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Abstract 

Background Human dental pulp‑derived mesenchymal stem cells (hDP‑MSCs), which include human dental pulp 
stem cells (hDPSCs) and stem cells from human exfoliated deciduous teeth (SHEDs), are promising cell sources for 
regenerative therapies. Nevertheless, a lack of knowledge relating to the mechanisms regulating their differentiation 
has limited their clinical application. microRNAs (miRNAs) are important regulatory molecules in cellular processes 
including cell differentiation. This systematic review aims to provide a panel of miRNAs that regulate the differentia‑
tion of hDP‑MSCs including hDPSCs and SHEDs. Additionally, bioinformatic analyses were conducted to discover 
target genes, signaling pathways and gene ontologies associated with the identified miRNAs.

Methods A literature search was performed in MEDLINE (via PubMed), Web of Science, Scopus, Embase and 
Cochrane Library. Experimental studies assessing the promotive/suppressive effect of miRNAs on the differentiation of 
hDP‑MSCs and studies evaluating changes to the expression of miRNAs during the differentiation of hDP‑MSCs were 
included. miRNAs involved in odontogenic/osteogenic differentiation were then included in a bioinformatic analy‑
sis. A miRNA‑mRNA network was constructed, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analyses were performed. A protein–protein interaction (PPI) network was also constructed.

Results Of 766 initially identified records through database searching, 42 and 36 studies were included in qualitative 
synthesis and bioinformatic analyses, respectively. Thirteen miRNAs promoted and 17 suppressed odontogenic/osteo‑
genic differentiation of hDP‑MSCs. hsa‑miR‑140‑5p, hsa‑miR‑218 and hsa‑miR‑143 were more frequently reported sup‑
pressing the odontogenic/osteogenic differentiation of hDP‑MSCs. hsa‑miR‑221 and hsa‑miR‑124 promoted and hsa‑
miR‑140‑5p inhibited neuronal differentiation, hsa‑miR‑26a‑5p promoted and hsa‑miR‑424 suppressed angiogenic 
differentiation, and hsa‑miR‑135 and hsa‑miR‑143 inhibited differentiation within myogenic lineages. A miRNA‑mRNA 
network including 1890 nodes and 2171 edges was constructed. KEGG pathway analysis revealed MAPK, PI3K‑Akt and 
FoxO as key signaling pathways involved in the odontogenic/osteogenic differentiation of hDP‑MSCs.
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Conclusions The findings of this systematic review support the potential application of the specific miRNAs to regu‑
late the directed differentiation of hDP‑MSCs in the field of regenerative therapies.

Keywords Dental pulp, Differentiation, MicroRNA, Noncoding RNA, Regeneration, Regenerative medicine, Stem cell

Introduction
Mesenchymal stem cells (MSCs) are stromal cells that 
have two key features, self-renewal and the ability to dif-
ferentiate along different lineages [1]. MSCs have been 
isolated from a variety of tissues such as umbilical cord, 
bone marrow and adipose tissues [2]. Stem cell popu-
lations of oral and dental tissues are also considered as 
MSCs [3]. They are capable of differentiating into sev-
eral lineages of cells such as osteocytes, chondrocytes, 
myocytes, adipocytes and neurons [4]. Gronthos and 
co-workers were the first to report the isolation and char-
acterization of MSCs from the pulp tissue of third molar 
teeth [5]. Currently, populations of MSCs have also been 
isolated from other oral tissues such as periodontal liga-
ment, the pulp tissue of human exfoliated primary teeth, 
dental follicle, gingiva and apical papilla [3].

Human dental pulp-derived MSCs (hDP-MSCs) have 
been a major focus of attention in the field of regenera-
tive therapies and tissue engineering due to their acces-
sibility, easy isolation through noninvasive procedures, 
relative genomic stability during in  vitro expansion 
and multi-lineage differentiation potential [4, 6]. hDP-
MSCs includes human dental pulp stem cells (hDPSCs) 
and stem cells from human exfoliated deciduous teeth 
(SHEDs) which are isolated from the pulp tissue of per-
manent and deciduous teeth, respectively. They have 
been applied to a variety of therapies in regenerative 
dentistry such as regeneration of the dentine–pulp com-
plex, periodontal tissues and alveolar bone [3]. Further-
more, in the field of regenerative medicine, recent studies 
have revealed their potential as a new treatment choice 
for systemic diseases such as diabetes, myocardial infarc-
tion and neurodegenerative disorders [7]. Nevertheless, 
incomplete understanding of the mechanisms regulating 
their differentiation has limited their clinical application 
[6].

microRNAs (miRNAs) are short noncoding endog-
enous RNAs [19–25 nucleotides] which serve as impor-
tant gene expression regulators in a posttranscriptional 
manner [8]. They suppress translation or induce dead-
enylation and degradation of target RNAs mostly via 
binding to their complementary sequences in the 3’ 
untranslated region (3′-UTR) [9]. They exist abundantly 
in different cells and are capable of suppressing multiple 
targets [10]. miRNAs maintain multiple pivotal functions 
including the regulation of cell proliferation, differentia-
tion and apoptosis [11, 12]. It has been discovered that 

during the differentiation of MSCs, the expression pro-
file of miRNAs changes [13–15]. Recently, studies have 
identified multiple miRNAs capable of promoting or sup-
pressing the direct differentiation of hDP-MSCs to a spe-
cific lineage of cells [15–17].

As important regulatory molecules, miRNAs have 
complex interactions with proteins, genes and other non-
coding RNAs such as long noncoding RNAs (lncRNAs), 
through which they regulate cellular and molecular pro-
cesses [18, 19]. Recently, bioinformatic analyses have 
been widely used to explore these interactions. Target 
mRNAs that bind to the miRNAs are identified and a 
miRNA-mRNA network is constructed. Cellular signal-
ing pathways which are in association with the mRNAs 
from the miRNAs–mRNAs network are identified by 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analysis [20]. Furthermore, Gene Ontology (GO) analy-
sis is performed to determine the functional properties 
of the mRNAs from the miRNAs–mRNAs network. GO 
includes biological processes (BP), cellular components 
(CC) and molecular functions (MF). BP refers to the 
operations or sets of molecular events happing in a cell. 
CC correlates with cellular and extracellular parts, and 
MF is related to the elemental activities of the miRNAs 
or mRNAs at the molecular level [21]. Finally, to deter-
mine the interactions between the proteins regulated by 
the miRNAs, a protein–protein interaction (PPI) network 
is constructed [22].

Although recent studies have proposed multiple 
miRNAs promoting/suppressing the differentiation of 
hDP-MSCs, no study has been conducted to pool these 
miRNAs utilizing bioinformatic analyses to identify novel 
signaling pathways and cellular processes which are asso-
ciated with the differentiation of hDP-MSCs. The present 
systematic review aims to provide a comprehensive panel 
of the miRNAs that regulate the differentiation of hDP-
MSCs including hDPSCs and SHEDs, and to conduct 
bioinformatic analyses to pool the data derived from the 
included studies.

Methods
Protocol and registration
A review protocol was developed and registered at Open 
Science Framework (OSF) Registries (https:// doi. org/ 10. 
17605/ OSF. IO/ 87VQE). The present systematic review 
was performed according to the Preferred Reporting 

https://doi.org/10.17605/OSF.IO/87VQE
https://doi.org/10.17605/OSF.IO/87VQE
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Items for Systematic Reviews and Meta-Analyses 
(PRISMA) Statement [23].

Review question
What are the miRNAs that regulate (promote or sup-
press) the differentiation of hDP-MSCs including hDP-
SCs and SHEDs?

Eligibility criteria
Inclusion criteria:

Experimental studies which assessed the (promotive 
or suppressive) effect of miRNAs on the differentiation 
of hDP-MSCs and the studies which assessed changes 
in miRNAs expression during the differentiation of 
hDP-MSCs.

Exclusion criteria:

1. Studies which applied dental pulp-derived stem cells 
from non-human species.

2. Studies which did not report differential expression 
data of mature miRNAs.

3. Studies which were not an original study, with no 
in vivo or ex vivo results.

4. Literature reviews, book sections, congress sum-
maries, patents, commentaries, methodological 
approaches, opinion articles, previews and hypoth-
esis articles.

5. Studies which were retracted.
6. Studies which were not in English.
7. Studies which were not available in full text even 

after attempts to contact authors.

Literature search strategy
The search strategy was developed (Additional file  1: 
Table  S1) and the literature search was performed in 
MEDLINE (via PubMed), Web of Science, Scopus, 
Embase and Cochrane Library up to June 15, 2021, 
without initial date restriction. ProQuest, Open-
Grey, WorldCat and Google Scholar (first 100 hits) 
were searched for the grey literature. Additionally, 
hand searching was conducted from reference lists of 
included studies and relevant published reviews [24–
26]. An attempt was made to contact authors via e-mail 
in case of missing information.

Screening and data extraction
Initially, duplicate studies were excluded. Two review 
authors (A.V. and P.I.) screened titles and abstracts inde-
pendently to identify studies which potentially meet the 

inclusion criteria. The full texts of retrieved studies were 
then assessed for eligibility. Disagreements were resolved 
through discussion with another team member (S.Kh.) to 
reach a consensus. The included studies were categorized 
into two groups based on their methodology:

Group I: Studies which assessed and experimen-
tally validated the (promotive or suppressive) effect 
of specific miRNA(s) on the differentiation of hDP-
MSCs.
Group II: Studies which investigated expression pro-
file changes of miRNAs during the differentiation of 
hDP-MSCs by utilizing high-throughput techniques.

Two datasheets were designed to extract data from 
the included studies in each group. The first sheet con-
sisted of author, year of publication, miRNA(s), type of 
differentiation, regulatory effect of miRNA(s) on differ-
entiation, cell type, cell source, differentiation induction 
agent, technique of differentiation assessment, assessed 
differentiation markers and signaling pathways as well as 
direct target of miRNA(s). The second sheet consisted of 
author, year of publication, cell type, cell source, type of 
differentiation, technique of differentiation assessment, 
number of up-regulated and down-regulated miRNAs 
and technique of miRNAs assessment. Two review-
ers (P.I. and A.V.) collected the relevant data indepen-
dently using these datasheets. In case of disagreement, 
another review author (M.H.N.) was consulted to reach 
a consensus.

Bioinformatic analysis
miRNAs that were involved in the differentiation to 
odontogenic/osteogenic lineages were included in the 
bioinformatic analysis. miRNAs involved in differen-
tiation to other lineages were not included because the 
number of them was insufficient for further analysis. All 
the odontogenic/osteogenic-related miRNAs reported in 
the studies of group I were included for analysis, as they 
were all experimentally validated to promote/suppress 
differentiation. On the contrary, in the studies of group 
II, by drawing a Venn diagram using FunRich software 
(version 3.1.3), only those miRNAs reported in at least 
two studies with the same direction of expression change 
were selected for analysis.

To identify mRNAs interacting with the miRNAs, the 
multiMiR R package (version 2.3.0) was utilized in RStu-
dio software (version 1.2.5042) [27]. The miRNAs which 
were not recognized by the R package were disregarded 
in the bioinformatic analysis. According to the default of 
the package, 20% of the highest reliable interactions were 
retrieved from miRTarBase, miRDB and TargetScan data-
bases [28–30]. Then, weak interactions retrieved from 
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miRTarBase were omitted and only interactions with Tar-
get Score > 90 from miRDB and  context++ score < −  0.6 
from TargetScan were selected as miRNA-mRNA inter-
actions for subsequent analysis. A miRNA-mRNA net-
work was constructed using Cytoscape software (version 
3.8.1) [31]. Functional analyses including GO and KEGG 
pathways related to the mRNAs from the miRNA-mRNA 
network were performed using Enrichr online database 
[32]. A dot plot representing the results of the KEGG 
pathway analysis was generated using ggplot2 R pack-
age [33]. The STRING online database (version 11.0) was 
used to establish a protein–protein interaction (PPI) net-
work based on the mRNAs from the miRNA-mRNA net-
work [34]. For this aim, a minimum required interaction 
score was set as the highest confidence (0.9). The Cyto-
Hubba plug-in was used to identify hub genes of the PPI 
network in the Cytoscape software [35].

Results
Study selection
The study selection process including the number of 
studies at each stage is depicted in the PRISMA flow dia-
gram [23] (Fig.  1). In total, 766 studies were identified 
initially through the electronic search, and 4 additional 
studies were identified during the manual search. Fol-
lowing further analysis, 342 duplicates were removed, 
and 364 studies were excluded based on the titles and 
screening of the abstracts. Finally, after full-text review, 
a further 22 studies were excluded leaving 42 studies that 
met the inclusion criteria. A list of excluded studies and 
reasons for exclusion are reported in Additional file  2: 
Table S2. Included studies were divided into the follow-
ing two groups based on their methodology.

Description of included studies
Group I studies
Studies in this group investigated the promotive or sup-
pressive effect of miRNAs on the differentiation of 
hDP-MSCs by culturing them with growth factors (differ-
entiation inducing agents) and overexpressing or knock-
ing down the miRNAs. In total, 40 studies had assessed 
the promotive/suppressive effect of specific miRNA(s) on 
the differentiation of hDPSCs or SHEDs (Table 1), out of 
which 8 studies [36–43] confirmed their results in vivo in 
an animal model.

Differentiation to odontogenic/osteogenic lineages 
was the most frequently investigated [34 studies], three 
studies [43–45] investigated neuronal differentiation, 
two [42, 46] investigated angiogenic (endothelial) dif-
ferentiation, and one [47] investigated differentiation to 
myogenic lineage. Regarding the stem cell type, 35 stud-
ies had recruited hDPSCs and five studies [42–44, 48, 49] 
had used SHEDs (Table  1). In all studies of this group, 

hDPSCs were isolated from human third molar or pre-
molar teeth, and SHEDs were harvested from human 
deciduous teeth of healthy donors.

Regarding the regulatory function of miRNAs in this 
group, overall, 16 miRNAs had promotive and 21 miR-
NAs had suppressive effect on the differentiation: 13 
miRNAs promoted and 17 suppressed odontogenic/
osteogenic differentiation (Table  1). Among them, hsa-
miR-140-5p, hsa-miR-218 and hsa-miR-143 family were 
more frequently reported suppressing the odontogenic/
osteogenic differentiation of hDP-MSCs [36, 50–58]. Two 
miRNAs (hsa-miR-221 and hsa-miR-124) promoted [44, 
45], and one (hsa-miR-140-5p) inhibited neuronal differ-
entiation [43], one (hsa-miR-26a-5p) promoted [42] and 
another one (hsa-miR-424) suppressed angiogenic differ-
entiation [46], and two (hsa-miR-135 and hsa-miR-143) 
inhibited differentiation to myogenic lineage [47].

All studies used quantitative reverse transcription poly-
merase chain reaction (qRT-PCR) to assess miRNAs and 
dual luciferase reporter assays to verify the direct inter-
action between a miRNA and its target gene. Techniques 
for assessing the degree of odontogenic/osteogenic 
differentiation included alizarin red staining, alkaline 
phosphatase (ALP) activity assay, ALP staining and von 
Kossa staining. Furthermore, most of the included stud-
ies assessed the expression of differentiation markers to 
measure the degree of differentiation (Table  1). Mark-
ers assessed for odontogenic/osteogenic differentiation 
were mostly dentin sialophosphoprotein (DSPP), den-
tine matrix protein 1 (DMP1), runt-related transcrip-
tion factor 2 (RUNX2), ALP, osteocalcin (OCN), osterix 
(OSX), osteopontin (OPN) and collagen type 1 (COL1). 
Regarding neuronal differentiation, assessed markers 
were nestin, microtubule-associated protein 2 (MAP2), 
βIII‐tubulin and neuron-specific enolase (NSE) [43–45]. 
Angiogenic differentiation markers included vascular 
endothelial growth factor (VEGF), angiogenin, platelet-
derived growth factor (PDGF) and von Willebrand factor 
(vWF) [42, 46]. Myogenic differentiation markers were 
myocyte enhancer factor 2C (MEF2C), myosin heavy 
chain (Myhc), myoblast determination protein 1 (MYOD) 
and myogenin (MYOG) [47].

The direct target genes of miRNAs were determined 
in 35 studies (Table 1). The direct target gene in all stud-
ies except one [59] were suppressed by the miRNAs. In 
all, 19 studies indicated the signaling pathways through 
which the miRNAs acted (Table  1). JNK/P38 MAPK, 
NF-κB, Notch, LPS/TLR-4, OPG/RANKL, SMURF1/
RUNX2, TGF-β/SMAD and Wnt/β-catenin were among 
the reported signaling pathways. In addition to mRNAs, 
other types of miRNAs targets such as circular RNAs 
(circRNAs) and lncRNAs were reported. circRNAs 
included circRNA0026827, circRNA124534, circRNA 
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SIPA1L1, circAKT3 and CircLPAR1 [37–40, 97]. Besides, 
lncRNAs including H19, MALAT1, LEF1-AS1, CALB2, 
G043225, CCAT1, LINC00968, MEG3, DANCR and 
C21orf121 were reported as direct targets of miRNAs in 
10 studies [15, 36, 41, 43, 50, 53, 60–63].

Group II studies
Studies in this group [13–17, 49, 55, 64] [8 studies] 
used high-throughput techniques including next gener-
ation sequencing and microarray to assess and compare 
the expression profiles of the miRNAs before and after 
the differentiation (Table  2). Six studies [14, 15, 17, 

Fig. 1 Preferred Reporting Items for Systematic Reviews and Meta‑Analyses (PRISMA) flow diagram of the search results and number of records at 
each stage
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49, 55, 64] utilized microarrays, and two [13, 16] used 
sequencing to assess expression profile of miRNAs. 
qRT-PCR was utilized to validate the results. Regarding 
the stem cell type, in this group, seven studies [13–17, 
55, 64] used hDPSCs, and one [49] recruited SHEDs. 
Similar to group I studies, all studies of this group iso-
lated hDPSCs from human third molar or premolar 
teeth, and SHEDs were harvested from human decidu-
ous teeth of healthy donors.

Six studies in this group [15–17, 49, 55, 64] selected 
specific miRNA(s) among differentially expressed miR-
NAs and, as a complementary step, investigated its regu-
latory function on the differentiation in the same way as 
those in group I. These studies were categorized in group 

I as well. Their results regarding  regulatory effects of 
miRNAs on the differentiation and expression change of 
miRNAs  are depicted in Tables  1 and 2, respectively.

All studies in this group assessed differentiation to 
odontogenic/osteogenic lineage. Overall, during odon-
togenic/osteogenic differentiation, 415 miRNAs were 
reported to be differentially expressed, 181 were up-reg-
ulated and 234 were down-regulated (Table 2). The entire 
list of differentially expressed miRNAs within each study 
is reported in Additional file 3: Table S3.

Bioinformatic analysis
All the miRNAs in studies of group I which were involved 
in odontogenic/osteogenic differentiation were included 

Table 2 Main findings of the studies comparing miRNAs expression profile before and after the differentiation (studies of group II)

↓Down-regulated during differentiation

↑Up-regulated during differentiation

Studies marked with * are in common with Table 1. They selected specific miRNA(s) among differentially expressed miRNAs and, as a complementary step, 
investigated their regulatory effect on the differentiation of hDP-MSCs

ALP, Alkaline phosphatase; ARS, Alizarin red staining; qRT-PCR, Quantitative reverse transcription polymerase chain reaction; VKS, von Kossa staining

Author [reference] Cell type Cell source Type of 
differentiation

Technique of 
differentiation 
assessment

Differentially 
expressed 
miRNAs

Technique of miRNA 
assessment

Liu et al. [13] hDPSC Third molar Odontogenic/osteo‑
genic

ARS, ALP staining 113 (63 ↑, 50 ↓) Sequencing, qRT‑PCR

Chen et al.* [15] hDPSC Premolar Odontogenic/osteo‑
genic

ARS, ALP staining 114 (24 ↑, 90 ↓) Microarray, qRT‑PCR

Hu et al.* [16] hDPSC Third molar Odontogenic/osteo‑
genic

ARS 28 (7 ↑, 21 ↓) Sequencing, qRT‑PCR

Song et al.* [17] hDPSC Third molar Odontogenic/osteo‑
genic

ARS 36 (22 ↑, 14 ↓) Microarray, qRT‑PCR

Dernowsek et al.* [49] SHED Human deciduous 
tooth

Odontogenic/osteo‑
genic

ARS, ALP activity 21 (11 ↑, 10 ↓) Microarray, qRT‑PCR

Gay et al.* [55] hDPSC Third molar Odontogenic/osteo‑
genic

ARS 6 (2 ↑, 4 ↓) Microarray, qRT‑PCR

Hara et al.* [64] hDPSC Third molar and 
premolar

Odontogenic/osteo‑
genic

ARS, ALP staining 75 (60 ↑, 15 ↓) Locked nucleic acid‑
based Microarray, 
qRT‑PCR

Gong et al. [14] hDPSC Third molar and 
premolar

Odontogenic/osteo‑
genic

ARS, VKS 22 (12 ↑, 10 ↓) Microarray, qRT‑PCR

Fig. 2 Venn diagram analysis. Cross‑tables show the number and percentage of differentially expressed miRNAs which are in common in two 
corresponding studies. Darker colors represent greater number and percentage of miRNAs
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in the analysis. To investigate the miRNAs from the stud-
ies of group II, a Venn diagram (Fig. 2) revealed 20 miR-
NAs reported in at least two studies. Among them, one 
miRNA (hsa-miR-335) was reported in three studies [14, 
17, 64], but with the opposite direction of expression 
change, which was excluded from the analysis. Overall, 
49 miRNAs were retrieved (30 miRNAs from studies of 
group I and 19 miRNAs from studies of group II); among 
them, three miRNAs (hsa-miR-27a-5p, hsa-miR-146a-5p 
and hsa-miR-135b) were duplicated in both groups. 
Finally, 46 miRNAs were included for bioinformatic anal-
ysis (Fig. 3).

Out of 46 miRNAs, the multiMiR R package identified 
target genes (mRNAs) of 31 miRNAs. A miRNA-mRNA 
network including 1890 nodes (31 miRNAs and 1859 
mRNAs) and 2171 edges was then constructed (Fig.  4). 
The network has been made available on the Network 
Data Exchange (https:// www. ndexb io. org/#/ netwo rk/ 
3a798 5b0- cfb7- 11ec- b397- 0ac13 5e8ba cf? acces skey= 
f3527 730ff 25ef6 ad912 54fb3 443e1 e96b0 a9e49 abee3 32441 
0b5f1 7c1b4 6af6), a database and online community for 
sharing and collaborative development of network mod-
els [65]. GO and KEGG enrichment analyses revealed 

important GO terms and KEGG pathways related to the 
mRNAs from the miRNA-mRNA network. The 30 most 
significant KEGG pathways and GO terms (10 terms in 
each GO group including BP, CC and MF) were reported 
(Figs. 5 and 6). The complete lists of identified significant 
KEGG pathways and GO terms, and their related genes 
have been provided in the Mendeley Data repository 
(https:// doi. org/ 10. 17632/ ydhrm f2869.1).

Among the KEGG pathways, pathways in cancer, AGE-
RAGE signaling pathway in diabetic complications, 
hepatitis B, cellular senescence and human T-cell leu-
kemia virus 1 infection were the five most significantly 
enriched. Regulation of transcription by RNA polymer-
ase II (GO:0006357), intracellular membrane-bounded 
organelle (GO:0043231) and transcription cis-regula-
tory region binding (GO:0000976) were the most sig-
nificantly enriched GO terms related to BP, CC and MF, 
respectively.

Furthermore, a PPI network including 1016 nodes and 
6199 edges was established based on the mRNAs from 
the miRNA-mRNA network and ten hub proteins (based 
on degree centrality) from the network were identified 
(Figs.  7 and 8). The complete list of interactions among 

Fig. 3 Flowchart of miRNAs selected for bioinformatic analysis. Down‑regulated and up‑regulated miRNAs are represented by green and red colors, 
respectively

https://www.ndexbio.org/#/network/3a7985b0-cfb7-11ec-b397-0ac135e8bacf?accesskey=f3527730ff25ef6ad91254fb3443e1e96b0a9e49abee3324410b5f17c1b46af6
https://www.ndexbio.org/#/network/3a7985b0-cfb7-11ec-b397-0ac135e8bacf?accesskey=f3527730ff25ef6ad91254fb3443e1e96b0a9e49abee3324410b5f17c1b46af6
https://www.ndexbio.org/#/network/3a7985b0-cfb7-11ec-b397-0ac135e8bacf?accesskey=f3527730ff25ef6ad91254fb3443e1e96b0a9e49abee3324410b5f17c1b46af6
https://www.ndexbio.org/#/network/3a7985b0-cfb7-11ec-b397-0ac135e8bacf?accesskey=f3527730ff25ef6ad91254fb3443e1e96b0a9e49abee3324410b5f17c1b46af6
https://doi.org/10.17632/ydhrmf2869.1
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proteins has been provided in the Mendeley Data reposi-
tory (https:// doi. org/ 10. 17632/ ydhrm f2869.1). The hub 
proteins included MAPK1, TP53, RAC1, AKT1, HRAS, 
UBE2D1, EGFR, KRAS, RHOA and STAT3. Moreover, 
the network is available on the Network Data Exchange 
(https:// www. ndexb io. org/#/ netwo rk/ f5419 fb1- cfc8- 
11ec- b397- 0ac13 5e8ba cf? acces skey= a75d2 b627c 99900 
811ff 1775a 16460 d225f c31d2 81775 566da 8bc30 d95e4 
0332).

Discussion
Since the discovery of miRNAs and their roles as regula-
tory molecules, a variety of studies have investigated and 
highlighted their role in the differentiation of stem cells, 
which are key components in the field of regenerative 
therapies [66]. hDP-MSCs, as promising cell sources in 
this field, have recently attracted increasing attention [4]. 
In this systematic review, a panel of important miRNAs 
regulating the differentiation of hDP-MSCs to odonto-
genic/osteogenic, myogenic, angiogenic and neuronal 
lineages was collected.

Included studies  mainly focused on odontoblas-
tic/osteoblastic differentiation. Odontogenesis and 

Fig. 4 miRNA‑mRNA network. Blue ellipses and orange octagons represent mRNAs and miRNAs, respectively. High‑resolution network is available 
on https:// www. ndexb io. org/#/ netwo rk/ 3a798 5b0‑ cfb7‑ 11ec‑ b397‑ 0ac13 5e8ba cf? acces skey= f3527 730ff 25ef6 ad912 54fb3 443e1 e96b0 a9e49 abee3 
32441 0b5f1 7c1b4 6af6

https://doi.org/10.17632/ydhrmf2869.1
https://www.ndexbio.org/#/network/f5419fb1-cfc8-11ec-b397-0ac135e8bacf?accesskey=a75d2b627c99900811ff1775a16460d225fc31d281775566da8bc30d95e40332
https://www.ndexbio.org/#/network/f5419fb1-cfc8-11ec-b397-0ac135e8bacf?accesskey=a75d2b627c99900811ff1775a16460d225fc31d281775566da8bc30d95e40332
https://www.ndexbio.org/#/network/f5419fb1-cfc8-11ec-b397-0ac135e8bacf?accesskey=a75d2b627c99900811ff1775a16460d225fc31d281775566da8bc30d95e40332
https://www.ndexbio.org/#/network/f5419fb1-cfc8-11ec-b397-0ac135e8bacf?accesskey=a75d2b627c99900811ff1775a16460d225fc31d281775566da8bc30d95e40332
https://www.ndexbio.org/#/network/3a7985b0-cfb7-11ec-b397-0ac135e8bacf?accesskey=f3527730ff25ef6ad91254fb3443e1e96b0a9e49abee3324410b5f17c1b46af6
https://www.ndexbio.org/#/network/3a7985b0-cfb7-11ec-b397-0ac135e8bacf?accesskey=f3527730ff25ef6ad91254fb3443e1e96b0a9e49abee3324410b5f17c1b46af6
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osteogenesis are both classified as mineralized tissues 
formation with several properties in common. Odonto-
blasts and osteoblasts express similar differentiation 
markers such as ALP, RUNX2 and COL1 [67]. Similar 
signaling pathways such as Wnt/β-catenin are involved 
in their differentiation [68]. The same growth factors and 
induction medium are used to differentiate stem cells to 
odontoblastic and osteoblastic lineages [36, 58]. Further-
more, similar techniques such as alizarin red staining and 
ALP staining are used to assess differentiation to both 
[36, 58].

Among the miRNAs identified from the group I stud-
ies, hsa-miR-140-5p, hsa-miR-218 and hsa-miR-143 were 
more frequently reported and are discussed below.

Lu et  al. [51] found that overexpression of hsa-miR-
140-5p knocks down the expression of odontogenic 
differentiation markers such as DMP1 and DSPP, and 
suppresses odontoblastic differentiation through Wnt/β-
Catenin signaling pathway. Numerous studies support 
Wnt/β-Catenin as a key pathway in stem cell prolifera-
tion, self-renewal and differentiation [69, 70]. Another 
study [52] reported that hsa-miR-140-5p promoted 
proliferation and suppressed odontogenic differentia-
tion of hDPSCs via lipopolysaccharide/Toll-like recep-
tor 4 pathway by targeting TLR-4, a significant regulator 
of hDPSCs. Other studies investigating odontogenic/
osteogenic differentiation revealed other target genes of 
hsa-miR-140-5p including FGF9, BMP2 and GIT2 [36, 
43, 50]. BMP2 and FGF9 are well recognized as crucial 

Fig. 5 Gene Ontology (GO) analysis of mRNAs (target genes) from the miRNA‑mRNA network. Top 10 GO terms in each category and their ‑log10 
(adjusted p‑value) are represented. The numbers above each GO term represent the number of mRNAs relating to them
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Fig. 6 Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of mRNAs (target genes) from the miRNA‑mRNA network. Top 30 most 
significantly enriched KEGG pathways related to the target genes of miRNAs involved in the odontogenic/osteogenic differentiation of hDP‑MSCs 
are presented. The plot is based on decreasing order of − log10 (adjusted p value). The size of circles represents the number of genes involved in 
each pathway
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growth factors involving in odontogenic/osteogenic dif-
ferentiation [17, 60, 71]. Besides the suppressive effect 
of hsa-miR-140-5p on odontogenic/osteogenic differen-
tiation, Liu et al. [43] reported that it also inhibits direct 
differentiation of SHEDs to neuronal lineage by down-
regulating BMP2 expression. hsa-miR-218 is another 
frequently reported miRNA having inhibitory effects on 
odontogenic/osteogenic differentiation. The results of a 
study by Gay et al. [55] revealed that hsa-miR-218 targets 
RUNX2, which is a master regulator of mineralized tissue 
formation such as odontogenesis, leading to decreased 
mineralization of DPSCs. Chang et  al. [54] transfected 

hsa-miR-218 into the hDPSCs and reported that its 
inhibitory effect occurs through activation of MAPK, 
especially through the ERK1/2 pathway. A previous study 
[72] reported that ERK1/2 signaling converges at RUNX2 
to control odontogenic differentiation. Furthermore, 
another study [53] reported that hsa-miR-218 restrains 
the proliferation and osteoblastic differentiation of hDP-
SCs through the repression of lncRNA-CCAT1. hsa-
miR-143 family was another frequently reported miRNA 
inhibiting odontogenic/osteogenic differentiation. Wang 
et  al. [57] suggested that inhibition of hsa-miR-143-5p 
enhances odontogenic differentiation through activation 

Fig. 7 Protein–protein interaction (PPI) network. The interactions among the mRNAs from the miRNA‑mRNA network are represented. The 
thickness of the edges indicates the confidence of each interaction. High‑resolution network is available on https:// www. ndexb io. org/#/ netwo rk/ 
f5419 fb1‑ cfc8‑ 11ec‑ b397‑ 0ac13 5e8ba cf? acces skey= a75d2 b627c 99900 811ff 1775a 16460 d225f c31d2 81775 566da 8bc30 d95e4 0332

https://www.ndexbio.org/#/network/f5419fb1-cfc8-11ec-b397-0ac135e8bacf?accesskey=a75d2b627c99900811ff1775a16460d225fc31d281775566da8bc30d95e40332
https://www.ndexbio.org/#/network/f5419fb1-cfc8-11ec-b397-0ac135e8bacf?accesskey=a75d2b627c99900811ff1775a16460d225fc31d281775566da8bc30d95e40332
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of p38 MAPK signaling pathway through up-regulation 
of MAPK14. Previous studies have suggested that p38 
MAPK signaling pathway plays a role in regulation of 
the odontogenic differentiation of hDPSCs [14, 73]. Yang 
et al. [56] identified that hsa-miR-143-3p regulates OPG/
RANKL signaling through targeting RANK. Another 
study [58] reported that hsa-miR-143 binds to 3′-UTR 
of TNF-α and inactivates the NF-κB signaling pathway, 
consequently impairing hDPSCs differentiation to osteo-
blast-like cells. Additionally, Li et  al. [47], reported that 
hsa-miR-143 along with hsa-miR-135 attenuates the dif-
ferentiation of hDPSCs to the skeletal myogenic lineage.

Regarding the group II, the miRNAs reported in at least 
two studies have been previously identified as important 
regulators of cell differentiation [74–77], among which 
the most frequently investigated in previous studies are 
as follows: hsa-miR-100 was reported as an important 
endogenous suppressor of bone morphogenic protein-
induced osteoblastic differentiation by down-regulat-
ing Smad1 [74]. Regarding hsa-miR-146a-5p, Qiu et  al. 
[75] concluded that it enhances DPSCs differentiation 
to odontogenic/osteogenic lineage by suppressing the 
Notch pathway. Gao et  al. [76] identified that hsa-miR-
130b is overexpressed in osteogenically differentiated 
MSCs from bone marrow. Shao et al. [77] discovered that 
hsa-miR-122 up-regulated OSX, RUNX2, OCN, COL1 
and BMP2 expression resulting in enhanced osteoblas-
tic differentiation of bone marrow-derived mesenchymal 
stem cells. Zhang et al. [78] identified that hsa-miR-20b is 
up-regulated during differentiation of stem cells derived 
from human adipose tissues toward osteogenic lineage. 
hsa-miR-483-3p promotes osteoblastic differentiation 
of bone marrow mesenchymal stem cells by binding to 

the 3′-UTR of STAT1, leading to increased activity of 
RUNX2 and its nuclear translocation [79, 80]. hsa-miR-
34a promotes odontogenic/osteogenic differentiation of 
stem cells from the apical papilla of the tooth through 
inhibition of Notch signaling pathway by attenuating 
NOTCH2 and HES1 expression [81]. In addition to the 
Notch pathway, hsa-miR-34a has important functions 
in differentiation of dental papilla cells through TGF-β 
signaling pathway [82]. hsa-miR-27a-5p has been shown 
to be overexpressed in exosomes obtained from odonto-
genically differentiated dental pulp stem cells compared 
to undifferentiated cells promoting odontogenic differ-
entiation through TGFβ1/smads signaling pathway [16]. 
Zhang et al. [83] disclosed that inhibition of hsa-miR-135 
could improve cell viability and osteoblastic differentia-
tion via activating JAK2/STAT3 signaling pathway. On 
the contrary, Si et al. [84] reported that hsa-miR-135b-5p 
activates  the HIPPO signaling pathway and promotes 
osteogenesis by targeting LATS1 and MOB1B, negative 
regulatory factors of the HIPPO pathway.

As there was high heterogeneity among the studied 
miRNAs, bioinformatic analyses were conducted to com-
pile these data. Firstly, the constructed miRNA-mRNA 
network revealed comprehensive interactions in odon-
togenic/osteogenic differentiation of hDP-MSCs. Fur-
thermore, KEGG pathway analysis revealed the signaling 
pathways potentially involved in odontogenic/osteogenic 
differentiation of hDP-MSCs. Among the 30 most sig-
nificant pathways, there were several important pathways 
with identified roles in odontogenic/osteogenic differen-
tiation such as MAPK, PI3K-Akt and FoxO.

The MAPK signaling pathway is one of the most fre-
quently discussed in odontogenic differentiation and has 

Fig. 8 Ten hub genes from the protein–protein interaction (PPI) network based on degree centrality
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been identified to be correlated with cellular differen-
tiation [85]. It has been reported that the MAPK signal-
ing pathway is involved in lipopolysaccharide-mediated 
odontogenic/osteogenic differentiation of stem cells from 
the apical papilla [86]. miRNAs, by binding to their target 
RNAs, can affect the MAPK signaling pathway and odon-
togenic differentiation. miRNA Let-7c, through targeting 
insulin-like growth factor 1 receptor (IGF-1R), affects the 
MAPK signaling pathway and inhibits odontogenic/oste-
ogenic differentiation of hDP-MSCs [87]. Down-regula-
tion of hsa-miR-143-5p which targets MAPK14 increases 
activation of the p38 MAPK signaling pathway and 
induces odontoblastic differentiation of hDPSCs [57].

The PI3K/Akt signaling pathway can promote osteo-
blastic differentiation of human mesenchymal stem cells 
[88]. In a study conducted by Zhang et al. [89], it was dis-
closed that the PI3K/AKT signaling pathway can induce 
odontogenic differentiation of hDPSCs. Xiao et  al. [90] 
found 223 differentially expressed proteins between 
differentiated and undifferentiated DPSCs. KEGG 
analysis revealed that the PI3K-Akt signaling pathway 
significantly correlates with these proteins. Also, a pre-
vious study [91] highlighted the existence of a cross talk 
between PI3K/Akt and Wnt/β-Catenin pathway, a well-
known signaling involved in odontogenic/osteogenic 
differentiation.

Forkhead box O (FoxO) has a crucial role in regulation 
of cellular differentiation [92]. Essential roles of FoxO in 
osteogenic differentiation have been identified [93]. Chen 
et al. [15] utilized microarray and identified differentially 
expressed lncRNAs, mRNAs and miRNAs in odonto-
genic differentiated compared to undifferentiated human 
dental pulp stem cells. They constructed a competing 
endogenous RNA (ceRNA) network, and KEGG pathway 
analysis of the differentially expressed mRNAs revealed 
that the FoxO signaling pathway is the most significant 
pathway involved in odontogenic differentiation. In 
another study [94], it was revealed that the FoxO signal-
ing pathway significantly correlates with the target genes 
of differentially expressed circRNAs in odontogenic dif-
ferentiation of hDPSCs.

GO enrichment analysis revealed underlying biologi-
cal terms of the odontogenic/osteogenic differentiation 
of hDP-MSCs. The most significantly enriched GO terms 
were regulation of transcription by RNA polymerase II 
(GO:0006357), intracellular membrane-bounded orga-
nelle (GO:0043231) and transcription cis-regulatory 
region binding (GO:0000976) within the categories of 
BP, CC and MF, respectively. Regulation of transcription 
by RNA polymerase II is related to MAPK7, MAPK14, 
BMP2, BMP3, SMAD2, SMAD4, SMAD5, STAT1, STAT3, 
STAT5A, STAT5B, FOXO1 and FOXO3 genes which are 
all previously reported to be involved in odontogenic/

osteogenic differentiation [15, 16, 57, 60, 77, 80, 81]. 
Likewise, intracellular membrane-bounded organelle and 
transcription cis-regulatory region binding are also asso-
ciated with odontogenic/osteogenic-related genes such 
as SMAD2, SMAD4, STAT1 and STAT3 [16, 59, 80].

Finally, ten hub proteins of the PPI network were iden-
tified most of which are well-known proteins involved in 
regulating cell cycle, proliferation, migration and differ-
entiation [85, 89, 95].

Strengths, limitations and future perspectives
To the best of our knowledge, the current study is the first 
that systematically reviews the miRNAs with identified 
roles in the differentiation of hDP-MSCs. Of note, the 
major strength of the current systematic review is that 
bioinformatic analyses were conducted which add a new 
layer of information to the previously studied miRNAs in 
the differentiation of hDP-MSCs as it identified signaling 
pathways and other cellular and molecular characteristics 
influenced by the union of miRNAs during the differenti-
ation process. These findings provide a deeper view in the 
field of studying the significance of miRNAs in the differ-
entiation of hDP-MSCs. Another strength of the current 
systematic review is that we included the studies which 
investigated expression profile changes of miRNAs dur-
ing the differentiation process of hDP-MSCs by utilizing 
high-throughput techniques along with those experimen-
tally validated the effect of specific miRNA(s) on this pro-
cess. In the other words, high-throughput-based studies 
are hypothesis-free taking a non-biased approach and 
are more likely to come up with the introduction of novel 
miRNAs involved in the differentiation of hDP-MSCs.

The limitations of the study were, firstly, publication 
bias which may exist as unpublished studies with negative 
outcomes might have been missed. Thus, overestimation 
of the effect of miRNAs on the differentiation of hDP-
MSCs may have occurred. Secondly, the focus was on 
miRNAs and their interactions with mRNAs, however, 
miRNAs interact with other types of RNAs such as lncR-
NAs and circRNAs. Therefore, future studies should be 
conducted to determine the role of other types of RNAs 
along with miRNAs in the differentiation of hDP-MSCs. 
The third limitation was that among the included studies, 
those applying low-throughput and hypothesis-driven 
strategies (those experimentally validated the effect of 
a specific miRNA) outnumbered the high-throughput-
based studies.

Understanding the contribution of miRNAs to the dif-
ferentiation of hDP-MSCs is still in its infancy. Although 
applying high-throughput techniques including next 
generation sequencing and microarray have introduced 
several putative miRNAs which are involved in the differ-
entiation of hDP-MSCs, most of them are still awaiting 
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further confirmation and functional analysis. Addition-
ally, the role of miRNAs in various biological processes 
and diseases has drawn attention to the potential appli-
cation of these molecules as gene therapies. Therefore, 
future studies are warranted to investigate the possibil-
ity of their clinical utilization in the field of regenerative 
medicine.

Conclusions
Understanding the regulatory mechanisms underly-
ing the differentiation of hDP-MSCs is integral for their 
therapeutic application. The current review implies that 
specific miRNAs and signaling pathways are involved in 
the regulation of hDP-MSCs differentiation. hsa-miR-
140-5p, hsa-miR-143 family and hsa-miR-218 were the 
most frequently reported miRNAs suppressing odonto-
genic/osteogenic differentiation. MAPK, PI3K-Akt and 
FoxO were identified as key signaling pathways involved 
in the differentiation of hDP-MSCs. These findings sup-
port the potential application of miRNAs to regulate the 
directed differentiation of hDP-MSCs in the field of stem 
cell-based regenerative therapies.
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