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Abstract 

Bone defects are among the most common damages in human medicine. Due to limitations and challenges in the 
area of bone healing, the research field has turned into a hot topic discipline with direct clinical outcomes. Among 
several available modalities, scaffold‑free cell sheet technology has opened novel avenues to yield efficient osteogen‑
esis. It is suggested that the intact matrix secreted from cells can provide a unique microenvironment for the accelera‑
tion of osteoangiogenesis. To the best of our knowledge, cell sheet technology (CST) has been investigated in terms 
of several skeletal defects with promising outcomes. Here, we highlighted some recent advances associated with 
the application of CST for the recovery of craniomaxillofacial (CMF) in various preclinical settings. The regenerative 
properties of both single‑layer and multilayer CST were assessed regarding fabrication methods and applications. It 
has been indicated that different forms of cell sheets are available for CMF engineering like those used for other hard 
tissues. By tackling current challenges, CST is touted as an effective and alternative therapeutic option for CMF bone 
regeneration.
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Introduction
It has been accepted that tissue engineering (TE) is 
an interdisciplinary field to find appropriate biologi-
cal substitutes for restoring injured tissues. For efficient 
reconstruction and mimicking functional and physical 
properties of tissues, TE uses three distinct elements as 
follows: heterogeneous stem cell population, suitable bio-
materials, and varied growth factors [1, 2].

Among several stem cell types, mesenchymal stem 
cells (MSCs) are attractive cell sources for regenera-
tive purposes because of their appropriate differentia-
tion capacity and secretion of diverse soluble factors [3, 
4]. MSCs are commonly isolated from different tissues 
such as adipose tissue, umbilical cord blood, bone mar-
row, and skeletal muscles. Adipose (AD-MSCs)- and 
bone marrow-derived MSCs (BM-MSCs) are two pop-
ular and most available cell sources for bone TE [5]. 
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Although MSCs are a great stem cell source in the area 
of TE, a great plethora of studies has shown that MSCs 
isolated from different tissues possess variable degrees 
of regeneration capacity. For example, human ethmoid 
sinus mucosa-derived MSCs (hES-MSCs) display supe-
rior colonization properties and proliferation compared 
with maxillary sinus-derived MSCs [5]. In this regard, the 
selection of a suitable stem cell type can increase the pos-
sibility of osteogenesis and bone healing [6].

A comparison of different sources of MSCs [BM-MSCs, 
AD-MSCs, umbilical cord-derived MSCs (UC-MSCs)] 
indicated that AD-MSCs and BM-MSCs exhibit higher 
osteogenic potential in in  vitro conditions related to 
UC-MSCs, while angiogenic capacity is more evident in 
AD-MSCs and UC-MSCs [7]. Data confirmed relatively 
similar osteogenic properties for these cells inside the 
body [7]. The existence of prominent osteogenic capacity 
in UC-MSCs and AM-MSCs is associated with a lower 
proliferation rate [8]. It should not be neglected that the 
occurrence of specific physiological and pathological 
conditions can affect the reparative properties of MSCs. 
For instance, the osteogenic capacity and proliferation of 
human and rodent BM-MSCs are reduced by aging [9, 
10]. The application of MSCs in bone-related patholo-
gies includes two main strategies. It is thought that MSCs 
can expedite the regeneration of injured bones via differ-
entiation and secretion of several growth factors, and at 
the same time, properties like immunomodulatory, anti-
inflammatory, and pro-angiogenesis activities can inten-
sify the osteogenic capacity of MSCs [11].

CMF bone tissue supports numerous facial features 
such as pronunciation and mastication [12]. Compared 
to other appendicular bones, CMF basic discords include 
problems associated with endochondral and intramem-
branous ossification. Therefore, the same therapeutic 
strategies would not be suitable for both skull and long 
bones [13]. Usually, pathological injuries, even minor 
defects, related to maxillofacial bone are intricate in mor-
phology compared with those that generally occurred in 
orthopedics [14].

Up to now, different strategies have been used for the 
regeneration and reconstruction of CMF bone injuries 
[15–17]. Cell-based therapies are at the center of atten-
tion for CMF bone regeneration [18]. Lendeckel et  al. 
applied non-differentiated autologous AD-MSCs with 
fibrin glue to reconstruct calvaria with multi-fragment 
fractures in a seven-year-old girl. They also used polylac-
tic acid (PLA)-based resorbable macro-porous mesh to 
fix the graft for three months [19].

Besides the efficacy of cells and different substrates 
in osteogenesis, introducing transplant cells in a spe-
cific structure can accelerate the healing procedure [20]. 
CST and other cellular sheets approaches are touted as 

scaffold-free methods containing natural extracellular 
matrix (ECM) but lack some problems related to the cell 
suspension seeding methods [21, 22]. Considering the 
importance of CMF regeneration and the high prevalence 
of CMF defects, we aimed to collect some experiments 
related to the application of CST in the regeneration of 
hard tissue, mainly in the CMF region.

CMF defects: current methods and challenges
Bone tissue is considered the most extensively compact 
tissue that is continuously remodeled during life by oste-
oclasts and osteoblast activities [10, 23]. To date, CMF 
bone defects remain not only a considerable challenge for 
health but also for restoring functional esthetic façades 
and arise from several etiologies and congenital acquired 
deformities, such as degenerative diseases [15, 23], con-
genital malformations [5, 23], traumas [1, 5, 24], tumor 
resection [5, 23], bone atrophy following a tooth extrac-
tion [14], inflammation [1], and wrong surgical proceed-
ings [23]. These features may lead to non-healing bone 
defects that entail fast and on-time maxillofacial bone 
reconstruction [1, 5, 14, 23–25]. It should be noted that 
spontaneous calvarial re-ossification would be successful 
only in babies younger than two [26]. Besides, the activity 
of mastication-related muscles provides a high amount 
of strain, and stress tolerated by CMF bones can increase 
the complexity of pathological conditions [12]. Due to the 
proximity of mastication-related muscles, maintaining 
the functional integrity of craniofacial bone and appro-
priate reconstruction at a high vascularization degree is a 
critical challenge in bone TE [12].

Small bone defects left without treatment that could 
not heal over their life are termed critical size defects 
(CSD) [27]. Restoration of extensive bone defects is 
essential in maxillofacial, oral, plastic, orthopedic, and 
reconstructive surgery. Most challenges and difficulties 
in the treatment of bone defects are associated with the 
application of suitable biomaterials designed using spe-
cific devices to promote the bone healing procedure and 
fill the missing tissue [1].

The clinical methods used to reconstruct CMF bone 
tissue could be divided into three main categories: bone 
grafting, biomaterials, and cell-based therapies [28]. 
Each modality has its advantages and limitations. Insuf-
ficient capacity for bone regeneration does necessitate 
bone grafting. Autologous bone grafts are one available 
option for surgeons and are touted as a gold standard 
modality for the restoration of CMF structure. Because of 
the existence of difficulties with bone grafting, research-
ers have focused on the development and application of 
other approaches, such as cell-based therapies [14, 23, 
29]. Insufficient quantity of bone stock, variable effective-
ness, immune reactions, accessibility, the possibility of 
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infections, and morbidity are the main considerable limi-
tations related to autologous and allogenic bone grafts [1, 
28, 30, 31].

TE is an alternative approach for generating bone-like 
transplants to reduce or eliminate the demands for bone 
tissue grafting from a patient’s secondary site [23, 32–
34]. In autologous bone grafting, accessibility, mobility 
of donors on harvesting sites, unnecessary surgery, and 
anesthetic times are problematic issues [5, 29]. In the TE 
area, both allogeneic and xenogeneic materials have been 
commonly used for the acceleration of bone regeneration 
[2]. Limitations such as inaccessibility, infection prob-
ability, stableness, immunological reaction, storage, and 
unexpected quantity of graft resorption remained the 
most problematic issues in the application of biomateri-
als [15, 35].

During the past decades, various substrates such as 
ceramics, metal alloys and meshes (titanium mesh), 
demineralized matrix pastes, different polymers, 
porous hydroxyapatite (HA) materials, and cell-based 
approaches have been used as artificial grafts. Lack of 
osteoinductive features, problems related to the pros-
thetic material/bone interface, immunogenic clinical 
response, and removal of adjacent bone is prominent cur-
rent limitations in the application of artificial materials 
[35, 36]. Recent approaches are based on the application 
of decellularized ECM to mimic the native bone ECM for 
efficient regeneration [37]. Along with various biomate-
rials, numerous phytocompounds like Danshen, Ge Gan, 
and Cissus quadrangularis extracts have been applied to 
improve hard tissue regeneration [38, 39]. Biomimetic 

scaffolds or implants are alternative options for CMF 
bone reconstruction [12]. However, incomplete biodeg-
radation rate, prominent immunological response, lack of 
appropriate vascularization [12], foreign body reaction, 
chronic sinus mucosa swelling, fragmentation, infection 
[40], displacement of implant, epidural hematoma, and 
cerebrospinal fluid leak [41] have been reported in terms 
of biomimetic scaffold application.

Scaffold‑free CST
Several research teams have promoted the regenera-
tion of bony tissues using the cellular sheet [42, 43]. As 
an innovative method, CST could recreate a biological 
microenvironment similar, not completely but in part, to 
a target site [1, 5]. In this approach, cultured cells can be 
picked as integrated sheets without using normal proteo-
lytic enzymes while cell-to-cell junctions are maintained 
(Fig.  1) [1]. Studies have proved the deposited ECM in 
the basal surface of the cell sheet compartment [1, 44].

Along with the disadvantages of biomimetic scaffolds 
inside the body, cell sheets may be a suitable regenera-
tive approach with very low immune responses that can 
dictate in  vivo-like phenotype for transplant cells with 
suitable angiogenesis [12]. Blood nourishment is a vital 
element for living tissues and bone remodeling proce-
dures [45]. Compared to the cell suspension strategy, CST 
can notably lead to better cell retention, higher micro-
vascular density, and juxtacrine interaction between 
the transplant and host cells within the interface area 
[37, 46]. Consequently, CST offers various considerable 
advantages and can circumvent several previous issues 

Fig. 1 Schematic illustration of MSC sheet formation. The isolated MSCs from different sources are cultured for certain periods (please see Table 1). 
Cells generate single‑layer or multilayer composite with intact ECM (sheet). MSC sheets can be harvested using several techniques such as electro‑, 
thermo‑, pH‑, photo‑responsive systems, mechanical force, and enzymatic treatment (Designed by office 2019)
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related to scaffolds. Cell sheets are routinely harvested 
by several methods, such as the application of thermo-
responsive substrates at the bottom of cell culture dishes 
[44, 47], and the detachment of a single cell layer using 
mechanical forces (scraper) or light irradiation [14, 48]. 
Therefore, different responsive systems for cell sheet 
harvesting, such as electro-, thermo-, pH-, and photo-
responsive systems, have been developed until now [49]. 
When cells are detached by enzymatic solutions such as 
trypsin or collagenase, considerable cell damage is pos-
sible, resulting in a low survival rate [50].

As mentioned above, mechanical retrieval and 
thermo-responsive plates beyond polymers are two pri-
mary methods for collecting cell sheets [10]. Data indi-
cated intact underlying ECM, high-rate cell viability, 
and tissue-like behaviors in recovered cell sheets using 
these approaches. Besides, maintaining cell-to-cell and 
cell-to-ECM interaction can provide essential signal-
ing pathways required for proper cell bioactivity. Immu-
nohistochemical studies have confirmed the presence 
of ECM components such as fibronectin, laminin, and 
cell junction β-catenin in the sheet cell layer, which are 
essential for cell attachment and functionality [51]. It is 
believed that cells within the sheet structure can appro-
priately sense mechanical signals. Compared to a 3D cul-
ture system using scaffolds, CST benefits from several 
advantages [52]. The distributions of growth factors are 
acceptable, and most cells can be stimulated in a coor-
dinated manner [52]. The activity of surface receptors 
such as glucose transporter-1,  Na+/K+-ATPase, sodium–
glucose-linked transporter-1, neutral endopeptidase, 
dipeptidyl endopeptidase IV, and aquaporin-1 are nor-
mal [53]. It is believed that the integrated ECM under the 
cell sheets could act as a natural tissue adhesive substrate 
and eliminate the necessity for suture, allowing sheets 
to attach rapidly to the tissue’s target site without inva-
sive manipulations [50–53]. All these events can occur 
using the intact ECM on the basal surface cell sheets [54]. 
Commensurate with these descriptions, the preservation 
of ECM in CS helps the transplant cells to regulate home-
ostasis, proliferation, and migration and provides crucial 
clues for mechanical support during the transplantation 
[5, 55, 56].

In the context of bone tissue structure, cell sheets can 
be used as periosteum [57]. Application of MSC sheets 
with supportive ECM circumvents disadvantages of cell-
based therapies, such as lack of appropriate migration 
and leaking of transplant cells after injection into the 
injured sites [10, 52, 57].

The addition of distinct supplements, such as ascor-
bic acid, promotes the synthesis and secretion of ECM 
components and prevents the progression of age-related 
changes in cells within the sheet structure [44, 58, 59]. 

Akahane and colleagues declared that the exposure of 
cells to dexamethasone (Dex) and ascorbic acid affects 
the expression of specific genes associated with ECM 
construction and sheet formation [60]. Later studies on 
the role of Dex and ascorbic acid on BM-MSCs indicated 
that both factors allow the harvesting of cultured cells in 
a single cell layer by improving the mechanical integrity 
after induction of proteoglycan and type I collagen syn-
thesis. Preparation and/or induction of integrated sub-
strate synthesis can increase cell number, which seems 
a practical approach in complex tissue reconstruction 
like osteonecrosis, nonunion, and union bone defects 
[61]. By the stimulation of type I collagen, laminin, and 
fibronectin synthesis, ascorbic acid promotes the osteo-
genic differentiation of cultured cells [61, 62]. Likewise, 
the expression of stemness genes such as OCT-4, Sox-2, 
and TERT was upregulated in MSC sheets after exposure 
to ascorbic acid [44]. Langenbach and Handschel previ-
ously indicated that Dex could induce BM-MSC osteo-
genic differentiation by the expression of MKP-1 and 
osteocalcin (OCN) and dephosphorylation of Runx2 [61, 
62]. It seems that incubation of cells in a culture medium 
supplemented with the combination of Dex and ascor-
bic acid yields efficient sheet formation culture systems 
compared to that from Dex or ascorbic acid alone [61]. 
In addition to certain components and stimulatory fac-
tors, the application of ECM components can trigger the 
formation of a cell sheet. For instance, gelatin enhances 
cell proliferation and upregulates the expression of the 
bone morphogenetic protein (BMP)-7 in the differenti-
ated sheets [63]. It is touted that the existence of a spe-
cific tripeptide motif (arginine–glycine–aspartic acid) in 
the backbone of gelatin improves cell adhesion properties 
[63, 64].

According to previous studies, the roles of cell sheets 
in bone engineering containing exogenous constructs 
can be summarized below: (i) acting as cell carriers; (ii) 
restricting the progression of fibrous connective tissues 
in the osteogenic microenvironment; and (iii) develop-
ing periosteal and endochondral osteogenesis [50, 65, 
66]. Up to now, several cells such as AD-MSCs, BM-
MSCs, periodontal ligament-derived cells, dental follicle 
cells, and gingival margin-derived cells have been applied 
for sheet formation, and data confirmed their restora-
tive properties in bone, corneal epithelium, periodontal, 
and myocardial tissue [5, 67]. Compared to single-cell 
sheet treatment, multilayer MSC sheets yielded better 
osteochondrogenic capacities. The culture of MSCs on 
stacked sheets composed of methyl cellulose and poly(N-
isopropyl acrylamide) [MC and PNIPAAm] increased the 
expression of BMP-2, alkaline phosphatase (ALP), OCN, 
and VEGF at tendon–bone interface (TBI) [68]. For 
obtaining better regenerative outcomes, Berntsen et  al. 
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used stacked tenogenic and osteogenic hAD-MSC sheets. 
Juxtaposed tenogenic and osteogenic hAD-MSC sheets 
with an integrated multilayer construct increase simulta-
neously several biomarkers associated with tendon, min-
eralized fibrocartilage, and bone tissue. Data indicated a 
spatial gradient of RUNX2 expression. In the osteogenic 
sheet, the expression of OCN and osterix were increased 
coinciding with the transcription of tenomodulin and 
scleraxis at the tenogenic cell sheet. Of note, endochon-
dral ossification was evident in the engineered interface 
which is indicated by Indian Hedgehog and Type X col-
lagen [69]. Simultaneous application of BM-MSC sheet 
with an acellular structure is another strategic approach 
to achieve triple biomimetic TBI.

However, varied cell types can affect the behavior of 
the final cell sheet structure. Recently, Nakao et al. have 
investigated differences between MSC sheets produced 
using various cell sources like AD-MSCs, BM-MSCs, 
and human umbilical cord MSCs (hUC-MSCs) [70]. 
Based on data, adhesion, and migration of MSCs were 
similar. However, some differences were found regarding 
cytokine secretion and proliferation capacity. On the sur-
face of thermo-responsive cell culture dishes, BM-MSCs 
exhibited lower adhesion compared to AD-MSCs and 
UC-MSCs. Forty-eight hours after seeding, the number 
of AD-MSCs and UC-MSCs was higher than BM-MSCs. 
However, BM-MSCs showed the most potent genera-
tion rate. As a correlate, the selection of a suitable MSC 
source with prominent cytokine secretion capacity is 
integral to the successful transplantation process [70].

Akahane et  al. investigated the relationship between 
donor age and the osteogenic potential of osteogenic 
matrix cell sheets (OMCS). They found a similar level of 
osteogenesis capacity and bone formation in both old and 
young donor cells, indicating the fact that OMCS can be 
considered an efficient method in bone healing even in 
aged patients [10]. Emerging data have indicated that cell 
sheets can improve the paracrine activity of MSCs after 
placing at the site of injury [71]. It was indicated that the 
secretion of exosomes via mouse BM-MSCs sheet pro-
moted neural stem cell differentiation, axonal regenera-
tion, and synaptogenesis in a mouse model of spinal cord 
injury [71]. These data show that cell sheets can improve 
the regenerative properties of MSCs via the induction of 
differentiation and paracrine activity.

Cell sheet in CMF defects
Recently, allogeneic monolayer and heterogeneous 
multilayer cell sheets have been developed for TE 
purposes. Cell sheets have been used to construct tis-
sues such as bone, mucosa, cornea, and myocardium 
[50, 72–74]. In some studies, CST was combined with 

other biomaterials for bony tissue reconstruction, 
such as spinal cord interbody fusion [75]. Figure 2 and 
Table  1 show sheet-based constructs for CMF bone 
regeneration.

Efficacy of cell source and passage numbers
To answer whether the source of cells would be an effec-
tive regenerative outcome, Liu et al. compared the osteo-
genic potential of alveolar and long BM-MSC sheets in 
rabbits with calvarial bone defects [79]. According to the 
data, sheets containing alveolar BM-MSCs yielded more 
osteogenic outcomes with prominent mineralization and 
higher newly formed bone-to-total-volume ratio (BV/
TV) and significant expression of osteonectin, OCN, 
Runx2, osteopontin (OPN), and BSP genes compared to 
the group received long BM-MSCs [79]. The authors sug-
gested that the application of alveolar BM-MSC sheets 
would be a hopeful approach to the regeneration of CMF 
bone injuries in clinical settings [79]. In an experiment 
conducted by Xie et  al., human ethmoid sinus mucosa 
(ES)-MSCs and rat BM-MSCs sheets in the presence of 
polysebacoyl diglyceride were fabricated and examined in 
a rat model of calvarial defects [5]. To this end, different 
composites [ES-MSCs‒sheet‒BM-MSCs‒polysebacoyl 
diglyceride, BM-MSCs–sheet–BM-MSCs‒polysebacoyl 
diglyceride, BM-MSCs‒polysebacoyl diglyceride, poly-
sebacoyl diglyceride] were fabricated and transplanted 
into the target injury site. Based on the data, it confirmed 
that hES-MSCs‒sheets aligned with BM-MSC‒sebacoyl 
diglyceride showed maximum osteogenic properties after 
transplantation into the injury sites. Also, this group had 
higher paracrine activity to release factors such as BMP-
2, BMP-4, and bFGF in in vitro conditions (Fig. 3) [5]. It 
should not be forgotten that the number of cell passages 
can affect the quality and restorative capacity of the cell 
sheets. Kim et al. fabricated cell sheets from hUC-MSCs 
at different passages (from P4 to P12) on thermo-respon-
sive culture dishes [51]. Based on the data, the prolifera-
tion properties of MSCs were reduced upon reaching 
passage 9 with inadequate cell-to-cell juxtacrine interac-
tion. It confirmed that MSCs tended to form micro-sized 
cell aggregates with heterogeneous morphologies by the 
increasing number of passages in which passage 12 MSCs 
lost their properties to form a confluent single cell layer.

Implantation of the cell sheet
Fragmented cell sheet
Sheet pieces are eligible to initiate bone generation 
at different time points, with a higher peak load com-
pared to integrated cell sheet transplantation. Related 
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outcomes represented a considerable increment in 
bony junction using fragments of the BM-MSC sheet 
[52].

Multilayer cell sheet
It has been shown that triple-layer BM-MSC sheets could 
appropriately stimulate local surface bone growth [84]. 
Data obtained indicated that autologous pig mandibular 
BM-MSC sheets could increase bone growth at the man-
dibular symphyseal surface [84].

Cell sheet and biomaterials
The combination of CST with certain biomaterials can 
increase the regenerative potential of transplant cells 
[1, 5]. The presence of nanofibers meshes composed of 
poly-L-lactide (PLLA) and gelatin (PLLA/gelatin), not 
only improved and induced osteogenic differentiation 
of BM-MSCs but also remarkably enhanced new calci-
fied bone formation [77]. Cell sheets in combination 
with PRF (platelet-rich fibrin granules) and nano-HA 
[1], poly(lactide-co-glycolide)/HA (PLGA/HA) scaffold 
[81], PLGA [53], beta-tricalcium phosphate (β-TCP) [59], 

Fig. 2 Application of MSC sheet alone in combination with other substrates and growth factors for the acceleration of osteogenesis in the 
mandible, maxilla, and cranium (Designed by office 2019)
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Fig. 3 Bright‑field assessment of hESMSC sheets with different magnifications (A: a = 500 µm and b = 200 µm). The cell sheets were detached from 
the temperature‑responsive dish at a temperature below 20 °C (B panel a) and lifted using forceps (B panel b). H & E staining revealed the existence 
of 4–5 cell layers with an average thickness of 100–150 µm (C; scale bar = 200 µm). The ultrastructural analysis confirmed that compact cells are 
embedded in dense ECM (D: panel a = 50 µm; panel b = 20 µm). Copyright with permission [5], 2015, Biomaterials
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and β-TCP/collagen-I [88] could be more effective in the 
regeneration of calvarial bone defects. It is postulated 
that the combination of a cell sheet with a 3D scaffold 
structure can yield more regenerative outcomes [53]. To 
this end, Du and co-workers cultured human BM-MSCs 
within the biodegradable β-TCP scaffolds and wrapped 
them simultaneously with BM-MSC sheets. This strat-
egy reduces unwanted adipogenic and chondrogenic dif-
ferentiation of cultured cells and increases osteogenic 
potential [89].

Cell sheet and biological agents
It has been indicated that interferon (IFN)-γ stimu-
lates immuno-suppressive properties of MSCs by the 
regulation of the indoleamine 2, 3-dioxygenase (IDO) 
enzyme [56, 90]. Studying the effect of IFN-γ on hBM-
MSC sheets showed that the upregulation of IDO leads 
to HLA-DR expression and T cell inhibition in grafted 
regions, resulting in the induction of mice calvarial 
bone regeneration. It is thought that IDO can diminish 
the host immune response, thus inducing bone tissue 
regeneration in the mouse model [56]. The combination 
of the BM-MSC sheet and PRF increased the healing of 
the critical size calvarial bone injury in rabbits [82]. Also, 
local injection of the Semaphorin 3A (Sema3A) with AD-
MSC sheet and Bio-Oss® bone granules increased the 
osteogenic outcomes. This strategy seems to be an excit-
ing approach for osseous healing in rats with type 2 dia-
betes mellitus [80]. Kaibuchi and co-workers proved the 
efficacy of AD-MSC sheets in the healing of mandibular 
wounds in beagle dogs caused by Dex and zoledronate. 
Following the operation, many bacterial colonies and 
multi-nuclear Cathepsin K-positive cells were detached 
from the surfaces of the jaw bone on the control side, 
while a complete healing process in the mucosal wounds 
was achieved in all dogs that received MSC sheets [11].

MSC sheet and angiogenesis
Among several important factors involved in bone heal-
ing, angiogenesis, and vascularization have critical roles 
[15, 91]. Efficient bone TE and regeneration require 
rapid neovascularization into the grafts [76]. Without 
tissue vascularization, the implants will not develop 
bone-forming units or lose their function over time [92]. 
Supplementation of pro-angiogenic factors, co-culture 
approaches, microsurgical techniques, and optimizing 
the scaffold structure are some ways to stimulate angio-
genesis [93–97]. MSC secretome encompasses several 
angiogenic factors such as interleukin (IL)-6, FGF-2, 
VEGF, monocyte chemoattractant protein-1, and angi-
opoietin-1 [1]. It has been shown that hypoxic AD-MSCs 
could induce the growth of blood vessels by concurrent 
secretion of anti-apoptotic and angiogenic factors, like 

VEGF [98–101]. Thus, AD-MSCs have the potential to 
affect both osteogenic and angiogenesis (osteoangigo-
enesis) in sheet form [24, 102, 103]. The angiocrine and 
anti-apoptotic factors released by BM-MSC could regu-
late endogenous cell migration [81]. In BMP-2-mediated 
bone tissue regeneration, the paracrine activity of osteo-
progenitors is considered a great modulator of neovascu-
larization as well [99, 100, 104, 105].

The angiogenesis potential of MSC sheets has been 
highlighted in different tissues, such as the skin and heart 
[42]. It was suggested that MSC sheets produce signifi-
cantly higher VEGF levels compared to MSC suspen-
sion after being placed at the site of injury or ischemia 
[57, 68, 106, 107]. The release of specific factors such as 
HGF and VEGF stabilizes newly formed blood vessels 
following the differentiation of MSCs. Of note, a frac-
tion of MSCs within the sheets acquires a pericyte-like 
phenotype (Fig.  4) [86]. Therefore, one can hypothesize 
that the release of angiocrine by MSCs is an important 
factor in the acceleration healing process in the early 
days [51]. Based on the data, the simultaneous applica-
tion of materials with engineered cell sheets (MSC sheet 
implants) can simultaneously increase vascularization 
and osteogenic abilities [108]. In this regard, Nakano 
and colleagues differentiated developed rat BM-MSC 
sheets in the presence of osteogenic medium and placed 
the cells within the cylindrical shaped β-TCP scaffolds 
[109]. It was indicated that both vascular units and bone-
forming units were seen at the center of β-TCP construct 
two weeks after transplantation into the rats, leading to 
improved new bone generation [109]. Molecular inves-
tigations revealed the expression of ALP, BMP-2, OCN, 
and VEGF-A. It is thought that the concurrent release 
of VEGF with osteogenesis factors like OCN and ALP 
around the fracture sites after transplantation of cell 
sheets can help with new bone formation and remod-
eling [110]. Similarly, Kim et al. confirmed angiogenesis, 
capillary formation, and newly generated blood vessels 
between host tissue and hUC-MSC sheets 10 days after 
implantation. They showed continuous and appropri-
ate secretion of human HGF for ten days while in the 
absence of hUC-MSC sheets (MSC suspension), only a 
few tiny blood vessels are generated (Fig.  5) [51]. Like-
wise, nascent vascular units have been approved around 
MSC sheets in different animal models. In a study, allo-
genic GFP-tagged rat BM-MSC sheets were transplanted 
into rats with osteonecrosis of the jaw [86]. Immuno-
fluorescence staining revealed that these cells can jux-
tapose to the periphery of vessels and exhibit pericyte 
marker CD146, indicating the active participation of 
transplanted MSCs in the arteriogenesis process [86]. To 
be specific, the differentiation of MSCs toward pericytes 
can stabilize the structure of newly generated vascular 
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Fig. 4 Possible restorative properties of MSC sheets in rats with BRONJ disease. Like MSC differentiation properties, the paracrine activity of 
MSCs within the sheet structure is an important factor to accelerate osteogenesis. It is believed that simultaneous activation of angiogenesis and 
osteogenesis by MSC sheet is critical to yield better regenerative outcomes. The release of VEGF and HGF promotes angiogenesis while RANKL 
secretion can orient the osteoclast precursor cells into osteoclasts and improves bone remodeling in rats with BRONJ disease (Designed by 
Photoshop version CS6)

Fig. 5 Xenogeneic transplantation of human umbilical cord MSC (hUC‑MSC) sheets to immuno‑deficient mice (a–g). H & E staining indicates 
the formation of numerous vascular units in mice that received xenogeneic hUC‑MSC sheets (b and c) compared to the control group (a). The 
transplantation area is indicated with local vascularization (d). Immunofluorescence images confirmed that hUC‑MSC sheets produce HGF on 
days 1 and 10 after being transplanted into the target sites within the cutaneous tissue (f and g). Black arrows = transplanted hUC‑MSC sheet; 
blue arrows = blood vessels. Scale bars in panels a and b = 100 µm; scale bars in panels c, f and g = 50 µm; scale bars in panels d and e = 0.5 cm. 
Copyright with permission [51] 2019, Scientific reports
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units [111]. Multiple cell transplantation is an interesting 
strategy to increase the angiogenic potential of stem cells. 
Using an MSC, endothelial cell, and CD146 pericyte co-
culture system on PIPAAm thermo-responsive surfaces, 
Mendes et  al. improved the osteoangiogenic capacity of 
fabricated MSC sheets [112]. They showed that endothe-
lial cells and CD146 pericytes migrated successfully to 
the MSC layer and several vascular anastomoses with the 
production of type I collagen and osteocalcin [112]. In 
some studies, cell sheets have been used along with bio-
degradable scaffolds to stimulate vascularization. Kang 
and co-workers used β-TCP-covered biomimetic perios-
teum cell sheets for bone tissue regeneration [113]. The 
biomimetic periosteum was effective in osteogenesis and 
vascularization due to an appropriate spatial configura-
tion. By incorporating a vascular bed or collagen micro-
channels into stacked sheets of cells, the medium could 
be filled into the sheets to build new capillaries inside the 
perfusion bioreactor [92, 114, 115]. It should be noted 
that it is necessary to use appropriate doses of compo-
nents to avoid the development of excessive blood vessel 
formation that could lead to pathological diseases such as 
vascular malformations [116], atherosclerosis, and prolif-
erative retinopathy [24, 116].

Immune response and cell sheet
Undoubtedly, the infiltration of various immune cells 
like Th1, Th2, Th17, and macrophages into the grafts is 
essential for tissue regeneration or wound healing [79]. 
Up to now, the immune-suppressive impact of MSCs is 
well proved in several reports. MSCs can secrete specific 
bioactive molecules that could avert unpleasant immune 
reactions and support the healing of damaged tissues [1]. 
Modulatory potential and anti-inflammatory effects of 
MSCs occur mainly via paracrine mechanisms [5]. It is 
shown that MSCs can exhibit anti-inflammatory effects 
in many diseases via the regulation of macrophage activ-
ity [87, 117]. As reported in several animal and clinical 
studies, spontaneous tissue healing might lead to difficul-
ties, such as fibrosis and inflammation. Minimizing these 
responses could be possible using graft materials.

In most circumstances, treatment using allogeneic 
MSCs is considered due to the local immuno-suppres-
sive activities of MSCs, where using autologous cells is 
restricted or even impossible [1]. A limitation of allo-
geneic cell therapy involves immunological properties 
and variable efficiency in patients due to cell transfer 
strategies. Therefore, researchers have tried to develop 
novel allogeneic cell sheets using hUC-MSCs with low 
antigenicity. Compared to several types of MSCs, such 
as BM-MSC and AD-MSC sheets, the UC-MSC sheets 
barely express MHC II antigens related to all immune 
rejection (Table  2). hUC-MSC sheets could be grafted 

immediately within 10 min of placement into the sub-
cutaneous tissue in immune-deficient mice. The secre-
tion of TNF-α from hUC-MSC sheets at passage 4 was 
notably lower than those of sheets at passages 6, 8, 10, 
and 12. Together, the passage number of cells is an 
important factor in immunomodulatory capacities [51, 
70]. It has been indicated that cytokines such as IL-6, 
IL-10, TGF-β1, and PGE2 are associated with the anti-
inflammatory properties of MSCs [118]. TGF-β1 can 
down-regulate the inflammatory reactions by damp-
ing macrophage movement and release of pro-inflam-
matory cytokines [119]. TGF-β1 exerts pleiotropic 
influences on processes including cell proliferation, 
migration, differentiation, and death [120]. Also, this 
factor can eliminate T-cell activity in response to exog-
enous antigens [121], suggesting that the levels of TGF-
β1 may influence the survival of grafted MSCs. It was 
found that the production of PGE2 was moderately 
high in UC-MSCs and BM-MSCs as compared to AD-
MSCs [86]. PGE2 is involved in the anti-inflammatory 
response by binding to its receptors, EP1eEP4 [70, 
122]. Corradetti and co-workers indicated the infiltra-
tion of neutrophils into the grafts at the beginning of 
1–4  weeks accompanied by monocyte recruitment 
[123]. In the latter steps, this pattern was turned into 
anti-inflammatory cells [124].

Liu et  al. reported that the immunoregulatory of 
alveolar BM-MSC and iliac BM-MSC sheets are simi-
lar with nonsignificant changes in the activity of Th1, 
M1, and M2 cells [79, 125]. Unlike this study, some 
authorities found that different MSC sources (BM-
MSCs, AD-MSCs, and fibroblasts) within the cell 
sheets can exert varied anti-inflammatory properties 
[117]. It was indicated that AD-MSC and BM-MSC 
sheets stimulated the anti-inflammatory macrophage 
phenotype (M2) better than fibroblast sheets. Based 
on data, supernatants collected from AD-MSC sheets 
yielded higher CD206 surface markers, IL1 receptor 
antagonist (IL1RA), and chemokine (C–C motif ) ligand 
18 (CCL18) [117]. It has been shown that CD206, a 

Table 2 Comparing the sources of MSCs. Cytokine expression 
from cell sheets with different cell sources including UC‑MSCs, 
BM‑MSCs, and AD‑MSCs [70]

Cytokine (pg/ml per cell sheet) Qualitative amount

HGF Level AD‑MSCs ˃ BM‑MSCs ˃ UC‑MSCs

TGF‑β1 Level BM‑MSCs ˃ UC‑MSCs ˃ AD‑MSCs

PGE2 Level BM‑MSCs ˃ UC‑MSCs ˃ AD‑MSCs

IL‑6 Level UC‑MSCs ˃ BM‑MSCs ˃ AD‑MSCs

IL‑10 Secretion AD‑MSCs ˃ BM‑MSCs ˃ UC‑MSCs
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mannose receptor, is upregulated in response to certain 
interleukins such as IL-4 and IL-13. CD206 may modu-
late signals induced by other receptors, such as Fc or 
Toll-like receptors [126]. Likewise, IL-1Ra acts as the 
IL-1 inhibitor by binding to the IL-1 receptor to protect 
tissues from inflammation-induced injuries [127].

Other possible mechanisms involved 
in the regenerative potential of CS
As discussed above, MSCs can commit to several cell 
types and promote the regeneration of tissues via dif-
ferent mechanisms. In addition to osteoangiogenic and 
immune-modulatory properties, these cells exhibit oste-
oinductive, neurogenic capacities via engaging paracrine 
mechanisms [5]. After transplantation, cell sheets not 
only maintain cellular function and morphology but also 
can help the transplanted cells to adhere to the host tis-
sues and secret growth factors [51].

Kaibuchi et  al. showed that the average number of 
osteoclasts was significantly higher in MSC sheets than 

in the control and suspended MSCs groups. Also, the 
secretion of receptor activator of nuclear factor ĸ-B 
ligand (RANKL) from MSCs could lead to the differen-
tiation of osteoclast precursor cells to osteoclasts [86]. 
Xiao et  al. suggested a plan to describe how ECM can 
regulate osteoblast differentiation [128]. They proposed 
that osteoblasts phenotype is acquired after the promo-
tion of close contact between osteoblasts and collagen-
bearing ECM. The reciprocal interaction between type I 
collagen and α2β1 integrin binds the osteoblasts to ECM 
components. Besides, the promotion of integrins can 
activate signaling pathways such as the MAPK axis. After 
the transduction of signals to the nucleus, specific factors 
such as Runx2 are activated. The concomitant expression 
of osteoblast marker genes such as OCN-induced osteo-
blast differentiation (Fig. 6) [128]. It is thought that this 
model could be a probable mechanism of cell sheet ECM 
on the host osteoblasts. In another study, it was pro-
posed that the accumulation of extracellular signal-reg-
ulated protein kinases-p (P-ERK) occurs in the nucleus 

Fig. 6 Cell sheet implantation approaches and subsequent molecular responses. CS could be used as mono‑ or multi‑cell layered form, F‑CS, 
and Fo‑CS in the site of bone injury. It is suggested that CS can be applied in combination with S, and BF. After CS transplantation, implanted cells 
release several factors such as RANKL with the potential to increase osteoclast precursor cells differentiation into osteoclasts. Reciprocal interaction 
of ECM integrin and collagen with cells leads to the activation of relevant downstream signaling pathways such as MAPK and β‑catenin, resulting 
in OB differentiation and increased bone formation. Cell sheets: CS; fragmented form: F‑CS; scaffolds: S; biological factors: BF; folded form: Fo‑CS; 
osteoclasts: OC; osteoblasts: OB; osteocytes in lacunae: OCY; connective tissue: CT; new bone: NB; and host bone: HB (Designed by Office 2019 and 
Photoshop CS6)
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after the interaction of integrins with ECM components. 
Both Runx2 and P-ERK selectively bind to promoters of 
OCN and bone sialoprotein (BSP). Molecular investiga-
tions have revealed that two osteoblastic cis-acting ele-
ments, including OSE2a and OSE2b, exist at the proximal 
promoter of the OCN gene and are essential for OCN 
expression [129, 130]. It has been indicated that Msx2, 
Dlx3, and Dlx5 could positively and negatively regulate 
Runx2 [131]. Runx2 with Dlx3 and Dlx5 could regulate 
functional osteoblast HD regulatory elements including 
type I Collagen, OCN, OPN, and BSP [132].

Immunofluorescence imaging indicated that only part 
of the transplanted BM-MSC sheet directly differenti-
ated into osteocytes and formed the bone matrix [133]. 
Labeled MSCs in the structure of cell sheets are detect-
able at the defect sites and in the regenerating tissues 
about 2 and 8 weeks after transplantation [68]. To show 
the probable relationship between MSC type and bone 
formation, Xie et  al. used cellular sheets of hES-MSCs 
and hBM-MSCs. It was found that both MSC sheets, 
especially hES-MSCs, can differentiate into osteo-
blasts. The higher regenerative outcomes in animals 
that received the hES-MSC sheet are possibly due to the 
secretion of cytokines (Fig. 6) [5].

Limitations and potential core problems
Besides the benefits and advantages of cell sheets in bone 
engineering, some related limitations need further con-
sideration [134]. For example, the period required for 
applied cells to form the sheet structure could be up to 
four weeks after cell isolation (Table  1). One strategy 
would be a selection of certain growth factors, appropri-
ate initial cell density, scaffolds, and supportive matrices 
with specific physicochemical properties that can edu-
cate the plated MSCs to produce ECM in the least pos-
sible time. Another limiting factor is the short shelf life 
of cell sheet constructs. It means that at the time that 
sheets are formed, the patient should be in a suitable 
condition to receive the graft. The existence of xenobi-
otic materials such as serum can affect the eligibility of 
sheet structures in the clinical setting. Using autologous 
and allogeneic serum for the expansion of MSCs within 
the cell sheet structure can, in part, but not completely, 
circumvent the issues associated with the transmission 
of xenobiotic materials in patients. The variability of the 
final product is another potential problem that arises 
from several biological reagents during the fabrication 
of cell sheets, resulting in varied quality products. Devel-
oping standard GMP-grade protocols can reduce several 
drawbacks related to quality variation. Transporting and 
the distance between the laboratory and the patient hos-
pitalization should be short. Furthermore, the final prod-
ucts have to be used within two or three days to avoid 

losing cell-to-cell connection and attachment to the 
wound beds [134]. For commercialization aspects, the 
storage, and transportation of products should be care-
fully addressed. Also, cell sheet manufacturing is a man-
ual process, and the final cell sheet structurally is a very 
thin, skinny, and sensitive layer. Due to a lack of proper 
mechanical properties, cells are susceptible to damage 
[44, 135]. So, the cell sheet process demands an expert 
operator and educated surgeons to be familiar with the 
handling of cell sheets [134]. Cryopreservation is another 
issue in terms of CST. Nowadays, there are few effec-
tive methods for cell sheet cryopreservation, thawing, 
and administration. Regarding these obstacles, cell sheet 
therapy is restricted to short paths between culture facili-
ties or demands [136].

Conclusion
Cell sheet engineering is not only limited to in vitro stud-
ies but is also used for the regeneration of several soft 
and hard tissues in animal models and clinical studies. 
Among various available techniques, the existence of 
a confluent cell layer, intact ECM, and secretion of sev-
eral signaling biomolecules make the CST a promising 
therapeutic approach in CMF bone defects. The combi-
nation of CST with other modalities such as nanofibers 
or other substrates can yield better regenerative out-
comes. Despite these descriptions, further investigations 
are mandatory to improve mechanical properties with a 
focus on vascularization potential, paracrine activity, and 
differentiation into the target cell types.
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