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Jing Zhao', Huiyin Deng?, Chengfeng Xun??, Chunli Chen', Zhiping Hu', Lite Ge'**"® and Zheng Jiang"

Abstract

Background Extracellular vesicles derived from stem cells (SC-EVs) have been proposed as a novel therapy for
ischemic stroke. However, their effects remain incompletely understood. Therefore, we conducted this meta-analysis
to systematically review the efficacy of SC-EVs on ischemic stroke in preclinical rodent models.

Methods Using PubMed, EMBASE, and the Web of Science, we searched through studies published up to August
2021 that investigated the treatment effects of SC-EVs in a rodent ischemic stroke model. Infarct volume was the
primary outcome. Neurological severity scores (mNSS) were the secondary outcome. The standard mean difference
(SMD) and the confidence interval (Cl) were calculated using a random-effects model. R and Stata 15.1 were used to
conduct the meta-analysis.

Results Twenty-one studies published from 2015 to 2021 met the inclusion criteria. We also found that SCs-EVs
reduced infarct volume by an SMD of — 2.05 (95% Cl — 2.70, — 1.40; P<0.001). Meanwhile, our results revealed an over-
all positive effect of SCs-derived EVs on the mNSS with an SMD of — 1.42 (95% Cl—1.75,— 1.08; P<0.001). Significant
heterogeneity among studies was observed. Further stratified and sensitivity analyses did not identify the source of
heterogeneity.

Conclusion The present meta-analysis confirmed that SC-EV therapy could improve neuron function and reduce
infarct volume in a preclinical rodent ischemic stroke model, providing helpful clues for human clinical trials on
SC-EVs.
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Introduction

Stroke is one of the leading causes of death and disabil-
ity among adults around the world [1]. Of all neurological
disorders, stroke is one of the most common and devas-
tating, accounting for 44 million physical disabilities, and
5.5 million deaths in the world yearly [2]. Because of the
increasing prevalence, mortality, physical impairments,
and ultimately the financial impact of stroke injuries,
stroke injuries continue to contribute to problems for
individuals and society [3]. The study of drugs and thera-
peutic practices for acute ischemic stroke has advanced
in recent years [4]. Several early successes from preclini-
cal studies have been translated into clinical trials, but
the results are disappointing. Thus, it would be beneficial
to examine more qualified strategies for stroke treatment.

As a type of cell with the potential for growing and
self-renewing, stem cells (SCs), which include embryonic
stem cells (ESCs), somatic stem cells, and iPSCs, are ideal
for replacing damaged neural tissue and enhancing neu-
rological function. The potential of stem cell therapy to
treat ischemic stroke is great, with several clinical trials
in progress [5]. Research conducted over the past dec-
ade has shown that stem cells are capable of treating a
wide range of central nervous system diseases, including
ischemic stroke [6]. Approximately 70 clinical trials have
been conducted or are ongoing in relation to these dis-
eases (ClinicalTrials.gov) [7]. Unfortunately, cell therapy
has been found to be ineffective during clinical trials and
preclinical studies primarily due to massive entrapment
into the lung following intravenous administration [8, 9].
Additionally, injection of exogenous cells, although gen-
erally considered safe, can result in a malignant transfor-
mation [10].

In recent years, SC-EVs have emerged as a potential
solution for nerve repair. A recent study showed that
treatment of ischemic stroke patients with MSCs signifi-
cantly increases circulating EVs, suggests the therapeutic
role of MSC-derived EVs, and provides a mechanistic
context for clinical findings of the trial [11]. On the other
hand, various animal models have been widely used to
study SC-EVs for the treatment of ischemic stroke. Extra-
cellular vesicles (EVs) are small vesicles (of nanoscale)
enclosing a lipid bilayer that contains genetic material
(e.g, miRNAs, LncRNAs, etc.), proteins, small mol-
ecules, and lipids. Their characteristics differ depend-
ing on the parent cellular organelle [12]. Comparing EVs
with polymeric or lipid-based nanoparticles, they offer a
number of additional advantages including lower toxicity,
immunogenicity, and the ability to cross biological barri-
ers, such as the blood—brain barrier [9]. In general, SCs
are believed to have therapeutic effects by way of par-
acrine mechanisms, including EVs [13]. The fact is that
although EVs were at first considered merely as a means
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for cells to discard waste products, recently they have
been attributed a wide range of roles in biological and
pathological processes and even as therapeutics [14]. It
has been reported that SC-EVs can achieve similar ther-
apeutic effects to those of SCs, and they are considered
safer than their parent cells [15]. Consequently, more and
more studies have examined the use of EVs derived from
SCs, specifically in the treatment of neuropathological
disorders.

A systematic review consists of gathering, selecting,
analyzing, and synthesizing all the relevant evidence to
address a particular research question [16, 17]. Com-
pared to traditional reviews, systematic reviews based on
scientific methods provide a more objective evaluation of
all the current relevant research evidence. This is a more
accurate assessment of its findings, which is the high-
est level of scientific evidence quality [18, 19]. Although
several animal studies have been conducted on various
types of SC-EVs during early clinical trials, research-
based evidence is still lacking in this area. To provide
the most recent evidence regarding the efficacy of EVs in
preclinical rodent models, we performed this meta-anal-
ysis. Additionally, our study will investigate the possible
mechanisms by which the transplantation of SC-EVs can
improve cognitive and behavioral deficits in animal mod-
els of ischemic stroke, potentially laying the foundations
for the application of SC-EVs to patients who have suf-
fered an ischemic stroke.

Materials and methods

Search Strategy

We searched the literature from the following databases:
PubMed, Embase, Web of Science (until Aug 2021). Our
search terms were as follows: (“mesenchymal stem cells”
OR “mesenchymal stromal cells” OR “mesenchymal
stem cell” OR “mesenchymal stromal cell” OR “Extra-
cellular Vesicles” OR “Exovesicles” OR “Exosomes” OR
“Endosomes”) AND (“Ischemic Strokes” OR “Infarct,
Cerebral” OR “Cerebral Ischemia” OR “Stroke”) (The
detailed search strategy is presented in Additional file 1.)

Inclusion and Exclusion Criteria

The inclusion criteria for the analysis were as follows:
(A) Experimental animals including mice, rats, and
rodents; the following studies met the inclusion crite-
ria. (B) The findings should be written and presented
in English. (C) A preclinical rodent ischemic stroke
model was induced. (D) They evaluated the efficacy of
SC-EVs treatment in animal models of ischemic stroke
(all types of animals of both sexes). (E) The studies pro-
vided adequate information regarding the neuron func-
tion and infarct volume. (F) It is imperative that the
SC-EVs meet the standards of international guidelines
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for investigating EVs, which were published in 2018 and
are entitled "Minimum Information for Studies of EVs"
(MISEV 2018) [20]. (G) Report experimental results in
original scientific publications. In the case of two or
more articles with overlapping information, we select
the most recent or most informative of the two.
Exclusion criteria were: (A) non-animal-based stud-
ies, in silico or in vitro. (B) Failure to provide informa-
tion regarding the animal groups. (C) Study groups,
without SC-EVs or those where the SC-EVs were not
administered directly to animals. (D) Studies published
more than once, duplicate reports, and abstracts with-
out the complete text. (E) Literature reviews, organiza-
tional guidelines, letters, expert opinions, conference
abstracts, or editorial correspondence without original
data.(F) articles lacking significance and credibility.

Study Selection

The records were managed by Endnote X9. Before per-
forming any literature research, data were imported
into Endnote X9. Next, duplicate records were identi-
fied and eliminated. Two researchers independently
conducted the literature review based on the inclu-
sion and exclusion criteria. Article titles and abstracts
were initially screened to eliminate irrelevant arti-
cles. In addition, the remaining articles were assessed
by obtaining the full text to identify the final articles
included in the review. When there was a disagree-
ment, another researcher was consulted.

Data extraction

The data extraction procedure followed a detailed form
that included the following information: Name of the
author, year of publication, country, experimental meth-
ods (number of animals per group for individual com-
parisons), species, strain, and sex; methods of ischemic
stroke induction in the animal model, sources and types
of MSCs, the amount of SC-EVs, method of delivering
SC-EVs, unit of dosage for SC-EV transplantation, time
of administration, follow-up period, and clinical results.
Two independent authors extracted data from the
included studies. By using GetData Graph Digitizer soft-
ware, values could be derived from images if only graphs
were available. For instances in which the standard devia-
tion was not available, we calculated the standard error
by multiplying the SE by the square root of the group
size. If results of various follow-ups or periods were
evaluated at different times, only the longest period of
follow-up was extracted. In addition, several independent
groups (e.g., different EV doses, different delivery routes,
and timings) were treated as separate datasets in a study.
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Risk of bias

The Systematic Review Centre for Laboratory animal
Experimentation (SYRCLE) risk-of-bias tool was used
by three independent reviewers to assess the potential
for bias in each study included in the review. SYRCLE
assesses selection bias, performance bias, detection bias,
attribution bias, and reporting bias, reporting them as
high, low, or unclear. Any disagreements were resolved
following discussions with additional authors.

Statistical Analysis

Statistical analysis was performed using the Stata 15.1
(StataCorp, College Station, TX, USA) [21], R language
(version 4.1.3, www.r-project.org), and the meta-package
(version 5.2-0) statistical software. The primary out-
comes used for the analysis were Neurological severity
scores (mNSS). The secondary outcome was the Infarct
volume. To display the pooled mean difference, we gener-
ated forest plots based on the SMD and 95% confidence
interval of each study. A difference of P<0.05 is con-
sidered significant between the treatment and control
groups. Heterogeneity was assessed based on I-squared
(I). The fixed-effects model was used to combine effect
sizes for I,>50%, and the random-effects model for
I,<50%. We conducted subgroup analyses to identify
potential sources of heterogeneity among the included
studies. A sensitivity analysis examined overall stability.
Egger’s test was used if 10 or more datasets were included
to check for potential publication bias, and the trim-and-
fill method was also applied to data with publication bias.

Results

Identified and eligible studies

There were 2391 potential studies found in the primary
retrieval: 478 in PubMed, 994 in Embase, and 919 in
Web of Science. Among the 426 full-text articles remain-
ing after review and exclusion, 33 were determined to be
eligible for inclusion. 21 records of these were excluded
as a result of the reasons indicated in Fig. 1. As a result
of the meta-analysis, data from 21 studies (23 outcomes)
published by 2021 were used. Out of the 21 studies, 18
reported infarct volume outcomes, 13 reported modified
neurological severity scores (mNSS).

Study characteristics

A total of 9 studies were conducted on rats and 12 on
mice, 20 of which used the middle cerebral artery occlu-
sion model (MCAO) to induce ischemic stroke, and the
other study used the photothrombotic model of ischemic
stroke. SC-EVs were obtained from xenograft in 10 stud-
ies and from allograft in 13 studies. Among the studies
that used SC-EVs, 18 investigated MSCs, one investigated
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Fig. 1 PRISMA flow diagram for review and selection process of studies included in meta-analysis of SC-EVs in rodent models of ischemic stroke

NSCs, one examined ESCs, and one examined induced
pluripotent stem cells (iPS). As for MSCs, including adi-
pose tissue-derived stem cells (ADSCs) 5 studies, bone
marrow mesenchymal stem cells (BMSCs) 9 studies,
dental pulp stem cells (DPSCs) 1 studies, placenta mes-
enchymal stem cells (PMSCs) 1 studies, and umbilical
cord mesenchymal stem cells (UCMSCs) 2 studies. EV
separation is generally accomplished through ultracen-
trifugation (N=18), although polyethylene glycol (PEG)
precipitation (N=3) may also be employed. For most
studies, SC-EVs were characterized by quantification,

size distribution, morphological analysis, or expression
of surface markers. The route of SC-EVs administration
was intravenous in 14 studies, intracranial in 6 studies,
and intra-arterial in 1 study. MSC-EVs were dosed in a
wide variety of units, including absolute protein amount
(N=11), particle number (N=6), and dosed by weight of
the animal (N=4). The majority of the studies involved
a single transplant, and only two studies involved two to
three transplants. Additionally, SC-EVs were given from
0 to 5 days following MCAO, with follow-ups ranging
from 1 to 84 days. The characteristics of the included
articles are summarized in Table 1 [22-42].
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Risk of bias

To assess the study design and reporting of the study, we
used the Systematic Review Centre for Laboratory animal
Experimentation (SYRCLE) tool for identifying potential
bias in animal preclinical studies [43]. In Table 2, the risk
of bias is summarized across all included studies. Over-
all, no study was judged to have a low risk of bias. In
most studies, the methods relating to sequence genera-
tion, allocation concealment, random housing, random
outcome assessment, and blinding of assessors were not
described in any detail. Moreover, several studies about
the baseline characteristics of the animals, the blinding of
the assessors, and the selective reporting of the outcomes
have been described. However, studies evaluated for attri-
tion bias varied in risk, with a high risk of bias assigned
to 31.8% of the studies (N=7), which failed to account
for declines in animal numbers reported between meth-
ods and results; 45.4% of the studies (N=10) were at
low risk, and the remainder (N=4) were unclear. A lack
of published protocols made it impossible to determine
whether selective reporting bias existed across almost all
studies. Additional sources of bias were not identified.

Meta-analysis and effect evaluation

For ischemic stroke, SC-EVs administration led to
favorable outcomes for the functional mNSS, as well
as histopathological outcomes for infarct volume.
Accordingly, the composite weighted mean of mNSS
score (N=13) was—142 (95% CL—1.75 to—1.08,
P=222%), (P<0.001) (Fig. 2A), and infarct volume
(n=18) was —2.05 (95% CI: —2.70 to — 1.40, I>=79.8%),
(P<0.001) (Fig. 2B). Results of these studies have demon-
strated that SC-EVs have a beneficial effect on ischemic
stroke models. In accordance with the ? statistic, com-
parisons of infarct volume outcomes are extremely het-
erogeneous (P=0.000).

Subgroup analysis

Further subgroup analyses were conducted on the
infarct volume based on different categories, which are
described in Additional file 1: Figure S1-8. Generally,
SC-EVs were found to be effective in the majority of sub-
groups, but not in a few subgroups as a whole (P<0.05).
No differences in effect size were observed among
immunocompatibility (allogeneic versus xenogeneic)
(P=0.48) (Additional file 1: Figure S1), species (P=0.06)
(Additional file 1: Figure S2), and ischemic stroke model
(P=0.08) (Additional file 1: Figure S3). However, sources
of SCs (P<0.01) (Additional file 1: Figure S4), species sex
(P<0.01) (Additional file 1: Figure S5), route of admin-
istration (P<0.01) (Additional file 1: Figure S6) and tim-
ing of treatment (P<0.01) (Additional file 1: Figure S7),
and extraction method of SC-EVs (P<0.01) (Additional
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file 1: Figure S8) may result in differential effects. Strati-
fied analyses were able to reveal significant differences
between groups, but the source of this heterogeneity was
unable to be identified.

Publication Bias

According to Fig. 3A, B, the funnel plot for cerebral
infarction showed asymmetry for comparisons of mNSS
(P=0.159) and infarct volume (P=0.000). Accord-
ing to Egger’s test, there is an obvious publication bias.
Following this, we applied the trim-and-fill strategy to
evaluate missing studies and recalculated the overall esti-
mate of the pooled effect. The estimates of the imputed
effect of infarct volume were comparable to the previ-
ous estimates (SMD: — 2,048, 95% CI: —2.697 to —1.399,
P=0.000), which clearly indicates no "missing" studies
(Fig. 3C).

Sensitivity analysis

Considering the notable heterogeneity of the studies, we
conducted a sensitivity analysis to assess the stability of
results by sequentially omitting each study. The pooled
SMD of mNSS and infarct volume outcomes did not dif-
fer among studies as shown in Fig. 4A, B.

Discussion

Main Findings

Our meta-analysis of 21 records provided a compre-
hensive summary of the impacts of SC-EV therapies on
the rodent model of ischemic stroke after SC-EV treat-
ments were administered. In preclinical rodent models
of ischemic stroke, SCs-EVs were found to reduce infarct
volume and improve neurological deficits in the analyses.
Consequently, the current meta-analysis provides valu-
able information for human clinical trials using SC-EVs.
Since the limited number of studies, it will take more
evidence to prove the neuroprotective effect of SC-EVs
treatments in experimental ischemic stroke.

Possible mechanisms of SC-EVs for ischemic stroke

Although a number of preclinical studies have demon-
strated the potential for SC-EVs in regenerative medi-
cine, detailed research on the mechanisms behind
neurological functional recovery has yet to be conducted.
Based on preclinical studies, SC-EVs appear to promote
the repair of nerve tissue damage by maintaining stem
cells, neuroprotection, angiogenesis, biomarker utility,
and neuroinflammation—-immunity regulation (Fig. 5).
(a) Stemness maintenance. In order to regenerate tissue,
endogenous stem cells need to proliferate, self-renew,
and differentiate. It has been shown that SC-EV contains
mRNAs encoding stem-associated transcription factors,
such as Nanog, Oct4, HoxB4, and Rex-1, all of which are
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A
Study %
1D SMD (95% CI) Weight
Lee et al. (2015) —t -1.08 (-2.03, -0.12) 9.24
Li et al. (2021) ;o— -1.01(-1.1,-0.31) 14.03
Barzegar etal. (202) ——s—+ -259 (-3.84, -133) 601
Xu et al. (2020) + -1.18 (-2.35, -0.01) 6.74
Li et al. (2020) R — -115 (-2.42, 0.1) 592
Nalamolu et al. (2020) — -0.94 (199, 0.1) 1797
Xin et al. (2018) —Lo— -1.03 (-2.09, 0.04) 7.83
Lvet al. (2021) (—o— -2.718 (-4.09, -1.48) 5.63
Xin et al. (2021) —u— -1.20 (-2.17, -0.23) 8.99
Xia et al. (2021) —'—o— -1.04 (-1.99, -0.09) 9.32
Zhang et al. (2020) +— -1.23 (-2.65, 0.19) 486
Xia et al. (2020) . -21(-3.83,-0.39) 3.47
Wang et al. (2020) —o—L -2.21(-3.2,-131) 9.99
Overall (I-squared = 22.2%, p = 0.219) <> -1.42 (-1.75, -1.08) 100.00
NOTE: Weights are from random effects analysis E

-h.09 409
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Study %
D SMD (95% CI) Weight
Lee et al. (2015) — -0.78 (-1.88,0.32) 632
Zhang et al. (2021) —— -0.99 (-1.84, -0.13) 6.81
Li et al. (2021) —_— -3.86 (-6.06, -1.66) 410
Barzegar et al. (2021) —_— -4.05(-6.1, -1.99) 435
Xu et al. (2020) — -0.97 (-2.10, 0.16) 626
Pan et al. (2020) — -0.70 (-1.72,0.32) 6.49
Kuang et al. (2020) +o— 134 (-2.46,-0.23) 629
Feng et al. (2021) —_—— -3.19 (-5.1, -1.26) 4.60
Xia et al. (2021) — 148 (-2.44, -0.51) 6460
Xia et al. (2021) —— -110 (-1.90, -0.29) 691
Zhang et al. (2020) —_—— -2.90 (-4.95, -0.85) 431
Xia et al. (2020) —_— -4.49 (-6.53, -2.45) 438
Zhang etal. (2021) —s—— -1.02 (-9.34, -4.71) 390
Hou et al. (2021) _ -5.14 (-8.23, -3.25) 362
Haupt et al. (2020) 1—— -0.84 (-1.82,0.13) 658
Haupt et al. (2020) | —r -0.59 (-1.54, 0.36) 6.63
Wang et al. (2020) — -0.26 (-0.95, 0.42) 112
Hou et al. (2020) —0—%— -3.61(-5.51,-1.72) 466
Overall (I-squared =79.8%, p = 0.000) <> -2.05 (-2.70, -1.40) 100.00
NOTE: Weights are from random effects analysis '

934 934

Fig. 2 Forest plot shows the mean effect size and 95% confidence interval (Cl) for mNSS (A) and infarct volume outcomes (B) between SC-EVs

treatment group and control group in all studies

essential for maintaining stem cell characteristics [44].
Moreover, endogenous stem cells can be stimulated to
proliferate, self-renew, or differentiate through the trans-
fer of molecules such as Wnt3 [44], Hedgehog [45], as
well as other molecules. (b) Neuroprotection. Accord-
ing to a study conducted by Zhang et al., injection of EVs
that target miR-17-92 increased neurogenesis, oligoden-
drogenesis, and neural plasticity using intravenous injec-
tion of ischemic stroke model [35]. The molecular bases
for these restorative changes may in-part be attributed to
the miR-17-92 cluster down-regulation of PTEN expres-
sion and subsequent activation of PTEN downstream
proteins, Akt, and mTOR, as well as inhibition of GSK-3f
activity [23]. (c) Angiogenesis. Angiogenesis is a patho-
physiological process associated with tissue regeneration
and reconstruction. The transplantation of the SC-EVs
can enhance angiogenesis in the tissue as demonstrated
by the change in expression of VEGF after the transplan-
tation [46]. EVs are believed to play an essential role in
angiogenesis and revascularization of the cerebrovas-
culature, primarily through the secretion of angiogenic
factors and noncoding RNAs, including microRNAs,
long noncoding RNA, circular RNA, and miRNAs. Dur-
ing the injection of SC-EVs into animals, endogenous
VEGF and VEGFR? levels are increased in the ischemic
zone [47, 48]. EVs derived from SCs carrying miR-125a,
miR-21, and miR-612 were able to regulate expression of
pro-angiogenic genes in vitro, including angiopoietin-1
(Angl), fetal liver kinase-1 (Flk1), VEGEF, and others [47,
48]. (d) Biomarker utility of SC-EVs. Despite the thera-
peutic potential, EVs could also serve as biomarkers for

SCs therapy and other pathophysiological processes.
Recent research conducted by Dr. Bang et al. found that
ischemic stroke patients treated with mesenchymal
stem cells had significant increases in extracellular vesi-
cles, correlated with increased motor function and MRI
plasticity measures [11]. (e) Neuroinflammation—immu-
nity regulation. Previous studies have shown that SC-
EVs significantly suppress the inflammatory response by
regulating the polarization of microglia [49]. In addition,
preclinical studies have demonstrated that SC-EVs can
be used to modulate immune parameters in the treat-
ment of various diseases through the delivery of non-
coding RNAs, cytokines, and other immunomodulatory
molecules. According to Xia et al., ESC-EVs contribute to
the increase in regulatory T cells (Tregs) after stroke. By
increasing the proportion of Treg cells, ESC-EVs modu-
late neuroinflammation, and thereby protect against
ischemic stroke. This process is mediated by the activa-
tion of the TGF-B/Smad signaling pathway by the trans-
fer of TGF-PB, Smad2, and Smad4 [40].

Prospects and clinical challenges of SC-EVs therapy

for ischemic stroke

The clinical potential of SCs has been increasingly stud-
ied over the past decade for various ischemic strokes.
With the advancement of research, growth in recogni-
tion of and praise for the paracrine function of SCs has
increased [5]. As the most significant part of paracrine,
EVs have become a new research hotspot and are even
being tested in clinical studies. Recently, Dr. Bang et al.
[11] conducted the first randomized controlled trial
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Fig. 3 Evaluation of publication bias. Funnel plots for mNSS (A) and infarct volume outcomes (B), with the y-axis signifying study quality and the
x-axis showing the study results. C Trim-and-fill method was used to evaluate the missing studies in infarct volume outcomes. SMD, standardized
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Fig. 5 Possible mechanisms of SC-EVs therapy for ischemic stroke. Extracellular vesicles (EVs) mainly include exosomes and microvesicles. Exosomes
originate from multivesicular bodies (MVB) and microvesicles are formed through cell membrane budding. SC-EVs can repair damaged brains and
nerve tissues by maintaining stem cells, neuroprotection, angiogenesis, biomarker utility, and neuroinflammation-immunity regulation

involving 54 patients with ischemic stroke, indicating
that circulating levels of EV were significantly higher
after the injection of MSCs within 24 h, suggesting that
EV has significant potential for treating cerebral infarc-
tion. Even though SC-EVs have generated a lot of inter-
est as a promising therapy for ischemic stroke, there are
many challenges that must still be addressed before fully
exploiting the potential of EVs as a result of the youth
of the field. Since animal models provide an important
framework for designing clinical trials, it is important
to examine the combined effects of preclinical stud-
ies. Meanwhile, further studies are required to evalu-
ate the potential of MSC-derived EV therapeutics in
stroke patients. The therapeutic applications of SC-EVs
for numerous CNS diseases hold considerable promise;

however, there are several challenges associated with
their use (Fig. 6). (A) An initial consideration is the tech-
nical challenge, ranging from the isolation of EV to its
characterization and standardization for clinical applica-
tions. In most studies, SC-EVs are typically isolated using
low-throughput techniques such as ultrasound centrifu-
gation. Therefore, advancing techniques and methods are
needed, such as tangential flow filtration or size exclusion
chromatography utilizing techniques, offering the pros-
pect of preparing SC-EVs from large volumes of culture
media. (B) Another significant technical challenge is
scaling up SCs culture so as to produce enough SC-EVs
for clinical use. The use of bioreactors and 3D stem cell
culture may offer a viable solution to this problem [50].
(C) As a matter of fact, determining the effective dose
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Fig. 6 Clinical challenges of MSC-EVs therapy for ischemic stroke

of therapeutic SC-EVs, as well as the mode of action,
remains a difficult task for the field. Throughout the
studies, we found different units of dosage for SC-EVs,
including absolute protein amounts, particle number, the
amount of EVs released by a specific number of SCs, and
EVs released continuously or dosed by the weight of the
animal. The lack of uniformity of units is therefore det-
rimental to the development of new therapeutics for SC-
EVs. To facilitate research into the optimal therapeutic
dose, it is imperative that the unit is unified as soon as
possible. (D) A further challenge in this area is determin-
ing the mechanisms of action of therapeutics containing
SC-EVs. A deeper understanding of the SC-EVs mecha-
nism of action will enable the development of appropri-
ate dose and functional assessments. Due to this, once we
gain a greater understanding of the therapeutic potential
of SC-EVs, we may be able to optimize the extraction
process to obtain higher levels of function from SC-EVs.
(E) The appropriate source of stem cells for SC-EV iso-
lation and therapeutic applications is also critical due
to challenges relating to immunogenicity and to ensure
that EVS derived from stem cells do not carry harmful
epigenetic changes. This can be addressed by develop-
ing appropriate preclinical models and selecting formu-
lations of SC-EV with desired molecular characteristics.
It will also be helpful for the choice of these parameters
to understand the mechanisms by which specific formu-
lations of SC-EVs function in a therapeutic setting. (F)
SC-EVs that have been demonstrated to cross the BBB
have shown the ability to reach organs such as the brain.
Further investigation is required to determine whether
SC-EVs can be directed to the specific sites at which they
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will exert their therapeutic effect in the treatment area.
Moreover, other methods of improving the targeting of
SC-EVs might also be considered. (G) Furthermore, there
is no regulatory framework for EV therapeutics, although
they may belong to the pharmaceutical class of biologi-
cals. Clinically approved therapeutic agents must dem-
onstrate their pharmacokinetics and therapeutic efficacy,
and these are currently in their infancy in the field of EVs.
Although there are still technical and regulatory hurdles
to overcome, as progressively more studies demonstrate,
it is clear that SC-EVs have enormous potential for thera-
peutic applications.

Strengths and limitations

To our knowledge, this is the first systematic review of
animal studies assessing the therapeutic efficacy of SC-
EVs in treating ischemic stroke. However, some limita-
tions should be discussed. The first constraint is that we
can only include studies that have already been published
in English as part of our methodology. Unpublished data
can influence our conclusions. Additionally, our study
concluded that head-to-head comparisons of the EV
methodology and/or subtypes of approaches should be
conducted in order to identify the most efficient clinical
translation strategies. In order for a study to be credible,
it should utilize an adequate sample size and a formal cal-
culation [51]. Meta-analyses are clearly affected by poor
study quality and substantial publication bias, as well as
low external and internal validity. Consequently, there is
a certain degree of amplifying of the efficacy of SC-EVs
therapy for ischemic stroke since studies that are left tend
to confirm neutral or negative results. As a final note,
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although there were no adverse events reported, none of
the studies included in the review conducted formal tests
to investigate the safety of SC-EVs.

Conclusions and future directions

Ischemic stroke has limited treatment options, which
calls for novel approaches. Rodent studies have demon-
strated that SC-EV is an effective treatment for ischemic
stroke. We believe that our meta-analysis will serve as
a valuable source of reference for future preclinical and
clinical studies having important implications for human
health. There are still differences, limitations, and irregu-
larities in the routes, dosage, and dosage unit of SC-EV
administration and the source of stem cells or time for
transplantation therapy, among the studies included.
To support further clinical translation, improvements
must be made in study design, outcome measurement,
and quality assurance to minimize bias and scientifically
investigate the role of SC-EVs in ischemic stroke treat-
ment. In addition, more evidence-based research should
be conducted to strengthen the clinical translation of
SC-EVs.
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