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Abstract 

Muscular diseases and injuries are challenging issues in human medicine, resulting in physical disability. The advent of 
tissue engineering approaches has paved the way for the restoration and regeneration of injured muscle tissues along 
with available conventional therapies. Despite recent advances in the fabrication, synthesis, and application of hydro-
gels in terms of muscle tissue, there is a long way to find appropriate hydrogel types in patients with congenital and/
or acquired musculoskeletal injuries. Regarding specific muscular tissue microenvironments, the applied hydrogels 
should provide a suitable platform for the activation of endogenous reparative mechanisms and concurrently deliver 
transplanting cells and therapeutics into the injured sites. Here, we aimed to highlight recent advances in muscle 
tissue engineering with a focus on recent strategies related to the regulation of vascularization and immune system 
response at the site of injury.
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Introduction
Skeletal muscles are consolidated tissue and consist of 
aligned multinucleated myocytes, satellite cells, nerves, 
blood vessels, and extracellular matrix (ECM) in com-
plex structures [1–3]. Like other tissues, skeletal mus-
cles are sensitive to varied acute and chronic injuries 
caused by physical trauma, plastic/cosmetic surgeries, 
arterial occlusion, metabolic diseases, peripheral nerve 
atrophies, congenital diseases, etc. [4–12]. Following an 
injury, the promotion of inflammatory response leads to 
the activation of the quiescent skeletal muscle stem cells 
(known also satellite cells) for the regeneration of injured 
sites via proliferation, differentiation, and subsequent 
cell-to-cell fusion [8, 13, 14]. Despite the existence of a 
sophisticated healing mechanism within the parenchyma 
of muscular tissue, a high proportion of satellite cells are 
damaged when the injury is extensive and the basal lam-
ina is disrupted. Under such conditions, chronic inflam-
mation and dysregulated macrophage response can lead 
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to inappropriate regeneration, excessive collagen fiber 
deposition, and fibrotic changes [15]. Along with these 
changes, abnormal ECM synthesis via recalled fibro-
blasts dominates myogenesis, leading to the formation of 
non-functional scar tissue [16, 17]. Scar tissue can dete-
riorate the integrity of the capillary and neural network 
and results in the loss of suitable vascularization and 
denervation. These features affect the basal metabolism 
of residual tissue and promote muscle atrophy and loss 
[15, 18, 19]. In line with these facts, therapeutic interven-
tions should be eligible to prevent or minimize unwanted 
inflammatory consequences and improve the regenera-
tion rate. In recent decades, muscle flap transfer from 
donor sites to the injured tissues is touted as the gold 
standard in clinical therapy following muscle damage/
volumetric muscle loss (VML). Although autograft trans-
plantation can orient vascular and neural networks to the 
injury site this approach is limited due to donor site avail-
ability, morbidity, and poor engraftment rate [20–22]. 
Besides, the application of cadaveric allografts is also hin-
dered by the lack of sufficient organ donors and the risk 
of disease transmission [22–24]. Moreover, the diversity 
of defects in shape and location in different cases and 
complications such as necrosis or post-surgery infections 
make the surgery a challenging procedure that requires 
professional and experienced surgery teams [25–27]. In 
cell-based modalities, the application of myogenic or 
non-myogenic cells is also restricted due to the low viable 
cell rate during transplantation into the injured sites. To 
overcome these limitations, protective microenviron-
ments with proper biochemical and mechanical cues are 

essential to dictate specific cellular behavior and function 
[28, 29]. In recent years, tissue engineering, a branch of 
interdisciplinary science, can help researchers and cli-
nicians with accelerated tissue healing using de novo 
technological approaches consisting of specific cell popu-
lations, growth factors, and scaffolds [30, 31]. In this arti-
cle, recent data associated with the application of varied 
scaffold types for the regeneration of injured muscle tis-
sue was investigated.

Application of natural hydrogels for muscle 
regeneration
Hydrogels possess 3D hydrophilic polymer networks 
with the ability to maintain a large amount of aqueous 
phase without getting dissolved [32, 33]. Based on the 
components and materials used, hydrogels are classified 
into three distinct categories as follows; natural, syn-
thetic, and hybrid hydrogels with several advantages and 
disadvantages (Table 1) [34]. It was indicated that natural 
hydrogels have physical properties similar to the native 
ECM (Table 2) [35]. Because of injectability and flexible 
structure, hydrogels can adapt themselves appropriately 
to the geometry of irregular injuries and wounds [36]. 
The exchange of substances in the liquid phase makes 
hydrogels suitable substrates for drug and cell delivery to 
the target sites with minimum invasion [37]. It has been 
suggested that hydrogels are suitable candidates for the 
engineering of injured skeletal muscles as described for 
other tissues [38–41].

ECM is composed of highly organized proteins, proteo-
glycans, and glycoproteins in macro and microstructures 

Table 1 Advantages and disadvantages of hydrogels based on their source

Hydrogel type Advantages Disadvantages Refs.

Natural hydrogels Bioactive and friendly microenvironments for encapsu-
lated cells in in vivo and in vitro conditions
Several anchor spots and binding sites can promote cell 
attachment, morphological adaptation, and cytoskel-
etal organization
Lack of excessive immune system responses because of 
their natural sources
Induction of survival, migration, and differentiation of 
cells
Appropriate ECM modeling
Induction of several signaling pathways
Angiogenesis/Vascularization

Poor physical characteristics and mechanical stability
Difficult handleability and manipulation
High-priced and time-consuming synthesis and sterili-
zation protocols
Rapid degradability
Non-functional fibrosis formation

[64, 302–307]

Synthetic Hydrogels Economical and low-cost synthesis protocols
Relatively rapid and easy synthesis protocols
Appropriate for large-scale utilization
High mechanical characteristics,
Suitable handleability, and tunability
Appropriate for advanced therapeutic applications

Lack of appropriate adhesion sites and bioactive mol-
ecules leading to the interposition of the regeneration 
process
Reduction of cellular functionality
Possibility of foreign body responses due to their oil-
based sources or toxic secondly substance

[308–310]

Hybrid Hydrogels Diversity in starting materials and components
Extensive usage in regeneration applications
Advantages depend on the material combination

High-priced and time-consuming synthesis protocols
Disadvantages depend on the material combination

[311, 312]
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to provide physicochemical cues for cell function and 
bioactivity [42, 43]. It is thought that the composition of 
ECM differs from tissue to tissue. Certain heterogene-
ous networks of ECM provide a stable 3D platform with 
the capacity to support mechanical forces, and modulate 
external pressure, especially in load-bearing tissues such 
as bone and muscles. Besides, ECM acts as the reservoir 
of growth factors and varied signaling molecules to dic-
tate specific cell function by providing biochemical cues 
for reciprocal cell-to-cell and cell-to-ECM interactions 
[43, 44]. These features help cells to maintain their home-
ostasis via the regulation of proliferation, differentiation, 
and migration within the surrounding matrix [45, 46]. 
Due to proper biomimetic microenvironments, decel-
lularized ECM is considered one of the most promising 
scaffolds/hydrogel types in preclinical and clinical tissue 
engineering applications [47, 48].

Despite their advantages in the promotion of tissue 
healing, it should be considered that decellulariza-
tion methods and ECM sources influence the physi-
cal characteristics, permeability, and degradation rate 
of the final product [49–51]. To date, different tissue 
sources have been utilized to create ECM hydrogels for 
the regeneration of muscular tissue such as the urinary 
bladder and small intestines [52, 53], but the applica-
tion of skeletal muscle ECM is the optimal source. 
Molecular investigations have revealed that skeletal 
muscle ECM possesses composition and niche close to 
native tissue even after the decellularization process. 
For instance, certain ECM components such as laminin 

α1 and α2 are abundant in the decellularized skeletal 
muscle ECM [54, 55]. This strategy can accelerate the 
regeneration process in injured muscles in a similar 
way that occurs in native tissues under pathological 
conditions.

In this context, Ungerleider et  al. investigated the 
effect of muscle-ECM hydrogel on the regeneration of 
muscle tissue in comparison to lung-ECM hydrogel in a 
mouse model [56]. Both decellularized ECM types were 
prepared using the same detergents. The authors dem-
onstrated increased  Pax7+ muscle progenitor cells and 
large-sized myofibrils in the right tibialis anterior mus-
cles with tissue-matched ECM. These data show the 
superiority of tissue-specific ECM hydrogel in an efficient 
regeneration outcome [56]. Compared to allograft ECM 
hydrogels, xenogeneic tissue sources are other options 
to prepare ECM hydrogels. Despite their availability, the 
transmission possibility of infectious agents and inflam-
matory reactions should not be neglected. It is thought 
that the remnant of a Gal epitope or foreign DNA residue 
can promote the activity of immune system components 
after transplantation into the host tissues [57, 58].

Along with the application of an acellular matrix to 
enhance the regeneration rate in muscular tissue, some 
authorities have applied ECM components individually 
or in combined form in the final hydrogel composition. 
Notably, collagen, fibrin, keratin, gelatin, or non-mam-
malian sources like chitosan, alginate, or silk (solo or in 
different combinations) have been used for skeletal mus-
cle regeneration [59–61].

Table 2 Natural substrates used for muscle tissue regeneration

Study Hydrogel type Outcomes Ref

Rat and mouse models of hind limb ischemia Decellularized skeletal muscle ECM Restoration of blood perfusion, Induction of 
angiogenesis, and ECM concentration affect 
the viscosity, physical strength, and hydrogel 
degradation rates

[313]

Mouse model of acute right tibialis anterior 
muscle injury

Decellularized ECM hydrogel Increase in pax 7, Upregulation of nnt3, Tcap, 
Jsrp1, Mylk2 in tissue-specific ECM hydrogel

[314]

In vitro culture of Lewis rats satellite cell ECM component and plant-derived compo-
nent hydrogel

Fibrin hydrogel determined as the most 
qualified scaffold for satellite cell culture and 
skeletal muscle regeneration

[315]

In vitro & in vivo: diaphragm defect of BALB/c 
 Rag2−/− mice

Decellularized ECM of diaphragm tissue of 
piglet

This hydrogel was determined as a favorable 
acellular scaffold for diaphragm injuries

[316]

In vitro Transglutaminase cross-linked gelatin hydro-
gels

This hydrogel increases the myotube length 
on isometric gelatin hydrogel with low stiff-
ness. Long-term cell culture induced contrac-
tile phenotype and upregulates MHC

[317]

In vitro & in vivo: hind limb ischemia of mouse 
model

RGD-modified D-form peptide hydrogel (Nap 
DFDFKGRGD) with mesenchymal stem cells

Hydrogel demonstrated favorable biocompat-
ibility and stability after implantation on hind 
limb ischemia of mice with enhanced cell 
survival and pro-angiogenesis properties

[318]

In vitro Decellularized ECM of bovine pericardium 
hydrogel

Hydrogel-supported C2C12 viability, upregula-
tion of MHC, Myogenin, and α-SMA

[319]
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Despite their regenerative potential, mechani-
cal properties and biophysical features are the most 
challenging issues in the hydrogel form [62, 63]. For 
instance, in a study, myogenic and rheological prop-
erties of different hydrogel types (type I collagen, 
agarose, alginate, fibrin, and collagen/chitosan) were 
compared. Data revealed the superiority of fibrin and 
collagen-based hydrogels in the promotion of the 
myogenic capacity of rat satellite cells in in vitro con-
ditions [64]. Fourteen-day culture of satellite cells on 
these substrates increased significantly the expres-
sion of myogenesis key markers MyoD, Myogenin, 
and myosin heavy chain in the fibrin group related to 
other substrates [64]. Despite the myogenic properties 
and high extensibility, fibrin hydrogel was completely 
degraded after 5  days [64]. Further investigations are 
necessary to find the most suitable substrates with 
proper mechanical features and concurrent myogen-
esis capacity. Several attempts have been made to alter 
the structure of hydrogels using physical or chemical 
modalities to regulate the behavior of resident and 
transplanted cells and immune cell response [62, 63, 
65–67]. To this end, hybrid hydrogels composed of 
synthetic and natural substrates are recent approaches 
in muscle tissue engineering (Table 3) [15–69]. These 
approaches enable us to sophisticatedly control phys-
icochemical properties such as degradation and swell-
ing rates.

In recent years, plant-based hydrogels are emerging 
scaffolds over recent years [70–72]. Phytocompounds 
such as polysaccharides (agar, cellulose, and pectin) 
and proteins (soy and zein) are abundant in plants 
[73–76]. It has been shown that plant-based hydro-
gels are eco-friendly, low-cost, and biocompatible with 
low-rate biodegradation [77–79]. In an experiment 
conducted by Mehrali and co-workers, the biocompat-
ibility of hydrogel composed of ultraviolet cross-linked 
pectin-methacrylate with thiolated gelatin was stud-
ied on the viability of mouse myoblast C2C12 cell line 
[38]. Data confirmed that the application of pectin-
based hydrogel can promote the dynamic growth of 
skeletal muscle progenitor cells in in vitro conditions. 
The lack of mammalian-specific degrading enzymes 
makes phyto-hydrogels suitable scaffolds for long-term 
regeneration processes in certain tissues like muscular 
tissue [80, 81]. However, plant-based hydrogels face 
some limitations and challenges [82, 83]. For example, 
preliminary modifications are necessary for obtaining 
a suitable microenvironment after transplantation into 
the target sites [82, 84]. Besides, the optimum compo-
sition should be defined in terms of certain tissues.

Application of synthetic hydrogels for muscle 
regeneration
In several studies, pure synthetic substrates such as PEG 
[85], PU [86], PLA [87], and PVA have been used for the 
regeneration of skeletal muscles (Table 4). Despite some 
limitations associated with the application of pure syn-
thetic hydrogels, these substrates are often inexpensive 
and manufacturing does not require complex processes 
[88, 89]. The existence of certain physicochemical prop-
erties makes the synthetic hydrogels to be easily adapted 
to the spatial and biophysical features of targeted tissues 
[90, 91]. Unlike natural hydrogels, synthetic hydrogels do 
not have suitable hydrophilicity and mutual cell-hydrogel 
interaction is less due to the lack of signaling cues and 
attachment sites [92, 93]. In this regard, synthetic strat-
egies should be directed in a way to include cell attach-
ment molecules such as Wnt11 [24] and other signaling 
biomolecules for proper morphological adaptation and 
cell-to-cell and cell-to-ECM interaction [94, 95].

Elasticity is an essential critical factor in the fabrica-
tion of hydrogels in terms of skeletal muscle regeneration 
[64]. On this basis, Xu and colleagues previously inves-
tigated the impact of varied elastic moduli on myogenic 
differentiation of encapsulated rat bone marrow mesen-
chymal stem cells (BMMSCs) after 2  weeks within the 
synthetic hydrogel composed of acrylic acid, 2- hydroxye-
thyl methacrylate oligoester, and N-isopropyl acrylamide 
via the alteration of oligomer length [96]. Data revealed 
the maximum myogenic differentiation outcomes in rat 
BMMSCs after being exposed to 20 kPa moduli, whereas 
an elastic modulus of 40 kPa can increase the prolifera-
tion rate. These data confirm the impact of elasticity at 
different values on the dynamic activity of transplanted 
stem cells. In another study, the cytocompatibility of 
cross-linked PEGDA and acrylic acid hydrogel with dif-
ferent polymer concentrations was examined on mouse 
C2C12 myoblasts over a period of 10 days in the labora-
tory setting [97]. According to obtained data, maximum 
ECM synthesis, cell adhesion, and metabolic activity are 
achieved when the ratio of acrylic acid to PEGDA in final 
composites becomes 4:1, respectively.

Of note, excessive foreign body reactions by local mac-
rophages and massive collagen fiber deposition are the 
main challenges associated with the application of pure 
synthetic hydrogel in terms of muscle regeneration [98, 
99]. One effective strategy would be the inclusion of 
immunomodulatory factors in the backbone of synthetic 
hydrogel [100]. For example, the application of nanofi-
brous PCL/PLGA scaffolds loaded with sphingosine 
1-phosphate receptor-3 antagonist, namely VPC01091, 
in mice with spinotrapezius muscle volumetric injury led 
to increased muscle progenitor cells activity, phenotype 
shifting of macrophages toward  CD206+ M2 type, and 
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reduction of immune cells in the target sites [101]. These 
features coincided with the reduced number of recruited 
 CD4+ and  CD8+ lymphocytes and bridging rate in newly 
generated myofibrils [101].

The promotion of angiogenesis is touted as a strate-
gic approach for accelerating healing procedures in the 
injured area [102]. To avoid necrotic changes in trans-
plant cells, supplementation of vascular beds to the 
implants seems critical [34]. In an experiment, the appli-
cation of Fingolimod (FTY720) as a specificity protein 1 
(Sp1) agonist can contribute to the stimulation of angio-
genesis and reduction of fibrotic changes [103].

Along with the application of several signaling biomol-
ecules in the structure of final composites to accelerate 
healing procedures, metal nanoparticles (NPs) have been 
widely used to increase the biochemical activity of hydro-
gels [104, 105]. Ge and colleagues studied the myogenic 
effects of Pluronic® F-127 hydrogel enriched with Au and 
Au/Ag NPs on mouse C2C12 myoblasts. Pluronic® F-127 
hydrogel possesses an amphiphilic nature and is com-
posed of poly(ethylene oxide) (PEO) and poly(propylene 
oxide) (PPO). Data indicated that Au-, Au/Ag-loaded 
Pluronic® F-127 hydrogel increased the expression of 
certain genes such as MyoD, MyoG, and Tnt-1 in in vitro 
conditions [106]. Injection of Au/Ag-loaded Pluronic® 
F-127 hydrogel into defective tibialis anterior in a rat 
model led to the formation of myofibers juxtaposed to 
the vascular bed [106]. In addition to metal NPs, other 
nano-sized structures have been used for the fabrication 

of hydrogels with myogenic capacities [107]. Graphene 
oxide (GO) with certain physicochemical properties 
and abundant functional groups (carboxyl, epoxy, and 
hydroxyl) has been used for the preparation of varied 
hydrogels [40, 108, 109]. It was indicated that the cul-
ture of C2C12 myoblasts on GO-polyacrylamide hydro-
gel up-regulated the transcription of MyoD, MyoG, and 
α-myosin heavy chain after 7 days. The incorporation of 
GO nanosheets cross-linked via zinc into a sodium algi-
nate polymeric network indicated proper charge carrier 
movement, and a high value of dielectric loss which is 
associated with conductivity [110]. The electroconductive 
polymeric network can provide biomimetic platforms for 
electrical communication between the myocytes and the 
regulation of the neuromuscular junction [110]. Direct 
evidence for the stimulatory effect of conducting sub-
strates on the myogenic activity of C2C12 myoblasts was 
highlighted previously by Tang and co-workers [111]. 
Based on the data, the culture of C2C12 myoblasts on a 
substrate consisting of poly(3,4ethylenedioxythiophene)/
poly(styrenesulfonate) (PEDOT/PSS) and dopamine-
polymerized PCL scaffold led to enhanced proliferation 
rate at optimum concentrations [111].

The self-healing property is one of the most interest-
ing strategies in tissue engineering of muscle tissue [112, 
113]. In self-healing scaffolds, the polymer networks are 
reconstituted after the disintegration of the backbone 
of the polymer due to the existence of specific chemi-
cal bonding. Under these circumstances, the release of 

Table 4 Synthetic hydrogels for muscle tissue regeneration

Study Hydrogel type Outcomes Ref

In vitro & in vivo:
Tibialis anterior muscle defect of rat

PVA-silicate ion-releasing hydrogel Hydrogel degradation and ion-releasing rate are 
similar to regenerating muscle. Hydrogel-supported 
angiogenesis and myogenesis while diminishing 
oxidative stress effects

[65]

In vitro & in vivo:
Tibialis anterior muscles of mice

Maleimide groups functionalized four-arm PEG 
hydrogel

Hydrogel increased the population of Pax 7 cells 
and the migration of injected mouse stem cells

[24]

In vitro & in vivo:
Female C57BL/6 mice
Hhind limb
Iischemia

Poly(NIPAAm-co-NAS-co-HEMA-HB4-co-PAA-co-
MAPEG) containing CTT 

Synthetic hydrogel acts as an MMP‒2 regulator to 
inhibit ECM degradation while boosting angiogen-
esis in ischemic skeletal muscle

[321]

In vitro Reduced & unreduced graphene
oxide/polyacrylamide (GO/PAAm) hydrogel

Reduced GO/PAAm led to higher upregulation of 
MHC, MyoD, and myogenin. Electrical stimulation 
of reduced GO/PAAm hydrogel exerted a stronger 
impact on MHC, MyoD, and myogenin expression

[322]

In vitro Poly(ethylene glycol) diacrylate‒acrylic acid (AA) in 
the diverse component ratio

A 1:4 ratio of poly(ethylene glycol) diacrylate‒acrylic 
acid had the highest cell survival and metabolic 
activity

[323]

In vitro & in vivo:
Ttibialis anterior muscle injury of rat

F-127‒AuNPs and F-127‒Au-AuNPs synthetic 
hydrogel

Hydrogels had different cytotoxicity rates. The 
upregulation of MyoD, MyoG, and Tnnt-1 was 
observed in both groups. Higher myofiber density 
was observed in the animal model

[324]

In vitro Poly(N-isopropylacrylamide-co-2-hydroxyethyl 
methacrylate) with a diverse ratio of components

This hydrogel supports the adhesion, viability, and 
proliferation of C2C12 myoblasts

[325]
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a specific factor can act as a trigger to renovate the 3D 
structure. Compared to natural hydrogels, synthetic 
polymers benefit from strong mechanical properties 
and suitable stretchability which are required for self-
healing hydrogels applied for load-bearing tissues like 
skeletal muscles [112–116]. Guo and co-workers fabri-
cated a self-healing conductive injectable hydrogel con-
sisting of dextran-graft-aniline tetramer-graft-4-forms 
benzoic acid and N-carboxyethyl chitosan for monitor-
ing the induction of myogenesis [112]. It is postulated 
that the existence of dynamic Schiff base bonds between 
formyl benzoic acid and amine groups of N-carboxyethyl 
chitosan is responsible for hydrogel’s self-healing ability 
[112]. Data revealed the fabricated hydrogel possesses 
appropriate injectability and linear degradation pattern 
[112]. The encapsulated C2C12 myoblasts and endothe-
lial cells (ECs) were distributed uniformly within the 
hydrogel without local aggregation. Of note, the cells 
showed proper migration capacity and paracrine activ-
ity to produce several myokines, making the above-men-
tioned hydrogel suitable for cell delivery approaches in 
terms of muscle regeneration [112]. In one study, self-
healing PEG hydrogel was fabricated with the formation 
of hydrazone bonds between aldehyde and hydrazine 
functional groups [117]. This hydrogel exhibited spe-
cific viscoelastic and gel properties under physiologi-
cal pH and temperatures. In  vitro analysis revealed the 
formation of multinucleated myocytes by encapsulating 
C2C12 myoblasts within self-healing PEG hydrogel [117]. 
The culture of ECs within the self-healing and glucose-
sensitive poly(PEG-diacrylate-dithiothreitol (PEGDA/
DTT) hydrogel with hollow tubular form activated cer-
tain genes such as CD31, eNOS, and VEGFR after 3 days 
in culture medium [118]. ECs cultured within the unique 
tubular structure mimic the native vessel-like niche after 
14 days. It is believed that this technique can be appro-
priately used in the regeneration of injured muscle tissue 
due to vasculogenic properties.

Chemical and non‑chemical cross‑linking 
in scaffold synthesis
Non‑chemical modifications
Reactions within the polymeric network of hydrogels 
can be used to reduce or avert dissolving capacity [119]. 
These reactions can be tailored by using physical and 
chemical cross-linking techniques [119, 120]. Gelation, 
based on physical cross-linking, can be promoted via 
non-covalent interactions such as hydrogen and coordi-
nating bonds, and ionic and van der Waals interaction 
[121–124]. Because of dynamic features, non-covalent 
interactions increase the self-healing capacity and inject-
ability of hydrogels. Despite these advantages, in hydro-
gels fabricated by non-covalent interactions, physical 

integrity can be easily eliminated after being exposed to 
the biofluids [125, 126]. The main challenges associated 
with the application of physically cross-linked hydro-
gels include a lack of appropriate control over the gela-
tion step, non-adjustable degradation, and porosity [127]. 
Under these circumstances, the application of chemical 
cross-linking can improve biocompatibility and biodeg-
radation rate [128]. Alternatively, various approaches can 
be used for improving the structure of final composites. 
For instance, the application of two or more physical 
cross-linking methods can increase structural stability 
via synergistic effects [129]. The formation of hydrogen 
bonds between PAACA and PVA and subsequent crystal-
lization via polyvinyl alcohol groups led to the fabrication 
of pH-sensitive, self-healing hydrogel with a compatible 
tensile strength at different temperatures [130]. The cold-
drawing method is a kind of linkage density enhancement 
technique for the improvement in mechanical features 
[131]. It confirmed that the cold-drawing method can 
improve hydrogen bonds in PAA/PVA hydrogel in terms 
of quantity and intensity [132]. This substrate exhib-
ited appropriate elastic modulus (100  MPa) and tensile 
strength (140 MPa) [132]. The formation of a multi-phys-
ical linkage is another way to enhance the mechanical 
properties of the final composites [129]. It is thought 
that this approach is useful enough to yield hydrogel 
with appropriate biocompatibility and self–healing after 
energy dissipation [133, 134]. In some circumstances, 
heavy metals are applied to increase the number of 
hydrogen bonds and to reduce the reversibility of physi-
cal linkages. However, the risk of toxicity should not be 
neglected [135–137].

Chemical modification
Until now, techniques associated with the formation of 
covalent bridges in polymeric networks have been used 
for the fabrication of chemically cross-linked hydro-
gels [138, 139]. The chemical approaches include cross-
linker association, radiation, enzyme association, and 
click chemistry [128, 140–142]. In the first three meth-
ods, classic covalent linkages are generated within the 
polymeric structure [143, 144]. Chemically cross-linked 
hydrogels are stable because of their non-flexible struc-
tures. Of course, the level of irreversibility is associated 
with the certain chemical initiators used in the fabri-
cation steps [144, 145]. Most chemically cross-linked 
hydrogels have irreversible structures hence known also 
as permanent hydrogels [146, 147]. In the click chemis-
try method, dynamic covalent bonds are initiated under 
mild reaction conditions [69]. In contrast to other avail-
able approaches, click chemistry provides hydrogels with 
reversible structure and injectability features, making 
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them eligible for transplantation into irregular injury 
sites [148].

Cross‑linking with additional molecules
In this method, specific small molecules are applied to 
form covalent links between functional groups [149]. 
The formation of covalent bridges can contribute to the 
formation of relatively stable hydrogels with prolonged 
durability. Ultrastructural analyses have indicated tun-
able structure via the regulation of cross-linkers content 
and variants [150, 151]. To date, several cross-linker types 
such as epichlorohydrin, glyoxal glutaraldehyde, formal-
dehyde, and ethylene glycol diglycidyl ether (EDGE) have 
been used for the fabrication of chemically cross-linked 
hydrogels [152–156]. In  vitro and in  vivo analyses have 
shown various degrees of mutagenicity, calcification, and 
cytotoxicity after being implanted into the target tissues 
[157, 158]. To circumvent these issues, various research-
ers have suggested alternative materials [129]. For exam-
ple, the application of phyto-cross-linkers (known as 
green cross-linkers) can increase hydrogel dynamic 
behavior via the regulation of angiogenesis, inflamma-
tion, and differentiation capacity in transplanted cells 
[159–162]. Among different green cross-linkers cinna-
maldehyde, epigallocatechin gallate, and genipin isolated 
from cinnamon tree, green tea, and Genipa americana 
fruit are commonly used in tissue-engineered hydrogel 
synthesis [162–164].

Cross‑linking with radiation techniques
According to the type of target tissues and polymer com-
position, photo-biomodulation can be done using a wide 
range of electromagnetic waves to induce covalent link-
ages within the polymeric network [165, 166]. The elimi-
nation of toxic residuals and eco-friendly procedures 
are associated with the application of irradiation for the 
fabrication of hydrogels [167, 168]. Microwave radiation 
can be easily applied in thermo-resistant polymers [169, 
170]. The sensitivity of cells, drugs, and growth factors 
limits the bulk application of irradiation as chemical link-
ers for the preparation of hydrogels [171–173]. Although 
UV radiation can yield desirable outcomes for prompt 
gelation approaches the ionizing entity of UV can con-
tribute to genotoxic effects such as DNA damage and 
mutation due to inappropriate repair, leading to reduced 
cell survival rate and the alteration of ECM components 
[174–176]. Besides these effects, juxtaposed tissues to 
the irradiated regions are closely exposed to increasing 
temperature values [177]. These features are less effec-
tive in consolidated tissues such as bone, and cartilage 
compared to the soft tissues [178, 179]. Therefore, atten-
tion should be taken to carefully regulate irradiation dose 
and reduce side effects on the surrounding niche while 

hydrogel mechanical properties remain intact [180]. 
Non-ionizing radiation such as visible light radiation is 
touted as an alternative approach [181]. This approach 
not only eliminates biosafety concerns related to UV 
radiation but also exhibits a deeper penetration rate. 
Thus, covalent linkages can be generated in deeper layers 
of hydrogels, increasing the gelation rate [182].

Enzyme‑based hydrogel synthesis
The enzymatic cross-linking method has been at the 
center of attention in the fabrication of engineered 
hydrogels for skeletal muscle regeneration [183]. High-
rate functionality of enzymes in physiological conditions 
and specific biocatalyst activity on certain substrates 
can reduce the side effects of applied substrates [184]. 
In general, the selection of enzymes for chemical cross-
linking is based on the recognition of a specific substrate 
involved in the progression of a polymeric network [185, 
186]. Among different enzymes, tyrosinase is a copper-
based enzyme that generates covalent linkages via the 
oxidation of phenolic groups of tyrosine following the 
production of quinones [187, 188]. Large amounts of 
tyrosinase exist in plants and animal cells to append phe-
nolic groups to the polymeric network [189]. However, 
the low specificity and non-toxicity of products make this 
enzyme a common enzyme type for the fabrication of 
hydrogels in the era of tissue engineering [189, 190].

Transglutaminases are other enzymes that are involved 
in cell adhesion, apoptosis, clotting, and signal transduc-
tion pathways [191, 192]. With an acyl transfer reaction 
between amines and γ-carboxamides, these enzymes 
can promote the formation of covalent bridges [193]. 
Unlike mammalian and plant transglutaminases, the 
activity of microbial transglutaminases depends on ionic 
calcium, resulting in an extensive application for tissue 
engineering studies [194, 195]. The high-rate specificity 
and selectivity limit the applicability of these enzymes 
for varied substrate types [196]. Peroxidases are other 
enzymes that form covalent bonds via the oxidation 
of phenol groups [197]. Properties like rapid gelation 
time, flexibility, and low specificity are advantages of 
these enzymes [198]. Among several peroxidase types, 
horseradish peroxidase (HRP) isolated from Armoracia 
rusticana has been extensively employed in the fabrica-
tion of hydrogels. HRP can be isolated from renewable 
sources with affordable costs for extraction and purifica-
tion processes [199, 200]. However, the activity of HRP 
in the presence of hydrogen peroxide can yield reduced 
cell viability [201]. The indirect introduction of hydrogen 
peroxide via appending materials such as glucose oxidase 
(GOx) and D-glucose is an alternative strategy to cir-
cumvent the harmful effects of hydrogen peroxide [202, 
203]. Sortase is prokaryote cysteine transpeptidase that 
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forms covalent links between glycine and threonine in 
the LPXTG sequence. It has been shown that the activity 
of this enzyme is associated with cell attachment and pili 
synthesis in gram-positive bacteria. Among variant fami-
lies of Sortase, Sortase A has been more utilized in tissue 
engineering applications due to its peculiar specificity 
and high-rate chemical reaction [204, 205].

Click chemistry modification
Synthesizing an ideal hydrogel with coordinated physi-
cal and biochemical behaviors can be performed using 
the click chemistry approach [206]. In hydrogels fabri-
cated using click chemistry, the existence of unique links 
(known also as dynamic covalent bonds) makes these 
hydrogels easily mimic ECM-like behavior [207]. Flex-
ibility, self-healing activity, and stability are the most 
prominent features in hydrogels fabricated using the click 
chemistry method. From the molecular aspect, various 
reactions between functional groups can lead to click 
chemistry reactions [208–210]. Each reaction technique 
per se possesses some advantages and disadvantages 
(Table 5). To date, the importance of ECM on cell activity 
and behavior has been demonstrated through numerous 
types of research [211–214]. Click chemistry provides 
modalities to investigate reciprocal cell-to-ECM inter-
actions via the alteration of specific factors in a precise 
manner [215, 216]. Basurto et al. successfully synthesized 
flexible hyaluronic acid–base hydrogel using a thiol-ene 
reaction with a similar stiffness to skeletal muscle tissue. 
Short-term and long-term implantation of hyaluronic 
acid–base hydrogel in animals with volumetric muscle 
loss led to appropriate regenerative outcomes and miti-
gated inflammatory response [217]. In a similar study, 
the encapsulation of C2C12 myoblasts in the hyaluronic 
acid-based hydrogel with modulus similar to skeletal 
muscle tissue increased innervation, vascularization, and 
functional restoration of muscle tissue in the volumetric 
muscle loss animal model (Fig. 1) [218].

Developing de novo methods for the delivery of cel-
lular components to target tissues is one of the most 

interesting outcomes of the click chemistry system. In 
this method, cell surfaces and polymers with specific 
functional groups are modified to generate a cytocom-
patible covalent linkage between cells and the polymeric 
network [219, 220]. Using click chemistry, it is possible 
to increase cell adhesion properties and circumvent sev-
eral limitations associated with peptide-related engineer-
ing approaches such as random protein folding during 
the absorption/appending phase and instability of cov-
ered surfaces [219]. In one study, the modification of 
alginate hydrogel with azide and alkyne sequences was 
done to make a covalent association between encapsu-
lated C2C12 myoblasts and a polymeric network. Data 
revealed higher cell viability, and myogenic properties 
compared to classic cell loading method hydrogels [220].

Chemical cues in skeletal muscle regeneration
The harmony of interactions/bio-interfaces between 
components of ECM and cells relies on chemical cues 
that provide steering signaling and cell adhesion sites, 
resulting in adequate cell-ECM responses to internal 
or external insulting factors [221–223]. Thus, hydro-
gel modification is essential with chemical agents such 
as signaling and adhesion factors to regulate cell viabil-
ity, bioactivity, and regeneration processes [224, 225]. In 
particular, the existence of specific amino acid sequences 
with adhesion characteristics in the structure of several 
ECM proteins and glycoproteins known as cell-adhesion 
peptides (CAPs) is critical [226, 227]. Among different 
CAPs, arginylglycylaspartic acid (RGD) was first detected 
in the structure of fibronectin [228]. Studies related to 
the detection and function of ligand peptide sequences 
in ECM components have enhanced peptide science in 
tissue engineering strategies [224, 227, 229, 230]. Based 
on this information, tissue engineering strategies have 
involved the selection of suitable ECM components 
with specific CAPS for hydrogel synthesis [231], isola-
tion of certain peptides from predesignated sources, or 
fabrication of peptides using peptide synthesizers (Bio-
tage®, CEM®, LABX®) and subsequent hydrogel/scaffold 

Table 5 Click chemistry for the fabrication of hydrogels

Type of click reaction Functional group Advantages Disadvantages Refs.

Azide-Alkyne reaction Azide + alkyne Bio-orthogonal injectable High-temperature process
Prolong gelation process

[326]

Diels–Alder reaction Diel + Alkyne No catalyst necessity
Stereoselectivity

Prolong gelation process
Non-injectable

[208]

Thiol-ene reaction Thiol + alkene Fast gelation process
Oxygen and water resistance

Radical formation
Accelerator requirements

[327]

Schiff base reaction Amine + aldehyde No cross-linker necessity
Injectability

The unwanted reaction between aldehyde and 
amine groups in other molecules

[328]
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modification are prevalent approaches for CAPs utiliza-
tion in tissue engineering strategies [161, 232]. From the 
molecular structure, sequences such as DEGA, IKVAV, 
and PHSRN with cell adherence characteristics are pre-
sent in the structure of collagen [233], laminin [234], and 
fibronectin [235], respectively. The biological properties 
of CAPS include promoting interactions with the sur-
rounding environment and enhancing cell viability [236, 
237], cell migration [238], proliferation [239], apoptosis 
[240], and differentiation [241] which is accomplished 
through the coupling of peptide domains to cell surface 
integrins that result in signal transition. Data have indi-
cated the critical role of RGD-integrin interaction on 
cell fate, proliferation, and morphological adaptation on 
different therapeutic platforms used for skeletal muscle 
tissue engineering [242, 243]. Hence, the utilization of 
RGD sequence as a default cell adhesive factor became 
prevalent in many studies [244–248]. The features are 

associated with the high affinity of RGD to about 8 vari-
ous receptors [249]. Campiglio and collogues used pectin 
along with RGD with C2C12 myoblasts to heal injured 
muscle tissue [70]. Pectin-RGD hydrogels were synthe-
sized through the solvation of pectin in MES buffer solu-
tion and modification with RGD. Data indicated that 
the culture of C2C12 cells on electrospun pectin-RGD 
nanofibers promoted proliferation and differentiation 
after 7 days compared to the non-modified pectin group 
[70]. In an experiment, the dynamic growth of fibroblasts 
and murine satellite cells was studied on hyaluronic acid 
hydrogel modified with RGD, IKVAV, or VFDNFVLK 
sequences [250]. Data indicated that 2% hyaluronic 
acid‒RGD yielded the highest proliferation rate while 
IKVAV-modified hyaluronic acid substrate increased 
morphological adaptation and motility of plated cells. 
Interestingly, data showed that fibroblast migration is 
affected by peptide chains [250]. Due to the induction of 

Fig. 1 Gross appearance and histological examination of injured quadriceps muscles after transplantation of chondroitin sulfate-based HA 
hydrogel (HA-CS) compared to autograft treatment (AT) and no treatment groups (NT) (a-h). Macroscopic data indicate the volume of injury site is 
at the maximum size in NT mice compared to HA-CS and AT groups after 7 and 28 days post-transplantation (a-g; Scale bar: 2 mm). H & E staining 
confirmed the presence of a low number of newly generated fibers in NT as compared to AT and HA-CS groups (black arrows) after 7 days (a-d: 
Scale bar: 100 µm). Despite the reduction of defect size in all groups after 28 days, gross view revealed the prominent injured site in NT related to AT 
and HA-CS groups (e–g: Scale bar: 2 mm). The number of fibers reached maximum levels in HA-CS groups compared to NT mice. These values did 
not yield statistically significant differences between NT and AT groups (h; Scale bar: 100 µm). One-way ANOVA analysis with Tukey test; *p < 0.05. 
Adapted from [218]. (2021; Bioactive Materials; https:// doi. org/ 10. 1016/j. bioac tmat. 2020. 10. 012)

https://doi.org/10.1016/j.bioactmat.2020.10.012
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myogenesis via the expression of Pax7 and MyoD, it was 
postulated that 3% hyaluronic acid with IKVAV sequence 
is an ideal substrate for the regeneration of muscle tis-
sue. Previously, it was shown that RGD is an appropriate 
amino acid sequence to trigger the attachment of MSCs 
under hypoxic conditions [251]. Simultaneous appli-
cation of RGD and IKVAV in specific concentrations 
enhances BMMSCs adhesion and morphological adapta-
tion under different culture systems [252]. It is believed 
that environmental factors exert an inevitable role in 
RGD functionality via the direct alteration of peptide 
sequences [252]. For instance, data indicated increased 
human ECs attachment and proliferation rate after being 
plated on ELR substrate modified with bicyclic RGD pep-
tides via direct interaction with integrins αvβ3 and α5β1 
[252]. Blending various contents of RGD and IKVAV 
peptides in polystyrene-b-poly(ethylene oxide) base 
film led to the formation of structured actin fibers along 
with contractile actomyosin bundles in human MSCs. 
By increasing IKVAV levels, MSCs acquired round 
shape morphology with amorphous actin fibers at their 
peripheries [94]. Challenges and limitations can restrict 
the application of CAPs in tissue engineering strategies. 
For example, CAPs are expensive and isolated via using 
time-consuming procedures. In addition, most CAPs are 
sensitive to enzymatic digestion and their activities are 
reduced during the isolation procedures [253, 254].

Induction of angiogenesis using scaffolds 
for muscle regeneration
The presence of vascular networks is essential for the 
functionality of all body organs [255]. These tubular 
structures act as platforms for microcirculation between 
blood and ECM to maintain cell homeostasis [256]. 
Without the participation of blood vessels and capillary 
networks, the durability of neo-regenerated tissues is 
not possible [257]. Hence, stimulation of an angiogenic 
response is parallel to functional tissue regeneration and 
efficient regenerative outcomes [102]. One reason that 
causes muscular mass atresia and injury is the lack of a 
suitable supporting vasculature system [258]. The term 
angiogenesis is defined as the formation of de novo ves-
sels from the preexisting network in response to several 
signaling molecules during physiological and pathologi-
cal conditions [259]. Regarding the fact that blood vessels 
guarantee suitable blood and oxygen resource through-
out the tissues, using biomaterials with angiogenic poten-
tial are at the center of debate [259]. It was suggested 
that genetically modified cell-based tissue regeneration 
approaches can promote angiogenesis by the production 
of varied growth factors. The attachment of these factors 
to their cognate receptors on the EC surface increases 
neovascularization [260]. ECs furnish the luminal surface 

of the vascular system and can promote vascularization 
in response to pro-angiogenic factors [261]. It has been 
shown that pro-angiogenic factors such as VEGF, FGF, 
HGF, and HIF-1α mainly participate in vascular growth 
and expansion. These factors are released from differ-
ent stem cell types such as EPCs, MSCs, and peripheral 
blood mononuclear cells and have been typically used 
for angiogenesis evaluations in several preclinical and 
clinical studies [262]. In response to the gradients of 
angiogenic factors, EPCs, MSCs, and peripheral blood 
mononuclear cells are recruited from different tissues, 
especially bone marrow, and accommodated the injured 
sites [263].

Hydrogel encapsulation methods with optimized 
procedure parameters have emerged as encouraging 
approaches to overcome cell leakage after injection into 
the injured muscles. It is possible to fabricate a safe-
guarded platform with proper physiochemical perfor-
mance for transplanted cells to trigger the angiogenesis 
potential [264]. To achieve significant therapeutic effects 
with accurate fluid flow control, several hydrogel struc-
tures such as microgels, fibers, vascularized architec-
tures, and perfusable single vessels have been generated 
from electrostatic droplet extrusion, micromolding, 
microfluidics, and 3D printing technologies, targeting 
the improvement in limb angiogenesis [265]. Besides, 
chemically modified hydrogels have been used in limb 
angiogenesis strategies benefiting from the regulation 
of cell-ECM interaction [266]. Along with other growth 
factors, IGF-1 has been shown to accelerate skeletal mus-
cle renewal and inhibit cell apoptosis [267]. This factor 
can also increase stem cell immobilization and neovas-
cularization via the activation intracellular PI3K signal-
ing axis [268, 269]. The C terminus of IGF-1 (IGF-1C) 
with functional bioactivity can be linked to the scaffold 
structure for the regulation of angiogenic properties of 
encapsulated cells [270]. An artificial matrix including 
chitosan and hyaluronic acid modified by IGF-1C peptide 
was used to regulate the therapeutic neovascularization 
of AD-MSCs in ischemic limbs [271]. The transplanta-
tion of AD-MSC-load hydrogel enriched with IGF-1C 
led to improved blood perfusion and myogenesis via the 
secretion of pro-angiogenic factor angiopoietin-1 and 
regulation of immune cell infiltrate. Along with these 
changes, excessive collagen fiber deposition was reduced 
after the transplantation of hydrogel to the target sites 
[271]. In a study (phase I–IIa), gelatin microspheres 
were transplanted as a therapeutic angiogenesis sys-
tem to 10 patients with CLI [272]. To this end, patients 
[with arteriosclerosis obliterans (n = 7) or thromboangii-
tis obliterans (n = 3)] received a 200-μg intramuscular 
injection of bFGF/gelatin hydrogel microspheres. Based 
on the obtained data, transcutaneous oxygen pressure 
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was meaningfully improved in both subgroups 4 and 
24  weeks after treatment, indicating the angiogenesis 
potential of gelatin hydrogel with sustained bFGF release 
into the muscular mass [272].

Elastin is an essential constituent of ECM and is prom-
ised biomaterial in skeletal muscle and vessel reconstitu-
tion because of its appropriate mechanical strength and 
elasticity [273]. Elastin plays an important role in the 
stimulation of cell signaling cascades associated with 
proliferation and angiogenesis [274]. Elastin-like recom-
binamers (ELRs) are bio-engineered polypeptides with 
pentapeptide (VPGXG) repeat, where X can be any 
amino acid excluding proline [275].

ELRs benefit from characteristics such as elasticity, 
low thrombogenicity, self-assembly, and thermorespon-
sive behavior, comparable to those of natural elastin 
but compensate for elastin insolubility and restricted 

obtainability of sources (Fig.  2) [276]. Recently, in  vitro 
and in  vivo angiogenesis properties of ELRs have been 
reported [274]. ELRs have also been fabricated via the 
click chemistry method with different sequences such 
as HE5-cyclooctyne carrying the matrix metalloprotein-
ases (MMPs) binding site and HRGD-azide with an RGD 
sequence. ELR-based hydrogel endorsed the formation of 
new arteries, ECM remodeling, glycosylation, and pro-
tein signaling cascades in several tissues [277]. Based on 
several reports, polymers including multidomain nano-
peptides may stimulate angiogenesis and muscular resto-
ration during muscle loss injuries [278]. As an instance, 
neuropeptide-Y (NPY3-36)-loaded copolyoxalate con-
taining vanillyl alcohol (PVAX) showed promised angio-
genic effect in ischemia-induced adult C57BL/J6 mice 
with simultaneous reduction of infarction size and mor-
tality rate [279]. Furthermore, 3D printing techniques 

Fig. 2 Angiogenesis properties of ELR-based hydrogel transplanted in a mouse model of limb ischemia (A–J). Bright-field imaging indicates the 
formation of de novo vessels within the ELR-based hydrogel on day 7.  CD31+ vessels are indicated using immunofluorescence staining (A; Scale 
bar: 100 µm). Immunofluorescence staining revealed the formation of α-SMA+ arterioles and  CD31+ vessels in ELR-treated mice compared to the 
PBS group (B; Scale bar: 20 µm). Mean capillary density (C; Scale bar: 20 µm); mean length density (D; Scale bar: 20 µm); stereological quantification 
(E; Scale bar: 20 µm); arteriole density (F; Scale bar: 20 µm); and mean the number of cross-sectioned arterioles (G; Scale bar: 20 µm). Proteomic 
analysis of ELR-treated group related to PBS mice (H-J). Heat map analysis of angiogenesis factors (I) and their relative upstream factors (J). n = 6; 
Two-way ANOVA analysis.*p < 0.05. Adapted from [273]. (2021; Biomaterials; https:// doi. org/ 10. 1016/j. bioma teria ls. 2020. 120641)

https://doi.org/10.1016/j.biomaterials.2020.120641
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including inkjet, layer-by-layer and thermal extrusion, 
stereo-lithography or digital light processing, and photo-
degradation can be used to control the three-dimensional 
organization and distribution of bio-gels [280]. More 
investigations are needed to find adequate hydrogel 
types with specific physicochemical properties and spa-
tial organization for the acceleration of angiogenesis in 
injured tissues.

Induction of angiogenesis and myogenesis 
via exosome‑loaded hydrogels
Exosomes (Exos), a subclass of extracellular vesicles, 
have a crucial role in paracrine cell-to-cell interaction 
via the transfer of several signaling biomolecules [280, 
281]. These particles with an average diameter size of 
50–150 nm can promote angiogenesis in ischemic organs 
[282]. It has been shown that Exos lack oncogenic and 
immunogenic features and can cross biological interfaces 
and thus distribute easily in the whole body [283]. Due 
to the existence of specific myogenic factors like IGFs, 
bFGF, EGF, HGF, etc. Exos are thought to be involved in 
the regeneration of injured muscle tissue [280]. Besides, 
the exosomal amino acids from different sources can pro-
mote myogenesis via the regulation of protein synthesis 
and basal metabolism. In an experiment conducted by 
Mobley and co-workers, incubation of C2C12 myoblasts 
with whey-derived Exos improved myotube diameters 
and length via the modulation of eIF4A due to higher 
l-leucine contents [284]. Of note, miRNAs with specific 
properties participate in myocyte function via the regu-
lation of protein-coding mRNAs [285]. The existence of 
particular genetic elements makes Exos a therapeutic 
candidate for the treatment of pathological conditions 
and the alleviation of congenital disorders. It was indi-
cated that the injection of bone marrow MSC-derived 
Exos blunted the reduction of myotube diameter induced 
by dexamethasone in C2C12 myoblasts by the upregu-
lation of miR-486-5p and down-regulation of FoxO1. 
Along with these data, MSC Exos reduced muscle atro-
phy via the modulation of the miR486-5p/Foxo1 axis in a 
mouse model of muscle atrophy [286].

Emerging data have shown that environmental factors 
such as oxygen levels can affect the angiogenic proper-
ties of stem cell Exos [287]. Zhu and colleagues investi-
gated the angiogenic and immunomodulatory properties 
of adipose-derived stem cell (ASC) Exos under normoxic 
and hypoxic conditions in a mouse model of the ischemic 
hind limb (Fig.  3) [287]. Data indicated that ASC Exos 
can promote M2-type macrophage polarization  (CD206+ 
cells), and suppress CD86 macrophages. Along with 
these changes, increased α-SMA+ and  CD31+ ves-
sels were obtained in ischemic muscle after injection of 
hypoxic and normoxic Exos [287]. Despite the existence 
of therapeutic properties, several obstacles limit the 
application of Exos in the clinical setting [261]. For exam-
ple, direct transplantation causes short-time Exo stability 
because of mechanical stress and activation of immuno-
reactive phagocytes [261]. Co-transplantation of Exos 
with supporting substrates yielded promising outcomes 
in different experiments. Integration of human placenta 
MSC Exos with chitosan hydrogel increased the stability 
of exosomal miRNAs, and proteins in in vivo conditions, 
leading to improved myogenesis and angiogenesis in a 
mouse model of hindlimb ischemia [288]. In an experi-
ment performed by Rolland and co-workers, the treat-
ment of muscle progenitor cells with NF-κB and PD-L1 
enriched platelet Exos increased proliferation rate and 
differentiation capacity [289]. Injection of Exo-loaded 
collagen + fibrin glue hydrogel in a rodent model of mus-
cle injury contributed to the healing of latissimus dorsi 
via the polarization of macrophage toward M2 type [289].

Local immunomodulation in muscular tissue using 
hydrogels
Over the past decades, the application of several agents 
to modulate the host immune system has had a major 
impact under pathological conditions [290, 291]. In 
short, an inflammatory response occurs due to the 
activation of different cell types such as mast cells, 
macrophages (M1/M2), monocytes, lymphocytes, neu-
trophils, and dendritic cells. As a correlate, the produc-
tion of cytokines, ROS, and infiltration of immune cells 
lead to the destruction of target tissues [292]. To mitigate 

(See figure on next page.)
Fig. 3 Evaluation of angiogenic and immunomodulatory properties of ASC-derived Exos in a mouse model of ischemic muscle injury (A-H). 
Ischemic muscle injury was induced by the ligation of the femoral artery. Mice were allocated into PBS; Normal Exos (Nor/Exo); Hypoxic Exos 
(Hyp/Exo); and Hyp/Exo + BLZ945 groups (each in 8). Laser speckle imaging indicated the changes in hind paw blood perfusion after 21 days 
(A). Analyses confirmed superior effects of Nor/Exo, especially Hyp/Exo, on the promotion of plantar perfusion (B). Immunofluorescence imaging 
of injured adductor muscles 3 weeks after injection of Exos (C and D). Data indicate the promotion of α-SMA+ and  CD31+ vessels in mice that 
received ASC hypoxic and normoxic Exos compared to the PBS group (Scale bar: 150 µm). Simultaneous injection of BLZ945 blunted these effects 
(Counterstaining: Hoechst 33,342). Immunofluorescence imaging of CD31 in injured gastrocnemius muscles after injection of Exos (E and F; Scale 
bar: 100 µm). An average number of  CD31+ vessels increased following the injection of hypoxic and normoxic Exos compared to the PBS mice. 
Again, BLZ945 blunted these effects. Flow cytometry analysis of F4/80 + macrophages (G) and M2 type  CD206+ macrophages (H). One-Way ANOVA 
analysis with Tukey method. *p < 0.05, **p < 0.01, and ***p < 0.001. Adapted from [287]. (Copyright 2020; Stem Cell Research & Therapy; https:// doi. 
org/ 10. 1186% 2Fs13 287- 020- 01669-9)

https://doi.org/10.1186%2Fs13287-020-01669-9
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these conditions, immunomodulation approaches are at 
the center of attention [293]. Recent studies have there-
fore focused much attention on the area of local immu-
nomodulation through various immunomodulatory 
nanosystems (IMNs) [291]. In general, IMNs have been 
developed from engineered NPs, small drugs, nanoma-
terials, and biomaterials, factors such as cytokines, anti-
bodies, siRNA, extracellular vesicles, and polysaccharides 
[100, 292, 293]. It was suggested that scaffolds provide 
a platform for immune cell adhesion, proliferation, and 
differentiation. Based on engineered shape, geometry, 
topography, pore size, physiochemical properties, and 
surface units, the local immunomodulatory properties of 
scaffolds can be regulated [294]. For instance, Tylek and 
co-workers developed a box-shaped PCL fibrous scaf-
fold with inter-fiber spaces ranging from 40 to 100  µm. 
The culture of freshly isolated human monocytes led to 
cell elongation and orientation toward M2 macrophage 
phenotype. These effects were prominent in scaffolds 
with smaller sizes near 40  µm [294]. However, further 
researches are mandatory to determine the appropri-
ate scaffolds with certain dimension and surface deco-
ration for the modulation of immune cell reaction and 
uncontrolled fibrosis [293, 295, 296]. In another study, 
the critical role of other parameters such as pore size and 
scaffold composition was determined in terms of mast 
cell activity [297]. The mutual interaction of mast cells 
and scaffold was decreased by increasing the levels of 
polydioxanone, leading to a reduction of IL-6 and TNF-
α, and induction of VEGF. Along with these data, it was 
suggested that pore sizes more than 4  µm blunted the 
activation of mast cells in in vitro settings [297]. Besides, 
diverse immunomodulatory agents like drugs, NPs, pro-
teins, cytokines, and anti-ROS composites can be added 
to transplant scaffolds to control unwanted immune 
responses [292]. Likewise, co-transplantation of scaffolds 
and certain cell types, i.e. MSCs, with immunomodula-
tory properties is also helpful [293]. It is thought that 
the simultaneous induction of anti-inflammatory fac-
tors along with the suppression of pro-inflammatory 
cytokines is another strategy during the transplantation 
of scaffolds or hydrogels into the injured muscular tissue 
[298]. In this regard, Shortridge and colleagues investi-
gated the anti-inflammatory properties of genipine cross-
linked injectable PCL/collagen hydrogel after exposure 
to digestive inflamed sites [298]. They cross-linked IL-4 
conjugated PCL nanofibers with type I collagen using 
genipine. This procedure led to prominent stability of 
the hydrogel polymeric network and reduced release of 
IL-4. The incorporation of IL-4 into the PCL/collagen 
backbone inhibited the local production of TNF-α, and 
COX-2 and increase macrophage polarization toward the 
M2 type [298]. The culture of mouse C2C12 myoblasts 

on cross-linked hydrogel with 1% genipine led to a reduc-
tion in survival rate compared to 0.5% genipine and gen-
uine-free hydrogel. One reason would be the reduction of 
porosity and increase in mean fiber diameter. Despite the 
promising anti-inflammatory effects of genipine on some 
cytokines, it is thought that genipine regulatory action is 
associated with microenvironment pH values [298]. As 
mentioned above, injectable ROS-scavenging hydrogels 
are promising approaches for the regeneration of injured 
muscular tissue. Shan and co-workers used mouse  Luc+/
GFP+ MSCs loaded within the ROS-scavenging hydro-
gel for the regeneration of ischemic muscles [299]. In 
the presence of hydrogen peroxide, MSCs proliferated 
via the activation of the PI3K/Akt/mTOR signaling axis 
when encapsulated within the ROS-scavenging hydrogel. 
The exposure of encapsulated MSCs inside the hydrogel 
to LPS-activated RAW264.7 macrophages led to the sup-
pression of  CD80+ cells and an increase in macrophages 
with CD206 surface markers in in vitro conditions [299]. 
As expected, this strategy led to the reduction of IL-1β, 
-6, and TNF-α and the increase in IL-4, and  CD206+ 
macrophages after transplantation into the injured mus-
cle mass [299]. In an interesting experiment, Lee et  al. 
synthesized injectable hydrogel consisting of CD146, 
IGF-1, type I and III collagen, and poloxamer 407 for 
muscle tissue engineering. They believed that the attach-
ment of CD146 to surface VEGFR-2 can stimulate effe-
rocytosis in neutrophils and macrophages, leading to 
the reduction of pro-inflammatory cytokines while the 
simultaneous release of IGF-1 promotes the regenera-
tion of muscles via the differentiation of muscle progeni-
tor cells [300]. They found that the injection of hydrogel 
in the mouse model led to the activation of autophagy 
via the induction of ATG5, ATG7, LC3BII, Beclin-1, 
and P62. Along with these changes, the levels of factors 
associated with myogenesis such as Myogenin, eMyHC, 
MyCHII, and AERG increased which coincided with the 
reduction of inflammatory cytokines like NF-κB and IKβ 
[300]. Histological examination indicated the existence of 
efferocytosis and accumulation of CD11b/CD206 mac-
rophages. These features increased the phagocytosis of 
injured myocytes at early stages after hydrogel injection, 
resulting in an accelerated healing process [300]. The 
in  situ inhibition of immune cells is touted as another 
promising strategy to cease inflammatory response at the 
site of injury using injectable hydrogels [301]. In a study 
conducted by Alvarado-Velez and co-workers, they syn-
thesized immuno-suppressive agarose hydrogel contain-
ing Fas ligand to initiate apoptosis in  CD8+ lymphocytes 
and increase the therapeutic activity of transplant MSCs 
at the site of spinal cord injury [301]. Data indicated that 
Agarose-FasL hydrogels had the potential to increase the 
viability of allogenic MSCs and reduce infiltration and 
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Fig. 4 Several parameters should be considered for the regeneration of injured muscle tissue using hydrogels

Fig. 5 Proposed regenerative potential of varied hydrogel types in muscle tissue engineering
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the number of  CD8+ lymphocytes to the site of injury via 
the activation of surface cell marker CD90 and apoptotic 
death [301].

Conclusion
Fabrication and development of hydrogels with certain 
structures are mandatory to accelerate the regeneration 
of injured muscle tissue. Due to the unique structure of 
muscle tissue, applied hydrogels should possess certain 
physicochemical properties to activate the maturation of 
quiescent muscle progenitor cells toward mature myo-
cytes. To achieve efficient muscle tissue regeneration, the 
regulation of angiogenesis and immune cell function will 
rely on using several hydrogel types (Fig. 4). The applied 
hydrogels should be engineered to support the survival 
and retention of transplanted cells after grafting into the 
injured cells. It should not be forgotten that the myogenic 
properties of varied hydrogel types are relatively differ-
ent (Fig.  5). Despite recent advances in the preparation 
and synthesis of hydrogels for muscle tissue engineering, 
the application of sophisticated modalities like 3D and 
4D printing approaches with novel engineering modali-
ties will be helpful to attain better regenerative outcomes. 
With regards to the muscle tissue stiffness and physical 
properties, attempts should be focused on the finding 
most suitable substrates with proper mechanical features 
and concurrent myogenic capacity.
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