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Abstract

Incidence of premature ovarian failure (POF) is higher with the increase of the pace of life. The etiology of POF is very
complex, which is closely related to genes, immune diseases, drugs, surgery, and psychological factors. Ideal animal
models and evaluation indexes are essential for drug development and mechanism research. In our review, we firstly
summarize the modeling methods of different POF animal models and compare their advantages and disadvantages.
Recently, stem cells are widely studied for tumor treatment and tissue repair with low immunogenicity, high homing
ability, high ability to divide and self-renew. Hence, we secondly reviewed recently published data on transplanta-
tion of stem cells in the POF animal model and analyzed the possible mechanism of their function. With the further
insights of immunological and gene therapy, the combination of stem cells with other therapies should be actively
explored to promote the treatment of POF in the future. Our article may provide guidance and insight for POF animal
model selection and new drug development.
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Introduction hormone (GH), have been confirmed and accepted.

Premature menopause is closely associated with pre-
mature ovarian failure (POF), also known as premature
insufficient ovarian failure (POI). The incidence of POF
was 0.01% in women aged 20 years, 0.1% in women aged
30 years, and 1% in women aged 40 years [1]. The etiol-
ogy of POF is very complex and closely related to genet-
ics, immune diseases, drugs, surgery, and psychological
factors [2]. Currently, according to the etiology of POF,
the widely used POF animal models can be classified as
chemotherapy drug-induced POF models, autoimmune
POF models, POF models of mental stress, and galac-
tose (GAL)-POF models. However, different POF animal
model methods have their advantages and disadvantages.
For example, the stability of POF animal models of auto-
immune and mental stress is low. GAL-induced ani-
mal model can better simulate the physiological aging
characteristics of clinical POF patients, but the success
rate is lower. Hence, it is still a big challenge to select an
ideal animal model for drug intervention and mechanism
exploration.

Clinically, long-term hormone replacement therapy
(HRT), mainly estrogen and progesterone, is the most
common treatment for women with POF. The thera-
peutic and protective effects of some hormones, such as
anti-Miillerian hormone (AMH), melatonin, and growth

However, long-term use of HRT may increase the risk
of cardiovascular disease and cancer [3]. So far, POF
is still clinically irreversible. It is an urgent need to find
advanced treatment strategies. Recently, the role of stem
cells in the treatment of POF animal models has been
gradually explored. Stem cells can differentiate into ovar-
ian cells in the microenvironment of POF, to supplement
the number of normal ovarian cells [4]. In addition, the
regenerated ovarian cells by stem cells can secrete female
hormone to maintain the hormone balance and improve
women’s symptom caused by the decline of ovarian func-
tion [5].

In our review, we firstly summarized different POF
animal model methods and compared their advantages
and disadvantages. Next, we summarized the recently
published data on HRT and stem cells in the POF animal
model. Our article may provide guidance and insight for
POF animal model selection and new drug development.

Comparison of different POF animal models

POF animal model of chemotherapy drugs

It is estimated that more than 6.6 million women are diag-
nosed with cancer each year, approximately 10% of whom
are aged younger than 40 years. The most important and
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common causes of POF are chemotherapy and radiation
therapy in cancer treatment. Cytotoxic chemotherapy and
radiotherapy have improved survival in many cases, but
alterations in gonadal function are one of the most com-
mon long-term side effects of treatment. Some chemo-
therapeutic agents are associated with gonadal toxicity
(e.g., cyclophosphamide (CTX), bucillamine, and nitro-
gen mustard), while others have minor or unquantifiable
effects (e.g., doxorubicin (DOX), vinca alkaloid cisplatin
(CIS), and nitrourea). An animal study showed that anti-
cancer drugs (doxorubicin and paclitaxel) reduced the
number of primitive and developing follicles in goat pre-
antral follicles [6]. Other studies have also shown that the
incidence of POF in women with breast cancer treated
with docetaxel + pirarubicin + ifosfamide (DTC) chemo-
therapy is higher than that in healthy women [7]. Using
CTX, methotrexate and fluorouracil (CMF) for more than
4 cycles increase the risk of infertility by more than 80%
[8]. The pathophysiological mechanism of chemotherapy-
associated POF is that the drugs destroy DNA, induce
apoptosis of normal ovarian follicles, and block ovarian
vascularization, thus interfering with the functional and
structural features of oocytes [8, 9]. Recently, the patho-
genesis of POF has been understood to some extent,
but an appropriate animal model of POF will benefit the
development of new drugs and observation of efficacy. At
present, the most common drugs include CTX, tripteryg-
ium glycosides (TG), busulfan (BF), CIS, DOX, etc.

CTX inhibits cell proliferation because of its strong
immunosuppressive effect. It significantly improves the
clinical symptoms of patients with refractory nephropa-
thy and has been widely used in the nephrology field.
However, it is associated with serious side effects on
female gonads, leading to ovarian damage, manifested
as menstrual disorder, secondary amenorrhea, and even
POF. The animal model of CTX-induced POF is simple in
operation, is short in cycle, and only needs a single dose.
TG exists a killing effect on rapidly proliferating cells
(such as ovarian follicle cells), the mechanism of which
mainly leads to DNA base mismatch and DNA chain
rupture. The effect of DNA damage leads to a decrease
in estrogen secretion in the ovary, which negatively
increases FSH. The disadvantage of the TG-induced POF
animal model is that the modeling cycle is long, while
the advantage is that oral administration is relatively
safe compared with other drug models [10]. CIS induces
ovarian injury through the interaction of various factors,
including activating apoptosis and the oxidative stress
response in ovarian cells. CIS inhibits cellular DNA rep-
lication and RNA transcription, arrests cells in G2 phase,
and leads to apoptosis. CIS-induced POF animal model
has a low cost, a short cycle, low mortality and shows
histological and endocrine changes similar to clinical
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POF ovaries. DOX is an anti-tumor antibiotic that inhib-
its the synthesis of RNA and DNA, and has the strongest
inhibitory effect on RNA. A single intraperitoneal injec-
tion of DOX into ICR mice (7.5 mg/kg) resulted in a sig-
nificant reduction in ovarian size and weight one month
after treatment [11]. However, this approach of the POF
model has rarely been reported in other articles, it maybe
that the effect of this acute injury model is unstable and
uncertain.

Clinicially, chemotherapy drugs are widely used, and
the damage caused by their toxicity cannot be ignored.
How to balance the therapeutic effect and toxic reaction
of chemotherapy drugs and improve the safety of clini-
cal drugs are the primary problems. Thus, seeking the
prevention and treatment measures, and exploring the
occurrence and development mechanism of diseases are
beneficial. Animal model studies are helpful to under-
stand the occurrence and development of human dis-
eases more conveniently and effectively.

The autoimmune POF animal model

Immune factors account for 10-30% of POF, which may
be simple ovarian autoimmune disease or accompany
by other immune diseases. Recent studies have shown
that the risk of POF in women of childbearing age with
autoimmune diseases is increasing. Early diagnosis of
immune POF patients is challenging, and these patients
are often in a state of ovarian failure at the time of
treatment.

ZP3 glycoprotein is a critical zona pellucida glyco-
protein and sperm receptor. Immunizing animals with
ZP3 glycoprotein can cause ovaritis by activating T cells,
and IgG antibodies against human recombinant ZP3 can
lead to follicle destruction [12]. The method of inducing
immunocompromised POF mice with ZP3 glycoprotein
is easy to establish, with a short cycle, high survival rate
of mice (100%), and high success rate (80-90%). In addi-
tion, the mouse ZP3 protein shares 67% homology with
human ZP3. ZP3 polypeptide induces mice to produce
ZP3 polypeptide antibody, which binds to ovarian ZP3 to
cause an immune response and interferes with informa-
tion exchange between oocytes and granulosa cells. The
above can induce ovarian atrophy, anovulation, and other
manifestations, such as human POF. Hence, the ovarian
histomorphology of the ZP3 polypeptide-induced POF
mouse model is similar to that of human POF autoim-
mune ovaritis [12]. The ZP3 glycoprotein-induced POF
mouse model is a classical modeling method to explore
the pathogenesis and pathological changes of autoim-
mune POFE.

Another method of antoimmune POF animal is
that the supernatant protein of ovarian tissue of rats
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combined with Freund’s adjuvant serves as an ovarian
antigen. The rat model of autoimmune POF was success-
fully established by subcutaneous injection of 0.35 mL of
ovarian antigen three times every 10 days [13]. Because
this method is rarely used, it remains unclear what con-
centration of ovarian antigen can be used to successfully
construct an autoimmune POF model. Moreover, stud-
ies have shown that removing the thymus of 3-day-old
neonatal mice induces autoimmune ovaritis and leads
to complete oocyte loss in adult mice [14]. However,
thymectomy for newborn mice is difficult to perform and
has a high mortality rate.

The POF animal model of mental stress

Psychological stress, for example chronic anxiety, sad-
ness, fear, and other negative emotions, can lead to POF
by altering the function of the hypothalamic—pituitary—
target gland axis, leading to the appearance of hypotha-
lamic—pituitary—ovarian axis disorder. The failure of the
feedback regulation of the hypothalamic—pituitary—ovar-
ian axis disrupts the balance of the neuroendocrine—
immune biomolecular network and ultimately leads to
POE. Stress POF animal model can be constructed by
alternately administering different frequencies of sound-
light-electricity stimulation [15]. The decrease in biomol-
ecules in the hypothalamic—pituitary—adrenal axis led to
a significant decrease in biomolecules in the hypothala-
mus (B-EP, IL-1, NOS and GnRH), leading to a hormone
decrease in the target gland layer (E2) in the pituitary—
ovarian axis; the pituitary layer (FSH and LH) showed
little change [15]. A chronic unpredictable mild stress
(CUMS) model was constructed by alternating daily fast-
ing and water deprivation, forced swimming, noise inter-
ference, and plantar electrical stimulation for 35 days.
The results suggested that the CUMS rat model exhibited
depression-like behaviors. CUMS causes psychological
stress and decrease ovarian reserve in female rats [16].
The advantages of this modeling approach are that it is
consistent with known major causative agents of human
POF, and pathogenic pathways and pathological changes
are similar to clinical observations.

Galactose and other POF animal models

Galactosemia (GAL) is an autosomal recessive genetic
disease caused by the deficiency of galactosidase in the
body, resulting in the obstruction of the stereo isomeri-
zation process of GAL. Because of the accumulation of
GAL and its metabolites in the body, patients eventually
develop liver, kidney, eye, nervous, and reproductive sys-
tem damage. The main clinical manifestation of repro-
ductive system injury is POF or primary amenorrhea.
The main mechanism is as follows: the level of GAL in the
cell is increased, which is catalyzed by aldose reductase
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and then is converted to galactol. However, the cell can-
not further metabolize GAL, so GAL accumulates in the
cell and affects the normal osmotic pressure, causing cell
dysfunction. However, the increase in GAL concentra-
tion will cause direct damage to granulosa cells, oocytes,
and follicular membrane cells of ovarian tissue, while
the metabolites of GAL will cause parenchymal damage
to the ovary [17]. The offspring of pregnant rats feeding
with GAL from Day 3 to Day 21 postpartum showed dif-
ferent manifestations of ovarian dysfunction when they
were adults [18]. The model had a success rate of approxi-
mately 63%. Aging is the most common cause of POF.
D-GAL can accelerate the ageing process, which is similar
to observations of normal ageing processes. Hence, the
D-GAL-induced model is widely used in aging-induced
POF animal model studies [18]. Approximately 75-96%
of women have galactosamic gonadal dysfunction. This is
because GAL awakens the biological activity of FSH and
produces direct ototoxic effects [19]. POF animal model
can be successfully constructed by subcutaneously with
D-Gal (200 mg/kg/d) daily for 42 days [20]. The process
of establishing the model is simple, and the time required
is short.

Overall, the chemotherapy drug induced model is a
classic and simple animal model for studying POF. How-
ever, there still exist many disadvantages. For example,
CTX-induced POF animal model may exist many side
effects, including myelosuppression and bleeding [21].
TG-induced POF animal model needs long molding time
[10]. CIS-induced POF animal model is too toxic and
may lead to death [22]. The success rate of DOX-induced
POF animal model is uncertain [11]. The autoimmunity-
induced model is most related to the etiology of human
POF, but the operation of model is relatively complicated.
Thymectomy for newborn mice is difficult to operate and
has a high mortality rate [14]. The psychological factor-
induced model is consistent with the pathogenesis fac-
tors of POF. But the model construction time is long, and
the stability of this kind of model must be further deter-
mined [15]. Although the GAL animal model can better
simulate the physiological aging characteristics of clini-
cal POF patients, this model has a lower success rate and
longer cycle [18]. Table 1 systematically compares the
advantages and disadvantages of different animal models
of POFE.

Common evaluation indicators of the POF animal
model

Reasonable biological indicators are the key to judging
the success of model construction and drug treatment
effects. According to CALAS, the identification of experi-
mental animal models requires the evaluation of their
overall behavioral characteristics, tissues, organs, cells
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and molecules [29]. The evaluation of POF animal mod-
els mainly includes fertility, hormone, ovary and follicle,
and biomarker evaluation.

Fertility in the POF animal model

POF is a fertility decline disease caused by decreased
ovarian reserve function, so the most intuitive detection
method for animal models is the number of litters pro-
duced. In the animal model of POF, reproductive capac-
ity is significantly reduced, including the fertility index
(fraction of females that delivered offspring/total females),
number of pups, and mean body weight of pups [30]. The
drug-induced POF animal model takes advantage of the
side effects of chemotherapy drugs on ovarian tissues. In
addition to acute damage to the ovaries, toxic side effects
on other organs from chemotherapy drugs can markedly
affect the survival status of rats. Hence, the rat weight
sharply declines [31].

Histological assessment of the ovarian reserve in the POF
animal model

The ovarian reserve refers to primordial follicles in the
ovarian cortex of human females. Ovarian reserve tests
are performed by directly or indirectly assessing the
decline in the number of follicles [32]. Ovarian reserve
of histological assessment includes the ovary volume and
weight, the number of corpuses luteum, the length of the
estrous cycle, the follicle count, the ratio of the ovulation
number and abnormal ovulation [30]. In the ovarian tis-
sues of the POF animal model, the ovarian volume and
weight are decreased. Moreover, the corpus luteum, the
ratio of the ovulation number and abnormal ovulation
are lower, and the estrous cycle is extended. In addition,
Pro-follicles, Pri-follicles, Snd-follicles, and antral follicles
are reduced. However, atresia and apoptotic follicles are
increased [33].

Endocrine aspects of the ovarian reserve in the POF animal
model

Endocrine levels are indirect reflections of decreased
ovarian reserve function in POF. Clinically, measure-
ment of AMH levels is useful in assessing the reserve of
follicles and may be useful in assessing fertility poten-
tial. The lower of AMH represents a decrease in ovarian
reserve function [34]. The main role of FSH is to pro-
mote the growth and development of follicles and estro-
gen secretion. In addition, it can be used to identify the
physiological condition of the female ovary. Clinically,
an abnormally high value of FSH may indicates POF. LH
and E2 can also be used as diagnostic criteria for POF. In
the hormone secretion of the POF animal model, AMH
and E2 are decreased, while FSH and LH are increased
[35].
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Biomarkers of granulosa cells in the POF animal model
Most studies claim that ovarian apoptosis caused by oxi-
dative stress and mitochondrial damage is the main cause
of POF [30]. In the POF animal model, the expression of
Ki67, Bcl2/Bax, and Caspase 3/9 is often used to measure
ovarian proliferation and apoptosis levels. Follicle-stim-
ulating hormone receptor (FSHR), a G protein-coupled
receptor that binds to FSH, activates many intracellular
signaling pathways, playing an important role in female
follicle development and estradiol production. The gene
mutation and downregulation of FSHR cause POI by pre-
venting follicle development [36].

Overall, in the POF animal model, short-term meas-
ures of ovarian reserve function included a reduction in
antral/atretic follicles and luteinization, disorder of the
estrous cycle and hormone levels, and an increase in
apoptotic biomarker expression. The long-term indica-
tors were the decline in the fertility index and number of
pups. Table 2 summarizes the common evaluation index
of the POF animal model.

Current study of POF therapy in an animal model
HRT in the treatment of the POF animal model

AMH is a hormone secreted by granulosa cells in prean-
tral follicles and small antral follicles of the ovary. Detec-
tion of AMH can determine the functional status of
granulosa cells and number of follicles. It demonstrated
that the recombinant AMH protein can increase primor-
dial follicless, rescuing the fertility of a CTX-treated POF
animal model. The protective mechanism of AMH on
CTX-induced follicular loss may be related to autophagy
[38].

Melatonin (N-acetyl-5-methoxytryptamine, honey), a
hormone produced primarily by the pineal gland of the
brain, can also be produced by peripheral reproductive
tissue (the ovary, and the placenta). Many studies have
shown that exogenous melatonin has protective effects
on the nervous system, kidneys, lungs, testes, uterus, and
ovaries [39, 40]. In ovarian tissues, as a free group puri-
fier in follicles, melanin promotes egg maturation, embryo
development, and luteinization of granuloma cells [41].
It is reported that intraperitoneal administration of mela-
tonin (15 or 30 mg/kg) for 15 days can successfully res-
cue CIS-induced primordial follicle loss by inhibiting
phosphorylation of PTEN/AKT/FOXO3a pathway com-
ponents and preventing FOXO3a nuclear shuttling in
primordial follicles [42]. Another study showed that mela-
tonin (20 mg/kg/day) taken orally for 34 days can increase
the number of primordial follicles and antral follicles,
increase body and ovary weight, and enhance the level
of AMH by attenuating the activation of SIRT1 signaling
pathway [43].
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Table 2 Common evaluation index of different POF animal models
POF model Bodyweight Hormone Biomarkers of granulosa cells Fertility The model
AMH FSH LH E2 Ki67 Bcl2 Bax Caspase(3/9) FSHR  Number :re(;::ences
of litters
produced
CTX / ) l l ) l ) l T 1 ) (30, 33]
VCD l l / / 7/ / / / / / [31]
cls ns / / / | / / / ) / / [22]
DOX / / / / / / / / 1 / / [11]
GAL / / ) / l / / / / / / [18]
pZP3 1 1 1 Tl / / / / ! / [35]
OA+FIA ! | / / l / l / T l / [13]
HFHS / / / / | / / / / l / [37]
POF Ovary Follicles count The model
model from
Ovary  Ovary Estrous  Corpus  Ovulation Abnormal Pro- Pri- Snd- Antral  Atresia  Apoptotic references
size weight  cycle luteum number ovulation follicles  follicles  follicles  follicle follicle follicles
CTX / 1 1 1 T 1 1 1 1 T T [30,33]
VCD 1 / / / / 1 1 l / 1 / [31]
cls / / / / / / l 1 ! l / / [22]
DOX 1 | / / / / ns ns ns ns ns ns [11]
GAL / / / / / / / / / l / / [18]
pZP3 / l / / / 1 1 / l / T [35]
OA+FIA / / / l / / l 1 1 1 T / [13]
HFHS / / / / / / / / / l / 1 [37]

AMH anti-Mdullerian hormone, FSH follicle-stimulating hormone, LH luteinizing hormone, E£2 estrogen, BCL2 B cell lymphoma 2, BAX Bcl-2 associated X protein, VCD
4-vinylcyclohexene dicyclic oxide, pZP3 zona pellucida 3 peptides, CTX cyclophosphamide, Pro-follicles primordial follicles, Pri-follicles primary follicles, Snd-follicles
secondary follicles. Galactose (GAL), HFHS: High-fat diet,|:Down-regulation, 1: Up-regulation, ns: No statistical difference, /: no report; -: Interruption

As a member of the growth factor family, GH (a
peptide hormone secreted by the anterior pituitary
gland) plays a crucial role in regulating growth and devel-
opment, the gonadal axis, metabolism, and the mental
state. Using mouse recombinant mouse GH (rmGH) for
CTX-induced POF can significantly reduced ovarian
granulocyte injury and the number of atretic follicles, and
significantly increased the number of mature oocytes.
They confirmed that GH may promoted ovarian tissue
repair and estrogen release by activating the Notch-1
signaling pathway in ovarian tissue [44]. Subsequently, it
confirmed that GH possesses a protective effect on ovar-
ian tissue in the CTX-induced POF rat model by directly
or indirectly promoting the balance between oxidative
stress and oxidative detoxification of cells [45].

Table 3 lists the recent research status of HRT in the
POF animal model. Although the short-term effects of
HRT on POF animal models are effective, the long-term
effects on fertility remain unknown. Thus, HRT has
been little studied in animal models of POF. However,
clinically, the improvement of POF symptoms mostly
depends on personalized hormone treatment, aiming to
maximize efficacy and reduce the associated risks.

Stem cells in the treatment of the POF animal model

Stem cells from adult tissues in the treatment of the POF
animal model

After using HRT for POF, the risk of cancer and cardio-
vascular disease is increased. Recently, stem cell therapy
has become increasingly popular in POF studies. BMSCs
are a member of the adult stem cell family with low
immunogenicity and generally exist in the bone marrow
microenvironment. BMSCs are isolated from bone mar-
row extract. Density gradient centrifugation is a com-
mon method of preparing BMSCs derived from bone
marrow [47]. Under certain circumstances, BMSCs can
renew and differentiate into different cells, such as bone,
cartilage, and fat cells. Despite the low survival rate and
limited differentiation potential of BMSCs after trans-
plantation, cytokines secreted by the ovary can induce
BMSCs to migrate to damaged tissues. In the ovarian
microenvironment, BMSCs can inhibit inflammation,
reduce OS, and regulate immunity to promote ovarian
tissue repair by secreting cytokines (VEGF, HGEF, IL-6)
[48]. The specific mechanism of BMSCs in the treat-
ment of POF has been fully described in this article [48].
However, the number of BMSCs is very limited, and the
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immunomodulatory properties of BMSCs vary among
species. The aggressive procedure is painful for the
patient and carries a risk of infection. In addition, their
differentiation potential, number, and maximum lifespan
significantly decrease with age. These factors greatly limit
the clinical application of BMSCs.

ADMSCs have low immunogenicity and can secrete
many important growth factors, cytokines, trophic fac-
tors, and regenerative factors. Compared with ADSCs
from elderly donors, ADSCs from young donors showed
a higher proliferation rate, and their differentiation abil-
ity still exists with age. Therefore, ADMSCs have advan-
tages over BMSCs. ADSCs also maintain the potential
to differentiate into cells of mesodermal origin. Their
low immunogenicity makes them suitable for alloge-
neic transplantation and the treatment of drug-resistant
immune diseases [49]. ADMSCs have the advantages of
availability and repeatability in autologous cell repair
and regeneration [50]. ADMSCs are usually derived
from fat tissue during liposuction, lipoplasty, or isolated
lipotomy procedures and are digested with collagenase,
followed by centrifugation and washing [51]. ADMSCs
from the inguinal subcutaneous fat of 6-8-week-old
nondiabetic rats can be obtained. It also demonstrated
that ADMSC transplantation can reduce the expres-
sion of Pannexinl and Caspase3 molecules to play an
anti-apoptotic role in the ovarian tissues of a POF ani-
mal model. ADSCs stopped growing at 11~12 subcul-
ture, and the number of ADSCs was lower than that of
BMSCs. Mazini et al. compared the advantages and dis-
advantages of ADMSCs as well as the research status of
their therapeutic application [52].

HuMenSCs can be isolated from menstrual blood.
HuMenSCs are much easier to repair than other adult
stem cells, possibly making them a potential clinical
donor source. Gargett et al. first extracted HuMenSCs,
which can differentiate into adipocytes, osteoblasts,
and lung epithelial cells [53]. The therapeutic poten-
tial of HuMenSCs has been demonstrated in diabetes
[54], myocardial infarction [55] and liver failure [56].
Human endometrial mesenchymal stem cells (ESCs)
derived from menstrual blood have the characteristics
of mesenchymal stem cells (MSCs). MSC surface mark-
ers (CD29, CD44, CD49f, CD90, CD105 and CD117)
and ESC markers (Oct4 and SSEA3/4) were highly
expressed on the HuMenSC surface [57]. It confirmed
the differentiation of HuMenSCs into ovarian-like cells
(especially GCs) by injecting HuMenSCs into CTX-
induced POF rats through the tail vein [58]. However,
the source of HuMenSCs in menstrual blood is limited,
and there is a risk of infection.

BMSCs, ADMSCs and HuMenSCs are adult MSCs
that have been extensively studied in POF animal
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models at present. Table 4 summarizes the research
status and possible mechanisms of three types of stem
cells and their exosomes in POF animal models. Its
main advantages are low immunogenicity, strong hom-
ing ability and strong ability to split and self-renew.
However, most of their extraction procedures are inva-
sive and carry the risk of infection.

Stem cells from neonatal tissues in the treatment of the POF
animal model

Compared with adult tissue stem cells, human—neona-
tal tissue stem cells have lower immunogenicity, fewer
ethical issues, a lower risk of infection, and a painless and
noninvasive harvesting process and are easy to expand
in vitro. Neonatal tissues such as the umbilical cord, pla-
centa, amniotic membrane, or chorionic membrane can
be obtained directly after delivery, avoiding invasive pro-
cedures and ethical concerns [65]. Moreover, MSCs iso-
lated from these neonatal tissues represent ontogenetic
younger cells, at least as attractive candidates for tissue
engineering and regenerative medicine. hUCMSCs are
the most widely studied MSCs in human—neonatal tissue
stem cells and are mainly extracted from different com-
partments of the human umbilical cord. Compared with
BMSCs, hUCMSCs have extensive advantages. On the
one hand, the extraction process is noninvasive, prevent-
ing the risk of infection. On the other hand, hUCMSCs
show higher proliferation and differentiation activity and
faster self-renewal. hUCMSCs maintained a stable dou-
bling time (DT) until the 10th generation, and BMSCs
showed notably increased DT after only the 6th genera-
tion. hUCMSCs have been widely investigated in clini-
cal therapeutic phase I or II trials, such as spinal cord
injury, Alzheimer’s disease, and liver failure [66]. In recent
years, hUCMSCs have received much attention due to
their enormous therapeutic potential in POF therapy.
Several studies have shown that the injection of hUCM-
SCs (1x10%/mL in 100 pL of PBS) through the tail vein
can effectively improve the ovarian status. The method
of extracting hUCMSCs from the human umbilical cord
is fast, painless, and low immunity. However, there are
more moral and ethical issues. The research progress of
hUCMSCs in the POF animal model has been detailedly
reviewed [4].

HESC-MSCs are cells isolated from an early embryo
(before the gastrula stage) or primitive gonad. Compared
with other sources of MSCs, hESC-MSCs, they have a
higher ability to proliferate and inhibit leukocyte growth
[67]. HESC-MSCs show stronger anti-inflammatory
properties than BMSCs [68]. HESC-MSCs can also over-
come the obstacles encountered in harvesting MSCs from
adult tissues, including the lack of appropriate donors,
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limited number of cells obtained in the acquisition pro-
cess, limited ability to expand in vitro, and invasive nature
of the procedure. HESC-MSCs have been shown to ame-
liorate chronic liver injury and autoimmune encephali-
tis. Bahrehbar et al. successfully extracted hESC-MSCs
from the placenta and further confirmed that hRESC-MSC
transplantation was similar to BM-MSC transplantation,
which can restore the structure and function of dam-
aged ovarian tissue in CTX-induced POF mice and res-
cue fertility [69]. hESC-MSC transplantation has long
been a controversial area. Proponents argue that it can
help cure many intractable diseases because hRESC-MSCs
can differentiate into multifunctional APSCs, which most
closely resemble human development. Opponents argue
that hRESC-MSC transplantation requires the destruction
of embryos, which is anti-bioethical.

HPMSCs contain several stem cells based on placental
anatomy: chorionic villi (CV-MSCs), amniotic membrane
(AM-MSCs), chorionic plate (CP-MSCs), and umbilical
cord Wharton Jelly (W]-MSCs) [70]. Under the appropri-
ate induction conditions, these placenta-derived MSCs
can differentiate into various cell types. Compared with
other stem cells from neonatal tissues, hESC-MSCs have
the advantages of a convenient source, sufficient cell num-
ber, and easy isolation, culture, expansion, and purifica-
tion, and they still possess the characteristics of stem cells
after more than 30 generations. Transplantation of hESC-
MSCs can restore the structure of damaged ovarian tis-
sue and their function in CTX combined with BF-induced
POF mice and rescue fertility. The possible mechanism is
related to the promotion of follicle development, ovarian
secretion, fertility, and ovarian cell survival through par-
acrine effects [69].

Human amniotic cells are divided into human amni-
otic epithelial cells (hAECs) and human amniotic mes-
enchymal stem cells (hAMSCs). Both cell types have the
potential to differentiate into three layers of germ tissue.
HAECSs are a class of epithelial cells with stem cell char-
acteristics that are not stem cells in nature because they
cannot proliferate indefinitely. When hAECs were pas-
saged to the fifth generation, the cells gradually became
larger and older, and their proliferation ability was obvi-
ously weakened. However, hAMSCs could be transmitted
to approximately the 30th generation without significant
changes in cell morphology. hAMSCs had stronger dif-
ferentiation and proliferation ability than hAECs. The
biological characteristics of hAMSCs were superior to
those of hAECs but were not superior in the expression
of immune molecules. This effect may be because the cel-
lular biological characteristics of hAMSCs, such as tel-
omerase activity, expression level of pluripotent markers,
cytokines, and collagen secretion, are superior to those of
hAECs [71].

Page 12 of 23

In addition to the above stem cells directly used in
POF animal model therapy, other forms of stem cells
have been investigated in POF treatment studies. Stem
cell exosomes are a hot topic currently. Exosomes carry
various microRNAs and proteins into target cells. Pres-
ently, exosomes from hUCMSCs and hAMSCs promote
ovarian function by regulating the Hippo pathway and
carry various microRNAs and proteins [72]. Colla-
gen/hUCMSCs and Matrigel/ hUCMSCs can also pro-
mote MSC adhesion and increase cell retention in the
ovary [73]. In terms of the mode of administration in
most animal studies, tail vein injections are the most
widely used transplant method to deliver cells to recipi-
ents. However, most transplanted cells are trapped in
the lungs and cannot reach the target organ. Hence,
studies have designed sodium alginate-bioglass (SA-
BG)-encapsulated hAECs to promote the adhesion
properties, proliferative ability, migration, and homing
ability of MSCs in the ovary [74]. Table 5 lists the trans-
plantation of stem cells from neonatal tissues in the
POF animal model.

Immunological and gene therapy in POF animal model

In recent years, advances in immunology and genome
medicine have improved our understanding of the
pathogenesis of POF [94]. An increased number of B
cells, CD4" T cells, Th17 cells, and a decreased CD8' T
cells, Treg cells in POF patients have been reported [95].
Besides, the cytokines (IL-1a, IL-2, IL-6, IL-8, TNF-q,
IEN-y, IL-17 and IL-21) are upregulated [95, 96], and
IL-10 is downregulated in POF patients [97]. Based on
these advances, many related treatments such as thy-
mopentin (TP-5), Ab4B19, and prednisone have gradu-
ally become research hotspots. Zhu et al. demonstrated
that thymopentin (TP-5) significantly reduces the pro-
portion of activated T cells (CD3*/CD8") and M1/M2
macrophages, and the expression of inflammatory fac-
tors was decreased [37]. Co-administration of mouse
zona pellucida 3 (mZP3) protein in combination with
a DNA vaccine encoding the mZP3 gene can meliorate
autoimmune ovarian disease through inducing Treg
cells and anti-inflammatory cytokine production [98]. A
clinical prospective study showed that short-term treat-
ment with a prednisone can increase serum E2 levels
and improves follicle growth [99]. However, the study
requires a larger sample size.

Currently, most gene therapy research of POF is lim-
ited to the cellular and animal levels. These genes,
including NEAT1/miR-654, miR-146a, miRNA-190a-5p,
miR-146b-5p, miR-133b, and TRERNAI, are transferred
into cells to ameliorate the POF symptoms by inhibiting
apoptosis of ovarian granulosa cells (OGCs), stimulating
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estrogen synthesis, increasing the number of normal
follicles, and decreasing the number of atretic follicle
(Table 6) [100—102]. Gene therapy is still in experimen-
tal stage; it is not sure that whether the treatment will
have a positive effect on patients.

Conclusion
Suitable and ideal POF animal models are essential car-
riers for drug development and mechanism research.
Chemotherapy drug model is a classic animal model for
studying POF. However, chemotherapy-induced POF
animal model may exist many side effects, including
myelosuppression and bleeding. POF animal model from
autoimmunity and mental stress is the largest relationship
with the etiology of POF, but the stability of the model
needs to be further determined. GAL-induced animal
model can better simulate the physiological aging char-
acteristics of clinical POF patients, but the success rate is
lower and the cycle time is longer. Hence, the study of the
mechanism of POF and drug efficacy should select appro-
priate models according to the main purpose of the study.
An ideal animal model would have the following charac-
teristics: (1) the pathogenic pathways and processes like
those observed in humans; (2) the pathological changes
in the model can be reversed by drugs; (3) the reproduc-
ibility of the results [106]. In the future, a model of POF
constructed by injection of chemotherapy drugs and GAL
under ultrasound guidance may reduce side effects and
improve model success rate. Besides, more efforts should
be made to study aging-related POF. For example, con-
structing aging-induced animal model studies the role of
MSCs and their exosomes in restoring ovarian function.
The breakthrough discovery of MSCs makes them
an ideal source for POF therapy. Many animal and pre-
clinical studies of MSCs for POF treatment have been
conducted; the clinical application of MSCs has big
challenges, including insufficient cell sourcing, immu-
nogenicity, subculture, and ethical issues. In addition,
the long-term survival and self-renewal of stem cells in
ovarian tissue remain to be further studied. In the future,
it is necessary to establish a professional quality inspec-
tion system of MSC production to ensure the functional
potential and microbiological safety of MSCs. More
importantly, multicenter, large-sample phase II or III tri-
als are expected to confirm the therapeutic and safety
effect of stem cells on POF rather than just POF animal
models. Especially, it is also worth considering whether
the regenerative properties of MSCs can stimulate tumor
regeneration in the future. Exosomes is smaller, easier to
produce, and can carry various microRNAs and proteins
into target cells without risk of tumor formation [72].
Moreover, stem cell tissue engineering is also an effective
strategy. Sodium alginate-bioglass (SA-BG)-encapsulated
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MSCs can support the survival of the transplanted cells
at the initial phase of transplantation [74]. Moreover, the
combination of stem cells with other therapies (such as
gene and immunotherapy) should be actively explored to
promote the treatment of POF in the future.

Abbreviations

POF Premature ovarian failure

POI Premature insufficient ovarian failure
GAL Galactose

AMH Anti-Mdllerian hormone

GH Growth hormone

CTX Cyclophosphamide

BF Busulfan

cls Cisplatinum

DOX Doxorubicin

TG Tripterygium glycosides

FSH Follicle-stimulating hormone

LH Luteinizing hormone

E2 Estrogen

HRT Hormone replacement therapy

ZP3 Zona pellucida 3

CUMS Constructed chronic unpredictable mild stress
FSHR Follicle-stimulating hormone receptor
mGH Recombinant mouse GH

MSCs Mesenchymal stem cells

BMSCs Bone marrow mesenchymal stem cells
ADMSCs  Adipose-derived mesenchymal stem cells

HuMenSCs Human menstrual-derived stem cells

hEnSCs Human endometrial mesenchymal stem cells
hUCMSCs  Human umbilical cord mesenchymal stem cells
hESC-MSCs Human embryonic stem cell-derived MSCs

hPMSCs  Human placenta-derived mesenchymal stem cells
hAMSCs  Human amniotic mesenchymal stem cells

hAECs Human amniotic epithelial cells

fMSCs Fetal liver mesenchymal stem cells

TGF-B Transforming growth factor-beta

VEGF Vascular endothelial growth factor

EGF Epidermal growth factor

IGF2 Insulin-like growth factor 2

HGF Human growth factor
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