
process known as complete EMT, which is typically char-
acterized by a so-called cadherin switch [3]. Because mes-
enchymal cells comprise a variety of cell types, epithelial 
cells can transform into multiple lineages during the 
EMT process [4]. Cancer stem cells (CSCs) have the fea-
tures of mesenchymal cells and the principal properties 

of self-renewal, clonal tumor initiation capacity, and 
clonal long-term repopulation potential [5]. Many studies 
have indicated that epithelial tumor cells can transform 
into CSCs and invade muscle [6, 7]. Although many pre-
vious studies have focused on the relationships among 
EMT, the biological characteristics of tumor cells, and 
cancer patient prognosis, few researchers have focused 
on the link between EMT and CSCs. Thus, it is necessary 
to identify a signature of tumor stemness (TS) to explore 
the relationship between EMT and CSCs in cancer.

Bladder urothelial carcinoma (BLCA) is one of the 
most common and deadly urinary system-associated 

Fig. 1  Overview of single-cell and prognostic value of each type cell’s biomarker in BLCA tissue. A The EMT process in tumor tissue. B The t-SNE 
plot of all the single cells, with each color coded for 4 major cell types. C Differentiation trajectory of epithelial cells in BLCA, with each color coded 
for cell types (top), pseudotime (medium), and statues (bottom). D Kaplan–Meier curves for high/low state 1 ssGSEA score groups in TCGA BLCA 
cohort. Log-rank test, p = 0.024. E Kaplan–Meier curves for high/low tissue stem cells ssGSEA score groups in TCGA BLCA cohort. Log-rank test, 
p = 0.007
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cancers [8]. Although the treatments for BLCA have 
improved, the recurrence rate remains high [9]. In one 
study, the ten-year recurrence rate of BLCA in patients 
with nonmuscle-invasive bladder cancer (NMIBC) was 
74%, and these patients ultimately developed muscle-
invasive bladder cancer (MIBC) [10]. Since BLCA  is an 
epithelial tumor, many researchers have explored the 
relationship between EMT and BLCA. Through EMT, 
epithelial tumor cells transform into mesenchymal cells, 
and some epithelial tumor cells gain CSC characteristics, 
exhibiting strong proliferation capacities and invasive-
ness [11–13]. When these cells exit the bladder muscle 
layer, patients with NMIBC develop MIBC, necessitating 
radical cystectomy and leading to a poor prognosis and 
quality of life [14]. Therefore, we hypothesize that these 
CSCs from EMT are critical factors in the progression 
of NMIBC into MIBC and that TS can accurately reflect 
BLCA prognosis.

Recently, as knowledge of tumor immunology has pro-
gressed, immunotherapy options have been developed 
and applied that have shown significant effects against 
BLCA [15–17]. However, due to tumor cell heterogene-
ity and the tumor microenvironment (TME), immuno-
therapy is only effective for some BLCA patients [18]. 
The identification of accurate biomarkers is necessary 
to predict the outcomes of immunotherapy for BLCA. 
EMT progression and CSCs are influenced by the tumor 
microenvironment, including tumor stromal cells and 
immune cells [19]. Therefore, we propose that CSCs from 
EMT are associated with the TME and TS can predict 
the effect of immunotherapy on BLCA.

With the development of high-throughput sequencing, 
it is possible to seek biomarkers in all genomic biological 
pathways [20, 21]. Due to the emergence and populari-
zation of single-cell sequencing, we can further research 
cell characteristics and subtypes at the single-cell level 
[22, 23]. Additionally, the development of algorithms 
and the application of machine learning in bioinformat-
ics allow developmental and trajectory analyses based on 
tumor single-cell sequencing data [24, 25]. These tech-
nologies are valuable tools for studying CSCs from EMT 
and quantizing TS.

In this study, we first identified TS biomarkers associ-
ated with EMT and CSCs by single-cell sequencing and 
developmental trajectory analysis. Then, we identified 
three TS clusters by unsupervised clustering analysis 
in The Cancer Genome Atlas (TCGA) cohort. To fur-
ther explore TS characteristics in the whole genome, 
we selected TS-related genes by differential and cluster-
ing analyses. Next, we identified two TS-related gene 
clusters and found these clusters with disparate CSC 
and EMT features at the bulk RNA-seq level. Finally, we 
designed a TS scoring system to quantify CSCs and EMT 

characteristics. Our independent BLCA dataset valida-
tion studies, cell line validation experiments, and pan-
cancer analyses indicated that the TS score could reflect 
CSC, EMT, and TME characteristics and predict patient 
prognosis and immunotherapy responses in BLCA and 
other cancers.

Materials and methods
Obtaining and processing of data
The workflow for our study was displayed in Addi-
tional file 1: Figure S1A. We collected single-cell mRNA 
sequencing data of BLCA tissue cells from the Gene 
Expression Omnibus (GEO: https://​www.​ncbi.​nlm.​nih.​
gov/​geo/) database (GSE146137). Then, we collected 
bulk mRNA sequencing data or mRNA microarray 
data and corresponding clinical information of BLCA 
cohorts from the TCGA (https://​portal.​gdc.​cancer.​gov), 
ArrayExpress (https://​www.​ebi.​ac.​uk/​array​expre​ss/) 
(E-MTAB-4321), and GEO databases (GSE13507 and 
GSE32894). Meanwhile, we collected mRNA microarray 
data and mRNA sequencing data of the immunotherapy 
cohorts, including the melanoma PD-1 treatment cohort 
and BLCA PD-L1 treatment cohort, from the GEO data-
base (GSE78220) and the R package “IMvigor210CoreBi-
ologies” (IMvigor 210 cohort). Next, we collected mRNA 
sequencing data and mRNA microarray data of cell lines 
treated with transforming growth factor-β (TGF-β) from 
the GEO database (GSE98979, GSE17708, GSE101809, 
GSE124843, and GSE23952). Finally, the somatic muta-
tion variation data and RNA sequencing data of pan-can-
cer were collected from the University of California Santa 
Cruz (UCSC) Xena browser (https://​xenab​rowser.​net). 
The search strategy of the BLCA cohorts was as follows: 
(1) include “bladder cancer” and dataset types with RNA-
seq or microarray data; (2) include more than one hun-
dred BLCA samples with survival data; and (3) include 
expression information of model genes. Finally, the RNA 
sequencing data (fragments per kilobase transcript per 
million mapped reads [FPKM] values) were transformed 
into transcripts per kilobase million (TPM) values and 
dealt with the log2(n + 1)  processing. The clinical infor-
mation about the TCGA BLCA cohorts was presented in 
Table S1.

Pseudotime analysis of BLCA cells
Single-cell analysis was performed by the R package 
“Seurat” [26, 27]. We first calculated the mitochondrial 
gene percentage and deleted the mRNA sequencing 
data with a feature gene content < 50 and a percentage of 
mitochondrial gene content > 5%. Next, we selected the 
top 1500 variant genes for principal component analysis 
(PCA). We then chose the top 15 principal components 
for t-distributed stochastic neighbor embedding (t-SNE) 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov
https://www.ebi.ac.uk/arrayexpress/
https://xenabrowser.net
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analysis. The R package “celldex” was used for cell-type 
annotation, and the R package “monocle” was used for 
cell trajectory and pseudotime analysis [28, 29]. The 
R package “Seurat” was used to identify differentially 
expressed genes between cell clusters, cell types, and cell 
statuses by the “wilcox” method, and the filter condition 
was Log |FC|> 1 and adjusted P value < 0.05 [30].

Unsupervised clustering analysis
To extract the characteristics of mRNA expression data 
and verify the TS and TS-related gene clusters, we per-
formed unsupervised clustering methods based on TS 
biomarkers and TS-related genes in the TCGA cohort. 
The K-means clustering algorithm was applied and 
repeated 1,000 times using the R package “Consensus-
ClusterPlus” to ensure the stability of the subtype analy-
sis [31].

GO and KEGG functional enrichment analysis
The molecular function of TS biomarkers was identi-
fied by gene functional enrichment analysis using Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) databases and the R package “cluster-
Profiler” (adjusted P < 0.05).

Differentially expressed gene analysis
The differentially expressed genes (DEGs) between the 
three TS clusters with adjusted p values < 0.001 were 
selected using the R package “limma” for further analysis 
[30].

Construction of the TS score and nomogram
We further identified 61 TS-related genes from 904 
DEGs between the three TS clusters using univariate 
Cox regression analysis. Then, we performed a principal 
component analysis (PCA) based on TCGA BLCA data 
to quantify the TS and generate a TS score. PC1 and PC2 
were extracted to calculate the TS score as follows: TS 
score = Σ(PC2i – PC1i), where i was the expression of 
61 TS-related genes. The advantage of this approach was 
that it concentrated the score on the largest set of highly 
correlated (or unrelated) gene blocks, while downweight-
ing the contribution of genes that were not tracked by 
other set members [32, 33].

Univariate Cox regression analysis was used to explore 
the correlations among clinical variables, TS scores, and 
overall survival (OS) time of BLCA patients. We built a 
prognostic risk score model and nomogram based on 
the TCGA BLCA cohort and multivariate Cox regres-
sion analysis. Finally, Kaplan–Meier (K–M) survival 
curves and time-dependent receiver operating charac-
teristic (ROC) analysis were used to evaluate the prog-
nostic value of the TS score, risk model, and nomogram. 

P values calculated by log-rank tests < 0.05 and an area 
under the ROC curve (AUC) > 0.60 indicated that the 
prediction ability of each index was meaningful.

Molecular function and pathway analysis
The R package “GSVA” was used to calculate the single-
sample gene set enrichment (ssGSEA) score for each 
sample and quantify the activity level of pathways of each 
cell type [34]. The stem cell gene set used for ssGSEA 
was collected from previous studies [35]. The infiltra-
tion levels of immune cells in BLCA were quantified by 
using the R package “CIBERSORT” [36]. The R package 
“ESTIMATE” was used to evaluate the immune cell and 
stromal cell content (immune and stromal score) of each 
BLCA sample [37].

Cell cultures and reagents
The human bladder cancer cell line T24 used in this 
research was purchased from the  Chinese  Acad-
emy  of  Sciences  Cell  Bank (Shanghai, China) and cul-
tured in McCoy’s 5A medium (iCell, China) containing 
10% fetal bovine serum (FBS, BI, ISR). The cells were 
grown at 37  °C and 5% CO2. The human TGF beta 1 
(TGF-β1) protein was purchased from MedChemExpress 
(HY-P7118). T24 cells were treated with TGF-β1 (10 ng/
ml) for 48 h.

RNA extraction and RT‒qPCR methods
Total RNA was extracted using a FastPure Cell/Tis-
sue Total RNA Isolation Kit (Vazyme, China), and the 
concentration was determined. RNA was then used for 
cDNA synthesis using HiScript III RT SuperMix for 
qPCR (+ gDNA wiper) Mix (Vazyme, China). Next, 
qPCR was conducted using AceQ Universal SYBR qPCR 
Master Mix (Vazyme, China) according to the instruc-
tions provided by the manufacturers. The relative expres-
sion levels of the target genes were analyzed using the 
comparative CT method (2-ΔΔCt) with GAPDH as the 
internal reference. The specific primers for the genes 
were shown in Additional file 13: Table S2.

Wound filling assay
T24 (1 × 106 cells per well) cells were seeded into 6-well 
plates. Identical scratches were made in parallel wells 
12  h after seeding the cells using a 200  µl pipette tip. 
Then, we treated cells with 10 ng/ml TGF-β1 in serum-
free McCoy’s 5A medium. The cells were observed and 
photographed at 0, 12, 24, and 36 h after scratching.

Cell viability assay method
T24 cells were seeded into 96-well plates at a density of 
5,000 cells per well. After cell attachment, TGF-β1 was 
added at concentrations of 5 and 10 ng/ml. Cell viability 
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was measured at 0, 24, and 48  h using a Cell Counting 
Kit-8 (CCK-8) (Vazyme, China). Then, 100 μL of culture 
medium containing 10 μL of CCK-8 solution was incu-
bated in each well at 37 °C for 0.5 h. The absorbance was 
measured at 450 nm using a microplate reader (BioTek, 
USA).

Migration and invasion assays
To explore the effects of TGF-β on T24 cells, migration 
and invasion assays were performed using chambers (8.0-
µm pore size) and matrigel precoated chambers, respec-
tively (Corning, USA). T24 cells (5 × 104) treated with 
TGF-β1 (10  ng/ml) or not were seeded into the upper 
chamber with 200 μL serum-free McCoy’s 5A medium. 
The bottom compartment was supplemented with 500 μL 
medium containing 10% FBS. After incubation for 48 h, 
the cells were fixed with absolute methanol and stained 
with 0.1% crystal violet for 20 min. Finally, the number of 
T24 cells was counted under an inverted microscope.

RNA sequencing of T24  cells
RNA sequencing (RNA‐seq) was performed by Novo-
gene (Beijing, China). Briefly, T24 cells treated with or 
without TGF-β1 (10 ng/ml) for 48 h were used to extract 
total RNA. RNA quality and integrity were assessed using 
the RNA Nano 6000 Assay Kit of the Bioanalyzer 2100 
system (Agilent Technologies, CA, USA). Then, RNA 
libraries were prepared and sequenced using a 150  bp 
pairing end protocol by the Illumina NovaSeq 6000. 
After removing reads containing adapters, reads contain-
ing N bases, and low-quality reads from the raw data, at 
least 70 million clean reads were generated per sample. 
In addition, the Q20, Q30, and GC contents of the clean 
data were calculated. Clean reads were aligned to the ref-
erence genome using HISAT2 (v2.0.5). FeatureCounts 
(v1.5.0-p3) was performed to count the read numbers 
mapped to each gene. These RNA-seq data generated in 
our study were stored in GEO (GSE215947) database.

Statistical analysis
An unpaired Student’s t test was used to compare two 
groups with normally distributed variables, while the 
Mann–Whitney U test was used to compare two groups 
with nonnormally distributed variables. For comparisons 
among three groups, one-way analysis of variance and 
Kruskal–Wallis tests of variance were used for paramet-
ric and nonparametric data, respectively. Contingency 
table variables were analyzed using the Cehi-square 
test or Fisher’s exact test. Meta-analysis (random-effect 
model) was used to identify the hazard ratio (HR) value 
of the TS score in BLCA. Contingency table variables 

were analyzed by the chi-square test or Fisher’s exact 
test. Statistical significance was defined as a two-tailed p 
value < 0.05. All statistical analyses were performed using 
R software (version 4.1.2).

Results
The developmental landscape of bladder cancer cells
We first collected BLCA single-cell sequencing data 
from 3486 CD45(−) BLCA cells from two patients. We 
identified seven clusters (clusters 0–6) in these BLCA 
cells through dimension reduction and cluster analysis 
(Additional file  1: Figure S1B). Further cell annotation 
analysis indicated that clusters 0–3 were epithelial cells, 
cluster 4 comprised chondrocytes, cluster 5 constituted 
endothelial cells, and cluster 6 contained tissue stem cells 
(Fig.  1B). Then, we performed a developmental trajec-
tory analysis and identified three branches in BLCA cells 
(states 1–3). States 1 and 2 represented the transforma-
tion of epithelial cells to chondrocytes, tissue stem cells, 
and endothelial cells (Fig. 1C and Additional file 1: Figure 
S1C, Additional file 14: Table S3). Therefore, we hypothe-
sized that these states represent EMT processes in BLCA 
and that chondrocytes, tissue stem cells, and endothelial 
cells are the three developmental directions of EMT pro-
gression. Finally, we explored the expression of a stem 
cell marker (CD44) in these clusters and found that it 
was significantly increased in cluster 6 (RGS5 + , KRT7−) 
(Additional file 1: Figure S1D–J). This result further iden-
tified cluster 6 as tissue stem cells in BLCA.

TS was associated with BLCA prognosis
To further explore the role of EMT progression in the 
progression and development of BLCA, we analyzed 
the progression in state 1, state 2, and state 3 to verify 
the relationship between these states and the OS time of 
BLCA patients. We identified each cluster, cell type, and 
state biomarker by differential analysis and set the bio-
markers with LogFC > 1 as the gene sets for gene set vari-
ation analysis (GSVA). First, K–M survival curve analysis 
(cutoff value = median ssGSEA score) indicated that the 
ssGSEA score of state 1 was related to the prognosis of 
patients in the TCGA BLCA cohort (Fig. 1D, Additional 
file  2: Figure S2A and B). Because state 1 includes two 
types of cells, tissue stem cells and chondrocytes, we 
further calculated the ssGSEA score of these cell types 
independently, and K–M survival curve analysis (cut-
off value = median ssGSEA score) suggested that the 
ssGSEA score of the tissue stem cells was significantly 
related to the OS time in the TCGA BLCA cohort (Fig. 1E 
and Additional file  2: Figure S2C), indicating that CSCs 
from EMT played a critical role in BLCA progression 
and development. We referred to the genes specifically 
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associated with tissue stem cells as TS biomarkers. We 
performed a functional enrichment analysis to further 
confirm the function of the TS biomarkers and found that 
these biomarkers were mainly associated with epithelial 
cell proliferation, extracellular matrix binding, adherens 
junction, and PI3K-Akt signaling pathways (Additional 
file  2: Figure S2D–G, Additional file  15: Table  S4). This 

result further confirmed that TS biomarkers were related 
to EMT progression in BLCA.

The identification of TS clusters in BLCA
Since TS biomarkers could impact BLCA patient prog-
nosis, we further investigated potential TS clusters and 
characteristics. We first identified three TS clusters in the 
TCGA BLCA cohort based on unsupervised clustering 

Fig. 2  Consensus clustering of TCGA BLCA cohort. A Unsupervised clustering of 342 TS biomarkers in the TCGA BLCA cohort. Red represents high 
expression, and blue represents low expression. LogFC means the log fold change of TS biomarkers from differential analysis with others type cell 
in single-cell analysis. B Kaplan–Meier curves for the three TS clusters of patients. The log-rank test showed an overall p = 0.001. C Boxplot of 13 EMT 
biomarkers for three TS clusters in the TCGA BLCA cohort. D Boxplot of ssGSEA scores of stem cell gene set for three TS clusters in the TCGA BLCA 
cohort. E Boxplot of stromal score, immune score, and ESTIMATE score for three TS clusters in the TCGA BLCA cohort. F Boxplot of 22 immune cells 
content for three TS clusters in the TCGA BLCA cohort. Kruskal–Wallis test, *p < 0.05, **p < 0.01, ***p < 0.001
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analysis and the 394 TS markers expression data, namely, 
TS cluster A (n = 175), TS cluster B (n = 124), and TS 
cluster C (n = 109) (Fig.  2A and Additional file  3: Fig. 
S3A–G). Then, PCA displayed a significant separa-
tion of the three clusters (Additional file 3: Figure S3H). 
The K–M survival curve revealed that TS cluster A was 
related to an obviously better prognosis (Fig. 2B). To fur-
ther identify the CSC, EMT, and TME characteristics of 
each cluster, we compared the gene expression of EMT 
biomarkers, stromal scores, immune scores, ESTIMATE 
scores, and immune cells among the three TS clusters. 
We found that the expression of all EMT biomarkers was 
significantly different among the three TS clusters, except 
for CLDN1. The expression levels of ACTA2, TGFB1, 
SNAI2, ZEB2, VIM, TWIST1, TWIST2, CTNNB1, 
CDH2, CLDN1, SNAI1, and ZEN1 were lower in TS 
cluster A than in TS clusters B/C, and the expression of 
CDH1 was lower in TS clusters A/C than in TS cluster B. 
These results indicated that TS cluster A had lower EMT 
activity than TS clusters B/C (Fig. 2C). Additionally, we 
found that TS cluster B had the highest stem cell gene 
set ssGSEA among the three clusters, indicating that 
the CSC content was highest in cluster C (Fig.  2D). TS 
cluster A, in contrast, had the lowest stromal, immune, 
and ESTIMATE scores among the three clusters. There-
fore, cluster A likely has low stromal and immune cell 
content (Fig.  2E). Finally, we compared the levels of 22 
types of immune cells and found differences in naive B 
cells, plasma cells, memory-activated CD4 T cells, folli-
cular helper T cells, regulatory T cells (Tregs), M0 mac-
rophages, activated dendritic cells, resting mast cells, 
activated mast cells, and neutrophils; thus, the three TS 
clusters likely had different TME and immune infiltration 
characteristics (Fig. 2F).

Construction of the TS score
To identify the biomarkers of each TS cluster, we per-
formed differential expression analysis among the three 
TS clusters. A total of 904 DEGs were identified in the 
TCGA BLCA cohort (p < 0.001; Additional file  4: Figure 
S4A, Additional file 16: Table S5). Then, we further iden-
tified 61 DEGs related to the OS time of BLCA patients 
using univariate Cox regression analysis (p < 0.001; Addi-
tional file 17: Table S6). We classified these DEGs as TS-
related genes. We also processed the clustering analysis 
and confirmed two TS-related gene clusters based on the 
expression data of these 61 genes, and we found that gene 
cluster B corresponded to TS clusters B and C (Fig.  3A 
and Additional file 4: Figure S4B–I).

Moreover, we displayed the OS time of patients from 
different TS-related gene clusters based on the K–M 
survival curve. Then, we found that patients from gene 
cluster B had a shorter OS time than patients from 

gene cluster A (log-rank test, p < 0.001; Fig. 3B). To fur-
ther confirm the relationship between CSCs, EMT, 
TME characteristics, and gene clusters, we compared 
the expression of EMT biomarkers, stromal scores, 
immune scores, ESTIMATE scores, and immune cell 
levels between these two gene clusters. We found that 
ACTA2, TGFB1, SNAI2, ZEB2, VIM, TWIST1, TWIST2, 
CTNNB1, CDH2, CLDN1, SNAI1, and ZEN1 expression 
levels were lower in gene cluster A than in gene cluster B, 
while CDH1 expression was higher in gene cluster A than 
in gene cluster B (Fig. 3C). These results were the same as 
those of the TS clustering analysis and further indicated 
that the EMT activity of gene cluster B was higher than 
that of gene cluster A. Subsequently, we found that clus-
ter B had a higher stem cell gene set ssGSEA score than 
that of gene cluster A (Fig.  3D). Moreover, the results 
indicated that compared with gene cluster B, gene cluster 
A was associated with lower stromal, immune, and ESTI-
MATE scores (Fig. 3E). Therefore, gene cluster A, like TS 
cluster A, likely has low stromal and immune cell con-
tent. Finally, we found that the plasma cell, CD8 T cell, 
resting CD4 memory T cell, follicular helper T cell, Treg, 
monocyte, M0 macrophage, M2 macrophage, activated 
dendritic cell, and neutrophil levels differed between the 
two TS-related gene clusters (Fig.  3F), indicating that 
these immune cells played an important role in TS pro-
gression in BLCA.

To obtain a quantitative biomarker of TS in BLCA sam-
ples, we used the PCA algorithm to calculate the TS score 
(PCA2 minus PCA1) using the TS-related genes (Fig. 4A 
and Additional file 18: Table S7). The corresponding rela-
tionship of TS clusters and gene clusters was displayed in 
Fig. 4B.

The TS score was closely related to CSCs, EMT, TME 
characteristics, and TP53 mutation in BLCA
We performed GSEA based on KEGG pathways between 
the high and low TS score groups (cutoff value = 48.50 
[median value]) in the TCGA BLCA group to verify the 
biological functions associated with the TS score. The 
results indicated that the pathways of focal adhesion, 
ECM receptor interaction, regulation of actin cytoskel-
eton, and chemokine signaling pathway were activated 
in the high TS score group, and pathways of metabo-
lism of xenobiotics by cytochrome P450, linoleic acid 
metabolism, retinol metabolism, and pentose and glu-
curonate interconversions were activated in the low TS 
score group. (Fig. 4C, Additional file 19: Table S8). Then, 
the correlation analysis indicated that the TS score was 
closely correlated with the expression of EMT biomark-
ers (Fig. 4D). We also found a close relationship between 
the TS score and the ssGSEA score of the stem cell set, 
stromal score, and immune score (Fig. 4E–G). All these 
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results suggest that the TS score could reflect the EMT 
level, CSC features, and TME characteristics of BLCA 
tumors. Finally, we found a significant difference in the 
expression levels of immune checkpoint genes between 
the low and high TS score groups. (Additional file  5: 
Figure S5A). Moreover, we found that plasma cell, CD8 
T cell, follicular helper T cell, Treg, and dendritic cell 

contents were higher in the low TS score group, while 
resting memory CD4 T cell, M0 macrophage, M2 mac-
rophage, and neutrophil contents were higher in the high 
TS score group (Additional file 5: Figure S5B).

To further explore the driving factor of TS progres-
sion in BLCA, we analyzed DNA mutations and found 
no significant relationship between the TMB and the TS 

Fig. 3  Transcriptomic and metabolic characteristics of the TS-related gene clusters. A Unsupervised clustering of 61 TS-related genes in the TCGA 
BLCA cohort. Red represents high expression, and blue represents low expression. B Kaplan–Meier curves for the two TS-related gene clusters of 
patients. The log-rank test showed an overall p < 0.001. C Boxplot of 13 EMT biomarkers for two TS-related gene clusters in the TCGA BLCA cohort. D 
Boxplot of ssGSEA scores of stem cell gene set for two TS-related gene clusters in the TCGA BLCA cohort. E Boxplot of stromal score, immune score, 
and ESTIMATE score for two TS-related gene clusters in the TCGA BLCA cohort. F Boxplot of 22 immune cell content for two TS-related gene clusters 
in the TCGA BLCA cohort. Wilcox test, *p < 0.05, **p < 0.01, ***p < 0.001
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score (Additional file 5: Figure S5C and S5D). However, 
we found that TMB was a protective prognostic factor 
for BLCA patients and that combining the TS score with 

TMB improved the predictive value of TMB for OS time 
among BLCA patients (Additional file 5: Figure S5E and 
F). Finally, we found that compared to the low TS score 

Fig. 4  The relationship between TS characteristics and TS score in BLCA. A Principal component analysis (PCA) based on 61 TS-related genes 
expression. B Alluvial diagram of TS clusters and TS-related gene distribution in groups with different TS scores. C GSEA analysis of high/low TS 
score group in TCGA BLCA cohort. D The correlation network between EMT biomarkers and TS score in TCGA BLCA cohort. Spearman, Cor > 0.3 and 
p < 0.001. E The correlation between TS score and ssGSEA score of stem cell gene set in TCGA BLCA cohort. Spearman, Cor = 0.65 and p < 0.001. F 
The correlation between TS score and stromal score in TCGA BLCA cohort. Spearman, Cor = 0.75 and p < 0.001. G The correlation between TS score 
and immune score in TCGA BLCA cohort. Spearman, Cor = 0.51 and p < 0.001. The oncoPrint was constructed using high TS score group (H) and low 
TS score group (I). Individual patients are represented in each column in TCGA BLCA cohort
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group, the high TS score group had higher TP53 and 
lower KDM6A and FGFR3 mutation rates (Fig.  4H and 
I, Table 1).

The TS score had significant prognostic value in BLCA
Having shown the correlation between the TS score, 
CSCs, and EMT status, we further explored the prognos-
tic value of the TS score and discovered that the patients 
from the low TS group had longer OS times than patients 
from the high TS group in the TCGA BLCA cohort 
(Fig.  5A,  p = 0.002). We then confirmed this result in 
the GSE32894 (Fig. 5C, p < 0.001) and GSE13507 (Fig. 5E, 
p = 0.004) cohorts. We further confirmed the predictive 
value of disease-free survival (DFS) in the E-MTAB-4321 
cohort (Fig.  5G, p = 0.003). The ROC curve also sug-
gested that the TS score could predict the OS/DFS time 
of patients in the TCGA BLCA, GSE32894, GSE13507, 
and E-MTAB-4321 cohorts at 1, 3, and 5 years. (Fig. 5B, 
5D, 5F, and 5H). To further identify the predictive value 
of the TS score in BLCA, we performed univariate Cox 
analysis and meta-analysis to calculate the hazard ratio 
(HR) in the three datasets (Fig.  5I). The results fur-
ther indicate that the TS score was a reliable prognostic 
marker.

This finding was further confirmed by univariable and 
multivariable Cox analysis of the TS score and clini-
cal factors, including age, sex, pathological stage, T 
stage, N stage, and M stage, in the TCGA BLCA cohorts 

(Additional file  20: Table  S9). The results indicated that 
the TS score is an effective and reliable prognostic signa-
ture for BLCA patients. We also found that the TS score 
increased as T stage, M stage, and pathological stage 
increased. Moreover, we found that white people have 
higher TS scores than black and Asian people, and we 
think this is why the incidence is higher in white people 
than in black people [8]. However, the TS score did not 
differ significantly based on age, sex, or N stage (Addi-
tional file 6: Figure S6A–G). To help clinicians predict the 
prognosis of BLCA patients, we used the TS score and 
clinical variables (age and N stage) with an independent 
prognostic value plot in a nomogram based on the TCGA 
BLCA cohort (Fig.  5J). Finally, we further evaluated the 
ability of the nomogram to predict prognosis by calibra-
tion curves, ROC curves, and K–M survival curves. The 
analysis of the efficacy of the nomogram demonstrated 
that it could accurately predict the OS time of BLCA 
patients (Fig. 5K and Additional file 6: Figure S6H–K).

The TS score could reflect CSC levels, TME characteristics, 
and patient prognoses in many types of cancers
Previous studies have revealed that the TS process occurs 
in many cancer types. To further estimate the biologi-
cal significance of the TS score in other tumor types, we 
calculated the TS score for all TCGA cohorts, including 
33 types of cancer. Then, we further explored the cor-
relations between CSCs, TME characteristics, immune 
infiltration, and prognoses. The results indicated that 
the TS score was closely related to the stem cell ssGSEA 
score, stromal score, and immune score in other cancer 
types (Fig.  6A). As the heatmap of immune cell con-
tent displayed, the relationship between the TS score 
and immune infiltration status was different in different 
tumors. However, we found that resting memory CD4 
T cells and M2 macrophages were positively correlated 
with the TS score, while CD8 T cells and naive CD4 T 
cells were negatively correlated with the TS score in 
many cancer types (Fig. 6B).

Since the TS score has an outstanding predictive value 
for BLCA prognosis, we further estimated the prognos-
tic value of the TS score in all TCGA cohorts by univari-
ate Cox regression and K–M survival analyses. We found 
that the TS score was also associated with OS, progres-
sion-free survival (PFS), and disease-free survival (DSS) 
time in adrenocortical carcinoma (ACC), kidney chro-
mophobe (KICH), kidney renal papillary cell carcinoma 
(KIRP), brain lower grade glioma (LGG), and stomach 
adenocarcinoma (STAD) in the TCGA cohort (Fig. 6C–F 
and Additional file 7: Figure S7, Additional file 8: Fig. S8, 
Additional file  9: Fig. S9, Additional file  21: Table  S10). 
These results suggest that TS plays an import role in 
tumor progression.

Table 1  Association of the TS score with somatic variants

Gene symbol High TS score (%) Low TS score (%) p value

TP53 113 (54%) 76 (39%) 0.0028

TTN 84 (40%) 76 (39%) 0.8393

KMT2D 59 (28%) 43 (22%) 0.1697

MUC16 48 (23%) 49 (25%) 0.6421

ARID1A 52 (25%) 45 (23%) 0.7270

KDM6A 36 (17%) 53 (27%) 0.0167

PIK3CA 42 (20%) 41 (21%) 0.9020

SYNE1 33 (16%) 37 (19%) 0.4313

RB1 38 (18%) 21 (11%) 0.0478

KMT2C 29 (14%) 29 (15%) 0.7787

HMCN1 33 (16%) 25 (13%) 0.4780

FGFR3 8 (4%) 47 (24%)  < 0.0001

RYR2 23 (11%) 33 (17%) 0.1124

MACF1 27 (13%) 27 (14%) 0.8838

EP300 31 (15%) 23 (12%) 0.3842

FLG 31 (15%) 21 (11%) 0.2376

FAT4 33 (16%) 18 (9%) 0.0520

STAG2 21 (10%) 27 (14%) 0.2820

ATM 25 (12%) 21 (11%) 0.7554

OBSCN 19 (9%) 27 (14%) 0.1586
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Fig. 5  The prognostic value of TS score in BLCA. A, C, E, and G Kaplan–Meier curves for low and high TS score groups in TCGA BLCA cohorts (A). 
Log-rank test, p = 0.002; in GSE32894 cohort (C). Log-rank test, p < 0.001; in GSE13507 cohort (E). Log-rank test, p = 0.004; and in E-MTAB-4321 cohort 
(G). Log-rank test, p = 0.003. B, D, F, and H The ROC analysis of TS score in TCGA BLCA cohorts (B). AUC = 0.652, 0.660, and 0.660 at 1, 3, and 5 year; in 
GSE32894 cohort (D). AUC = 0.831, 0.841, and 0.851 at 1, 3, and 5 year; in GSE13507 cohort (F). AUC = 0.761, 0.673, and 0.616 at 1, 3, and 5 year; and 
in GSE13507 cohort (H). AUC = 0.718, 0.730, and 0.679 at 1, 3, and 5 year. I The meta-analysis of the TS score’s HR in three cohorts. J The nomogram 
based on TS score and clinical variates. K Calibration curve of the nomogram in TCGA BLCA cohorts
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Fig. 6  The TS score could estimate the TME, CSCs, immune infiltration, and prognosis in 33 types of cancer. A The radar map of correlation between 
TS score, ssGSEA score of stem cell gene set, stromal score, and immune score in 33 types of cancer. B The heatmap of correlation between TS 
score and 22 immune cells in 33 types of cancer. Red represents positive correlation, and blue represents negative correlation. C The volcano plot 
of univariate cox analysis between TS score and OS in 33 types of cancer. p < 0.05. D The volcano plot of univariate cox analysis between TS score 
and PFS in 32 types of cancer. p < 0.05. E The volcano plot of univariate Cox analysis between TS score and DSS in 32 types of cancer. p < 0.05. F The 
bubble diagram of P value from OS, PFS, DSS survival analysis between high and low TS score groups in each type of cancer. Log-rank test, p < 0.05. 
The cancer with red line means p value from univariate cox analysis of OS, PFS, and DSS, and log-rank test of OS, PFS, and DSS survival analysis less 
than 0.05
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Predictive value of the TS score in immunotherapy
In the above analysis, we found different immune infiltra-
tion levels in different TS statuses. Therefore, we further 

proposed that the TS status of tumors might be associ-
ated with the effect of immunotherapy in cancer. First, we 
predicted the response to immunotherapy of each tumor 

Fig. 7  The relationship between TS score and immunotherapy response. A The TIDE score of each patient in high and low TS score groups. B 
Rate of response to immunotherapies predicted by TIDE in high or low TS score groups. C The count of patients in high or low TS score groups 
and response to immunotherapies true or false. Fisher’s exact test, p < 0.001. D Kaplan–Meier curves for low and high TS score groups in IMvigor 
210 cohort. Log-rank test, p = 0.019. E Rate of clinical response (complete response [CR]/partial response [PR] and stable disease [SD]/progressive 
disease [PD]) to various immunotherapies in high or low TS score groups in the IMvigor 210 cohort. Fisher’s exact test, p = 0.0039. F Violin plot of 
TS score for PD, SD, PR, and CR groups in the IMvigor 210 cohort. G Kaplan–Meier curves for low and high TS score groups in the GSE78220 cohort. 
Log-rank test, p = 0.027. H Rate of clinical response (CR/PR and SD/PD) to various immunotherapies in high or low TS score groups in the GSE78220 
cohort. Fisher’s exact test, p = 0.0128. I Violin plot of TS score for PD/SD and PR/CR groups in the GSE78220 cohort
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based on tumor immune dysfunction and exclusion 
(TIDE, http://​tide.​dfci.​harva​rd.​edu/) in the TCGA BLCA 
cohort. We found that patients with low TS scores had 
lower TIDE scores than those with high TS scores, mean-
ing that low TS score patients were more efficient with 
immunotherapy (Fig. 7A–C). Then, we further calculated 
the TS score for BLCA patients in the immunotherapy 
cohort (Imvigor210) and found that BLCA patients from 
the low TS score group had a better prognosis and higher 
reaction rate to PD-L1 inhibitor treatment than patients 
from the high TS score group (Fig.  7D–F). We then 
downloaded melanoma sample data from the PD-1 inhib-
itor therapy cohort (GSE78220) and obtained the same 
result, with patients with high TS scores demonstrating 
a lower PD-1 inhibitory therapy response rate than those 
with low TS scores (Fig. 7G–I). All these results showed 
that the TS score could be an outstanding signature to 
predict the response to immunotherapy.

The TS score could reflect the EMT and CSC characteristics 
of cell lines
TGF-β is a well-known EMT inducer and has been 
applied to investigate the EMT mechanism of cells [2, 
38]. Moreover, TGF-β treatment significantly increases 
the stemness of cell lines [39–42]. To further directly 
confirm whether the TS score could predict the EMT 
and stemness characteristics of cells, we compared the 
TS score between cell with and without TGF-β treat-
ment. First, the migration, invasion, and wound filling 
assays of T24 cells indicated that TGF-β could signifi-
cantly increase the invasion ability of BLCA cells (Fig. 8B 
and Additional file 10: Figure S10A), and the cell viability 
assay suggested that TGF-β had little effect on the growth 
of T24 cells (Additional file  10: Figure S10B). Then, the 
RT‒qPCR trial verified that TGF-β could improve the 
expression of EMT marker genes and promote the EMT 
process of BLCA (Fig. 8A). Finally, we performed RNA-
seq for T24 cells treated with TGF-β and calculated the 
TS score and ssGSEA score of the stem gene set. By dis-
playing the expression level of TS-related genes and per-
forming differential analysis and correlation analysis of 
the TS score and stem cell gene set ssGSEA score, we 
found that TGF-β could improve the stemness and TS 
score of BLCA and further validated that the TS score 
could reflect the EMT process and stemness of BLCA 
(Fig. 8C-8F).

To further validate whether the TS score could reflect 
the EMT status of tumors, we calculated the TS score 
for other cell lines treated with TGF-β in public datasets. 
Although GSE98979 only included the gene expression 
information of 35 TS-related genes, the TS scores of lung 
cancer cell lines were increased with TGF-β treatment, 
and this increase was time-dependent (Additional file 11: 

Figure S11A and B). This variation in TS scores was in 
accordance with the changes in EMT characteristics in 
the original study. Moreover, we found that the TS score 
increased not only in the breast cancer cell line (Addi-
tional file 11: Figure S11C) but also in the normal breast 
tissue cell line (Additional file  11: Figure S11D). Finally, 
we analyzed datasets of pancreatic cancer cell lines 
treated with TGF-β and found that the TS score of cell 
line increased with TGF-β treatment (Additional file 11: 
Figure S11E). These results were in agreement with those 
of the pan-cancer analysis of the prognostic value of the 
TS score and indicated that our TS score could accurately 
predict the EMT and stemness characteristics of cells and 
had application value in cell biology research.

Discussion
In most malignancies, the subsequent outgrowth of 
micrometastatic deposits into macroscopic metasta-
ses has the greatest impact on clinical progression, and 
EMT and tumor CSCs are the crucial biological charac-
teristics associated with this progress. During the early 
stages of metastasis, tumor cells lose mediators of epi-
thelial adhesion, such as E-cadherin, and exhibit a spin-
dle cell morphology, as well as an increase in N-cadherin 
and vimentin [43, 44]. Stromal cells play an important 
role in accelerating EMT progression [45]. For example, 
tumor-associated fibroblasts (TAFs) can secrete TGF-β, 
IL-6, VEGF, and HGF to promote EMT [46–49]; tumor-
associated macrophages (TAMs) can secrete cytokines 
and chemokines for matrix remodeling and immunosup-
pression and to promote angiogenesis, thereby promot-
ing EMT [50, 51]; and T cells can decrease E-cadherin to 
accelerate EMT in tumors. [52, 53]. Then, in the late steps 
of metastasis, the colonization of tumor cells is likely to 
require adaptation of disseminated cancer cells to the 
microenvironment of foreign tissue. Therefore, tumor 
cells undergoing EMT require CSCs with self-renewal 
and redifferentiation capabilities. In this process, many 
signaling pathways, such as the Wnt and Notch path-
ways, as well as the TME, play vital roles [54, 55]. EMT 
and CSC translation are not independent. The mesenchy-
mal cells from EMT are the main source of CSC transla-
tion and require a similar stromal environment [56, 57]. 
Ultimately, the process of mesenchymal–epithelial transi-
tion (MET) leads to distant transfer of tumor cells. EMT, 
CSCs, and MET are closely related to each other and 
associated with patient prognosis [58–60]. In NMIBC, 
cancer cells are confined to the epithelium of the bladder 
and have weak invasive abilities. In this phase, the speed 
of tumor development is slow and mild. Through EMT, 
some epithelial tumor cells transform into CSCs with 
strong proliferative and invasive abilities, and patients 
ultimately develop MIBC [4].

http://tide.dfci.harvard.edu/
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In our study, we found that EMT progression was asso-
ciated with the CSCs of BLCA via single-cell bioinfor-
matic analysis. We first explored the cell subtypes and 
differentiation trajectories of bladder tumors.Although 
the level of tissue stem cells in BLCA was low, CSCs 
from EMT was a significant prognostic factor. Then, TS 
biomarkers were extracted through dimension reduc-
tion analysis, differential analysis, and analysis of the 
cell development trajectory based on BLCA single-cell 

mRNA sequencing data. The prognostic analysis revealed 
that the EMT process and CSC content could decrease 
the OS time of BLCA patients. The single-cell sequencing 
data from CD45-BLCA cells did not reveal immune sta-
tus. Thus, we performed clustering analysis and obtained 
three TS clusters and two TS-related gene clusters. TS 
cluster A corresponded with TS-related gene cluster A 
and had lower EMT progression and CSC content and 
better prognoses, while TS cluster B and TS cluster C 

Fig. 8  The TS score can reflect the EMT and stemness characteristics of T24. A The comparison of EMT biomarkers’ expression levels between T24 
with and without TGF-β treatment. B The transwell assay of T24 with or without TGF-β treatment. C The heatmap of TS-related gene expression in 
T24 with or without TGF-β treatment. D The comparison of TS score between T24 with and without TGF-β treatment. E The comparison of stem 
cell ssGSEA score between T24 with and without TGF-β treatment. F The correlation between TS score and stem cell ssGSEA score in T24 cell line. 
Student’s t test, *p < 0.05, **p < 0.01, ***p < 0.001
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corresponded with TS-related gene cluster B and had 
more active EMT progression, higher CSC content, and 
worse outcomes. We also found that the expression levels 
of TS biomarkers were consistent among BLCA samples. 
After the clustering analysis, we further extracted the 
TS characteristics of BLCA and obtained 61 TS-related 
genes. Finally, we constructed a TS score to estimate 
tumor EMT progression and CSCs. The correlation of the 
TS score with EMT biomarkers and the ssGSEA score of 
stem cells further confirmed that the TS score could rep-
resent EMT progression and CSCs in BLCA.

Then, we found that the group with a high TS score had 
a worse prognosis than the group with a low TS score 
through prognostic analysis. According to previous stud-
ies, these results further confirmed that TS was a vital 
factor driving tumor growth and metastasis [4, 12]. These 
results also indicated that the TS score had outstanding 
predictive value for BLCA prognosis. Moreover, we cal-
culated the TS score for 33 cancer types and found that 
the TS score was a risk factor in most cancers, particu-
larly ACC, BLCA, KICH, KIRP, LGG, and STAD. These 
results further proved that the TS score was an efficient 
prognostic biomarker across cancers and that tumor cell 
invasiveness and metastasis were associated with TS in 
ACC, BLCA, KICH, KIRP, LGG, and STAD [61–63].

The TME includes stromal cells and immune cells and 
plays a crucial role in tumor development. Some stud-
ies have indicated that the TME can impact EMT and 
influence the characteristics of CSCs [2]. For exam-
ple, integrins from the extracellular matrix can impact 
EMT in tumors [64]. We further explored the relation-
ship between stromal cells and TS and found that the 
TS score was positively correlated with the stromal 
score in many cancers. Therefore, some molecular com-
pounds and cellular components in the extracellular 
matrix likely promote TS, increasing the proliferation 
and invasion capabilities of tumor cells [65, 66]. Moreo-
ver, we found multiple relationships between immune 
cells and TS in different cancer types. CD8+ T cells and 
CD4+ naive T cells were negatively correlated with TS, 
while M0 and M2 macrophages were positively corre-
lated with TS in many cancer types. Thus, macrophages 
might promote TS in some cancers [67, 68]. However, the 
deeper mechanics of this phenomenon needed further 
investigation.

Many gene multiomics studies suggest that DNA muta-
tions play a crucial role in EMT in tumors. For example, 
induction of ZEB allows the expansion of an EMT-com-
petent unique cellular subpopulation in esophageal can-
cer [69]. Here, we found that OS time increased as the 
TMB increased in BLCA. A high TMB and high tumor 
heterogeneity likely stimulate immune cells and increase 
their ability to kill tumor cells. While we did not find a 

significant relationship between TS and DNA mutation 
burden, we found that TP53 mutation rates were higher, 
while ARID1A and FGFR3 were lower in the high TS 
score group than in the low TS score group in the TCGA 
BLCA cohort. Therefore, TP53 mutation likely promotes 
TS in tumor cells and impacts BLCA prognosis; however, 
these hypotheses needed to be confirmed with further 
in vitro experiments [70].

Immunotherapy is an effective treatment for BLCA. For 
high-risk NMIBC, bladder infusion therapy with BCG is 
still the most efficient treatment to inhibit the recurrence 
of tumors after transurethral resection [71]. For meta-
static BLCA, chemotherapy and immunotherapy are the 
main treatments. Immunotherapy has fewer side  effects 
than chemotherapy and is less likely to result in BLCA 
tolerance to treatment [17]. Here, we found that TS 
was associated with immune cell levels and the expres-
sion of checkpoint genes. Therefore, we further explored 
the relationship between TS and immunotherapy. We 
found that tumors with high TS scores were less sensi-
tive to PD-1/L1 inhibitor treatment. On the one hand, a 
high TS score likely increased proliferation and invasion 
capabilities. On the other hand, a high TS score meaned 
lower tumor CD8+ T cell content and higher tumor mac-
rophage content [72, 73]. Thus, these tumors with high 
TS scores were not sensitive to immunotherapy.

Finally, because TGF-β can promote the EMT and 
stemness characteristics of cells, we assessed cell lines 
treated with TGF-β to further verify our hypothesis that 
the TS score can reflect the EMT and CSC features of 
multiple types of cells. We found that the TS score can 
accurately reflect the changes in cell physiological char-
acteristics with TGF-β treatment, although these cells 
were from different parts of the body and from different 
types of tissue (tumor or normal tissue). This means that 
the TS score is a valuable index in EMT and stem cell 
studies.

Compared with other studies, we first explored the 
biological features of TS and TS-related gene clusters in 
BLCA based on single-cell and bulk mRNA sequencing 
data and microarray data from multiple cohorts. Then, 
we further identified TS-related genes and constructed a 
TS scoring system to estimate and quantify TS. In addi-
tion to the prognostic value of the TS score, we also 
found that the TS score was associated with the response 
to immunotherapy. Finally, we verified that the TS score 
is an efficient index for EMT and CSC research by RT‒
qPCR, mRNA sequencing of cell lines, and transwell 
assays. However, this study has limitations. First, some 
of the conclusions need to be further confirmed with 
in  vitro and in  vivo experiments. Second, the TS score 
cannot directly compare different cohorts without batch 
correction because of the batch effect.
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Conclusions
In brief, we identified three disparate TS clusters and 
two TS-related gene clusters using TS biomarkers iden-
tified from a single-cell analysis and established a TS 
score for BLCA. The TS score is associated with tumor 
EMT, CSCs, tumor stromal cells, tumor immune infil-
tration, and TP53 mutation characteristics and is an 
efficient index for estimating TS and predicting progno-
sis and therapeutic responsiveness. Thus, the TS score 
may aid research into EMT and CSCs and facilitate the 
future development of personalized immunotherapy 
approaches for many cancer types.
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Additional file 1: Figure 1. Overview of single-cell and prognostic value 
of each type cell’s biomarker in BLCA tissue. (A) The workflow of this 
study. (B) The t-SNE plot of all the single cells, with each color coded for 7 
major cell clusters. (C) Differentiation trajectory of 7 cell clusters in BLCA. 
The violin plot of gene expression of RGS5 (D), KRT7 (E), and CD44 (F) in 
cluster0-6. (G) The bubble plot of gene expression of RGS5, KRT7, and 
CD44 in cluster 0-6. The RGS5 (H), KRT7 (I), and CD44 (J) expression of each 
cell in the t-SNE map.

Additional file 2: Figure 2. (A) Kaplan–Meier curves for high/low state 
2 ssGSEA score groups in TCGA BLCA cohort. Log-rank test, p = 0.068. (B) 
Kaplan–Meier curves for high/low state 3 ssGSEA score groups in TCGA 
BLCA cohort. Log-rank test, p = 0.734. (C) Kaplan–Meier curves for high/
low chondrocytes ssGSEA score groups in TCGA BLCA cohort. log-rank 
test, p = 0.048. The GO (D: BP [Biological Process]; E: MF [Molecular Func-
tion]; F: CC [Cellular Component]) and KEGG (G) function enrichment 
analysis of TS biomarkers.

Additional file 3: Figure 3. Consensus clustering of BLCA distinct TS clus-
ters. (A) CDF curve. (B) CDF Delta area curve. Delta area curve of consensus 
clustering, indicating the relative change in area under the cumulative 
distribution function (CDF) curve for each category number k compared 
with k-1. The horizontal axis represents the category number k and the 
vertical axis represents the relative change in area under CDF curve. (C-G) 
Consensus matrixes of BLCA samples for each k (k = 2–6) from TCGA 
BLCA cohort based on expression abundance of TS biomarkers, displaying 
the clustering stability using 1000 iterations of clustering. (H) Principal 
Component Analysis (PCA) of TCGA BLCA sample based on expression 
abundance of TS biomarkers. 

Additional file 4: Figure 4. Consensus clustering of BLCA distinct TS-
related gene clusters. (A) Venn diagram of DEGs between three TS clusters. 
(B) CDF curve. (C) CDF Delta area curve. Delta area curve of consensus 
clustering, indicating the relative change in area under the cumulative dis-
tribution function (CDF) curve for each category number k compared with 
k-1. The horizontal axis represents the category number k and the vertical 
axis represents the relative change in area under CDF curve. (D-H) Consen-
sus matrixes of BLCA samples for each k (k = 2–6) from meta cohort based 
on expression abundance of TS-related genes, displaying the clustering 
stability using 1000 iterations of clustering. (I) Uniform manifold approxi-
mation and projection (UMAP) of TCGA BLCA sample based on expression 
abundance of TS-related genes. 

Additional file 5: Figure 5. (A) Boxplot of expression of 14 checkpoints 
gene for low and high TS score groups in TCGA BLCA cohort. (B) Boxplot 
of 22 immune cells for low and high TS score groups in TCGA BLCA cohort. 
Wilcox test, *p < 0.05, **p < 0.01, ***p < 0.001. (C) TMB difference in the 
high and low TS score groups in TCGA BLCA cohort. Wilcoxon test, p = 
0.36. (D) The correlation between TMB and TS score. Spearman, Cor = 
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- 0.08, p = 0.11. (E) Kaplan–Meier curves for high and low TMB groups in 
TCGA BLCA cohort. Log-rank test, p = 0.010. (F) Kaplan–Meier curves for 
patients stratified by both TMB and TS score in TCGA BLCA cohort. Log-
rank test, p<0.001.

Additional file 6: Figure 6. The differential analysis of age (A), sex (B), 
pathological stage (C), T stage (D), M stage (E), N stage (F), race (G) 
between high and low TS score groups in TCGA BLCA cohort. Wilcox test: 
p (age) = 0.052, p (sex) = 0.059, p (pathological stage) < 0.001, p (T stage) 
< 0.001, p (M stage) < 0.001, p (N stage) = 0.061 and p (race) < 0.001. The 
ROC analysis of nomogram in TCGA BLCA cohort. AUC = 0.743 (H), 0.750 
(I), and 0.774 (J) at 1, 3, and 5 year. (K) Kaplan–Meier curves for high and 
low nomogram points in TCGA BLCA cohort. Log-rank test, p < 0.001.

Additional file 7: Figure 7. Kaplan–Meier curves of OS for high and low 
TS score patients in 23 types of cancer. Log-rank test, p < 0.05.

Additional file 8: Figure 8. Kaplan–Meier curves of PFS for high and low 
TS score patients in 22 types of cancer. Log-rank test, p < 0.05.

Additional file 9: Figure 9. Kaplan–Meier curves of DSS for high and low 
TS score patients in 21 types of cancer. Log-rank test, p < 0.05.

Additional file 10: Figure 10. The wound filling assay (A), and cell viability 
(CCK-8) assay of T24 with or without TGF-β treatment (B). ANOVA analysis, 
p > 0.05.

Additional file 11: Figure 11. The variation of TS score of cell lines after 
TGF-β treatment. (A) The comparison of TS score of H1975 with or without 
TGF-β treatment after 1 and 2 days. Student’s t test, *p < 0.05, **p < 0.01, 
***p < 0.001. (B) The comparison of TS score of A549 after TGF-β 0, 4, 8, 16, 
24, and 72 hours. ANOVA analysis, p = 0.003924. (C) The comparison of 
TS score of MCF7 with or without TGF-β treatment. Student’s t test, p = 
0.02851 (D) The comparison of TS score of MCF10A with or without TGF-β 
treatment. Student’s t test, p < 0.00001 (E) The comparison of TS score of 
Panc-1 with or without TGF-β treatment. Student’s t test, p < 0.001030.

Additional file 12:  Table S1. Clinical information of patients from TCGA 
BLCA cohort. 

Additional file 13:  Table S2. The primer sequence used in our study.

Additional file 14:  Table S3. Biomarkers of different cell types, clusters, 
and states.

Additional file 15:  Table S4. GO and KEGG gene function enrichment 
analysis of TS biomarkers.

Additional file 16:  Table S5. The DEGs between three clusters.

Additional file 17:  Table S6. The univariate Cox analysis of TS-related 
genes.

Additional file 18:  Table S7. PCA analysis and PCA coefficient of TS-
related genes to calculate TS score.

Additional file 19:  Table S8. The GSEA analysis between low and high TS 
score group in TCGA BLCA cohort.

Additional file 20:  Table S9. The univariate and multivariate Cox analysis 
of TS score and clinical variates.

Additional file 21: Table S10. The univariate and K–M survival analysis of 
TS score in 33 types of cancer.
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