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Abstract 

Cell therapy is an accessible method for curing damaged organs or tissues. Yet, this approach is limited by the delivery 
efficiency of cell suspension injection. Over recent years, biological scaffolds have emerged as carriers of delivering 
therapeutic cells to the target sites. Although they can be regarded as revolutionary research output and promote the 
development of tissue engineering, the defect of biological scaffolds in repairing cell-dense tissues is apparent. Cell 
sheet engineering (CSE) is a novel technique that supports enzyme-free cell detachment in the shape of a sheet-like 
structure. Compared with the traditional method of enzymatic digestion, products harvested by this technique retain 
extracellular matrix (ECM) secreted by cells as well as cell-matrix and intercellular junctions established during in vitro 
culture. Herein, we discussed the current status and recent progress of CSE in basic research and clinical application 
by reviewing relevant articles that have been published, hoping to provide a reference for the development of CSE in 
the field of stem cells and regenerative medicine.
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Introduction
Cell therapy has long been used in medicine [1]. In recent 
years, the rapid advancements in stem cell research and 
regenerative therapy have garnered much praise for 

paving the way to novel therapies [2], including anti-
aging[3], cardiac repairs [4], the treatment of malignant 
tumors [5, 6], and end-stage liver disease [7]. Over recent 
years, this therapy has also been used to fight COVID-
19 [8]. Unfortunately, although many trials have been 
performed, there is no consensus on the most optimal 
delivery strategy (some of the most popular methods are 
shown in Fig. 1A).

Cell suspension injection is a widely used cellular trans-
plantation mode, mainly due to its convenience and ease 
of operation. This method has been applied to treat hypo-
volemic shock, hematological malignancies, and, more 
recently, COVID-19 [8–10]. However, it is unsuitable for 
cases requiring rebuilding a three-dimensional structure 
with a certain strength, such as osseous tissue repair [11].

Tissue engineering provides new solutions to tissue 
repair and regenerative medicine. This newly developed 
subject maintains, improves, and either restores tissue 
or entire organ’s structure and function by applying the 
principles of engineering science and life sciences to the 
development of biological substitutes. Two general pro-
tocols have been developed for biodegradable scaffold 
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preparation: the first is a two-step process that contains 
the pre-production of a cell-free biodegradable scaffold 
and the seeding of functional cells[12]; the second is an 
only-one-step process that uses biomaterials to carry tar-
get cells and produces a cell-laden biodegradable scaffold 
[13]. In both protocols, the cells can grow and multiply 
with the degradation of scaffolds and finally, form a tis-
sue-like structure that supports tissue replacement and 
repair.

However, intercellular interactions may be of great 
importance to the efficacy and mode of damage repair 
in some diseases. Once adherent cells are placed in sus-
pension, their morphology, viability, and function may be 
affected. Therefore, the location and non-homogeneous 
distribution of the injected cells need to be controlled 

[14]. Moreover, using proteolytic enzymes such as 
trypsin for cell harvesting may degrade cell surface pro-
teins simultaneously [15], which can affect the differen-
tiation of injected cells and even result in the loss of their 
functions [16]. Conventional tissue engineering meth-
ods proved satisfactory in repairing tissues such as car-
tilage and bone, which consisted of relatively sparse cell 
structures and contained a large number of ECM. The 
structure formed during the reconstruction using biode-
gradable scaffolds may resemble its physiological struc-
ture [17]. Yet, biodegradable scaffolds cannot fully mimic 
cell density which matches the physiology requirements 
of tissues such as the heart or the liver (these organs 
consist of relatively dense parenchymal cells) [18]. More 
importantly, the non-specific inflammatory reactions of 

Fig. 1 Schematic diagram of cell delivery methods in cell therapy (drawn by photoshop). A Three main cell delivery approaches are used in 
cell therapy. Some of the icons in this section are from AlexLMX/Getty Creative (https:// www. vcg. com/ creat ive/ 11999 96796) and comotion_
design|comotion_design/Getty Creative (https:// www. vcg. com/ creat ive/ 10025 05480) and have already had copyright permission. B The sketch of 
cell sheets

https://www.vcg.com/creative/1199996796
https://www.vcg.com/creative/1002505480
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polymer materials after implantation are also noticed. 
Thus, it is significant and essential to explore new deliv-
ery devices and methods for cell therapies.

Scaffold-free tissue engineering is a rapidly develop-
ing technique in the field of tissue engineering. It allows 
the creation of cell-dense tissues that can be harvested 
as a sheet-like cell assembly without needing an enzyme 
(Fig.  1B) [19]. This technique pushes the limitations of 
traditional tissue engineering and allows the delivery of a 
higher number of cells to a target site [18]. Moreover, cell 
sheet transplantation avoids additional sutures because 
the preserved ECM and fibronectin can help the grafts 
adhere to the transplant site, thus mediating appropri-
ate tissue regeneration and functional recovery [20, 21]. 
Herein, we discussed CSE’s current status and recent 
progress in basic research and clinical application by 
reviewing relevant articles, hoping to provide a reference 
for the development of CSE in the field of stem cells and 
regenerative medicine.

Cell sheet engineering—preclinical research
A number of preclinical studies have reported on emerg-
ing CSE technology for treating tissue or organ damage, 
like corneal injury, esophageal lesions, periodontosis, 
heart diseases, and liver diseases. This relatively new 
therapy has shown to be effective and generally safe in 
treating corresponding lesions in experimental animals, 
which provides favorable evidence for further clinical 
applications.

Animal models
Animal models are a key factor in preclinical research. 
So far, CSE has been tested in mice, rats, dogs, rabbits, 
sheep, and swine [22–25]. Mice and rats are the most 
common model animals; they are easily accessible, have 
a high degree of homology to the human genome, have 
relatively short breeding cycles, have small cage require-
ments, and have low feeding costs [26]. Advantages of 
the rabbit and dog models compared to mouse and rat 
models include ease of surgery. On the other hand, pigs 
are an ideal animal model for human health and diseases 
because their anatomy and physiology are similar to 
humans [27]; yet, they are more difficult to maintain and 
have high feeding costs [27–29]. The efficiency and safety 
of cell sheets in cardiovascular diseases, esophageal dis-
eases, and osteochondral defects have been proven in 
swine models [30–32]. Rabbit and dog models were also 
used in these diseases [33, 34], while rabbit models are 
more prominent in ophthalmic diseases such as limbal 
stem cell deficiency (LSCD) [35].

Cell sheets are transplanted into the body and need to 
remain in the host for a long time or become integrated 
with the host to exert therapeutic effects. Therefore, 

immunity and immunogenicity must be considered. 
Two major solutions have been proposed: one is to use 
cells with lower immunogenicity to fabricate cell sheets, 
like mesenchymal stem cells (MSCs), allogenic cells, or 
autologous cells [36–38]; the other is to use immunodefi-
ciency animal models such as severe combined immuno-
deficiency (SCID) mice [39], Rag2-Il2rg double knockout 
mice [40], and nude rats [41]. As for big mammals, the 
immunodeficiency models are more difficult to establish 
and therefore, are unusual to be seen in reported research 
in the cell sheet field. Still, benefits from the development 
of transcription activator-like effector nuclease (TAL-
ENs) and CRISPR/Cas9 technology, there is some pro-
gress in immunodeficiency big mammals, which could be 
candidates in future preclinical studies [42], such as RAG 
1- and 2-deficient rabbits [43], X-linked severe combined 
immunodeficiency (X-SCID) rabbits [44], RAG2 biallelic 
KO pig [45], and IL2Rγ KO pigs [46].

CSE in the treatment of endocrine disease
Internal secretion is an essential function of keeping a 
healthy human organism, and the most common disor-
ders in the endocrine department are diabetes and thy-
roid disease, both of which are targeted by cell sheet 
treatment.

Cell sheets in treating diabetes and its complications
Diabetes, a metabolic disease, is characterized by ele-
vated levels of blood glucose caused by defective secre-
tion of insulin and/or impaired biological action of 
insulin. Diabetes has been associated with certain car-
diovascular events, diabetic kidney disease, diabetic 
retinopathy, and neuropathy [47]. Unfortunately, current 
conventional treatments for diabetes (especially insulin-
deficient diabetes) remain insufficient in achieving long-
term glycemic control.

Cell therapy for diabetes aims to restore endogenous 
insulin secretion, and CSE may have an advanced role in 
this therapy as a cell delivery method. In 2009, Shimizu 
et  al. prepared rat islet cell sheets with temperature-
responsive culture dishes and transplanted them into the 
subcutaneous space of recipient rats. Islet graft main-
tained the function of sensing and releasing insulin and 
reversed diabetes in streptozotocin-induced diabetic 
SCID mice [39]. Hirabaru et al. [48] seeded rat islets onto 
the converged MSCs, which were then transplanted into 
diabetes mellitus SCID mice. MSCs sheets showed a 
protective effect on maintaining islet function. Research 
in this field also indicated that MSCs could be replaced 
by other supporting cells like adipose tissue-derived 
stromal cells (ADSCs) and fibroblasts [49]. Supporting 
cell sheet in crafting engineered cell sheets composed 
of supporting cells and islets can facilitate islet viability 
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and integration in the early stage of transplantation 
by secreting cytokines and providing abundant ECM, 
which means that they are better alternatives in islet 
transplantation.

Except for being transplanted into subcutaneous sites, 
alternative sites were exploited to break the limitation of 
implantation sites. The liver surface [50] and peritoneal 
wall [51] were also proven suitable for islet implanta-
tion. Meanwhile, islets generated from human chemically 
induced pluripotent stem cells (hCiPSC-islets), human 
MSCs, and human embryonic stem cells (hESCs) 
were also reported to be effective in restoring endog-
enous insulin secretion and improving glycemic control 
[52–54].

Cell sheets in treating thyroid dysfunction
The thyroid is an endocrine gland that has an important 
role in vital functions in maintaining normal reproduc-
tion, controlling fundamental physiological mechanisms, 
etc., by producing and secreting thyroid hormones [55]. 
Over the years, CSE has shown to be a valid alterna-
tive in the treatment of thyroid dysfunction. Arauchi 
et  al. fabricated rat thyroid cell sheets for the first time 
and tested their efficiency in treating hypothyroidism by 
transplanting them into the subcutaneous site of rats that 
underwent total thyroidectomy. Results showed a typical 
thyroid follicle organization in the graft, and hypothy-
roidism caused by total thyroidectomy was recovered. 
Moreover, Huang et  al. [56] obtained primary human 
thyroid cells from non-tumorous tissues of patients with 
thyroid cancer or Graves’ disease and successfully fabri-
cated functional patient-specific non-tumorous thyroid 
cell sheets.

CSE in the treatment of liver diseases
CSE has shown pre-clinical effectiveness and safety 
in treating liver diseases[57]. There have already been 
many reports on the fabrication of hepatic tissue sheets. 
Ohashi et  al. [58] constructed vascularized liver tissues 
with various liver-specific functions by transplanting pri-
mary mice hepatocyte sheets into the vascularized sub-
cutaneous cavity of wild-type FVB/N mice with the same 
background as the donor. Moreover, an engineered two-
layer hepatocyte/fibroblast sheet (EHFSs) composed of 
a human primary hepatocyte sheet and a human diploid 
fibroblast TIG-118 cell sheet was reported in 2015 [59]. 
This one-step harvest EHFSs was transplanted into the 
abdominal subcutaneous site of immunodeficiency mice. 
The transplanted EHFSs established a vascular connec-
tion with the host and constructed subcutaneous organs 
with specific functions.

The liver tissue constructed by CSE has resemblant 
liver-specific functions as the primary liver, including 

protein secretion, the response to regenerative stimula-
tion, and metabolic drug activity [60]. Besides, the vas-
cularization and long-term viability of the engineered 
cell sheets in vivo have also been verified [61]. All these 
achievements have indicated the therapeutic potential of 
cell sheets in liver diseases and further facilitated their 
preclinical research in this field.

Baimakhanov et  al. [62] transplanted multilayer rat 
Hep-fibroblast sheets into the subcutaneous site of allo-
genic liver failure rats who had received radiation irra-
diation and partial hepatectomy. The grafts vascularized 
and proliferated around them. Meanwhile, the survival 
rate and serum albumin concentration in the transplan-
tation group were significantly higher than those in the 
control group, which suggested that the transplanted 
cell sheets provided support for liver metabolism and 
improved liver function. Furthermore, human induced 
pluripotent stem cells (hiPSCs) derived hepatocyte-like 
cell sheets were also proven to ameliorate liver function 
of carbon tetrachloride  (CCl4) induced lethal liver failure 
mice by secreting hepatocyte growth factor [40]. In 2022, 
primary human hepatocytes (PHH) and hepatic stellate 
cells (HSC) were co-cultured in glucose and lipid-con-
taining medium to form engineering cell sheets [63]. The 
hepatocytes in these cell sheets were similar to ballooned 
hepatocytes in human nonalcoholic steatohepatitis 
(NASH). Both of them showed ballooning, accumula-
tion of fat droplets, abnormal cytokeratin arrangement, 
and the presence of Mallory–Denk bodies and abnormal 
organelles, indicating the co-cultured cell sheets of a new 
in vitro NASH model.

CSE in the treatment of cardiovascular diseases
Cardiac tissue engineering is one of the most promising 
methods for treating severe heart failure [64]. Applying 
CSE technology to construct more complex and thicker 
vascularized soft tissues, curved surfaces, and hollow tis-
sue structures is advantageous in curing cardiovascular 
diseases such as peripheral vascular disease and cardio-
myopathies [65].

Monolayer human umbilical vein endothelial cells 
(HUVECs) sheets were reported to obtain great thera-
peutic efficiency in ischemic-reperfusion injury model 
mice [66]. In detail, the HUVECs sheets were rapidly 
prepared using multifunctional tetronic-tyramine hydro-
gels and then, transplanted to the injury site of the ves-
sel ligation-induced ischemic hind limb mice. Compared 
with directly injected cell suspension, which contained a 
consistency of cells, the cell sheet was maintained longer 
at the target site and retarded tissue necrosis. Similar 
advantages of cell sheets were presented in dealing with 
ischemic cardiomyopathy model animals such as myo-
cardial infarction rats [67, 68]. To establish a vascular 
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connection with the host and obtain better therapeutic 
efficiency, endothelial lineage cells should be added to 
the engineered cell sheets. In addition, these endothelial 
networks in cell sheets were connected to the host blood 
vessel and perfused shortly after the transplantation of 
co-cultured cell sheets [69]. Except for endothelial lineage 
cells, stem cells such as MSCs and hiPSCs were reported 
to co-culture with cardiomyocytes (CMs). The prolifera-
tion of stem cells, expression of ETS1 (an endothelial dif-
ferentiation marker), and Notch signaling activation were 
promoted via cell–cell interaction within cell sheets [70].

Kawamura et  al. transplanted 7 iPSCs derived cardio-
myocytes (hiPS-CMs) sheets in the epicardium of myo-
cardial infarction mini-pigs. Their omentum was then 
placed over the grafts and fixed on the pericardium. As 
a result, the covered pedicled omentum flaps enhanced 
the viability of hiPS-CMs sheet grafts, and this unit pro-
longed the therapeutic effect of angiogenesis promotion, 
vascular maturation regulation, fibrosis reduction, and 
ventricular remodeling alleviation. Chang et al. [71] used 
human umbilical cord mesenchymal stem cells (hUC-
MSCs) and thermally triggered cell-sheet fabrication 
techniques to construct cell sheets. And reccurenced the 
inspiring therapeutic effects in improving cardiac func-
tion of myocardial infarction(MI) porcine. Furthermore, 
Lu et  al. [29] used cell-imprinting technology whose 
procedure was just like semiconservative replication to 
obtain a cell sheet. Cells in this kind of biomimetic cell 
sheet could be guided to realize the geometry tissue-
imprinted biointerface, similar to the natural tissue mor-
phology. The distribution and orientation of cells in this 
myocardium cell sheet were closer to the native pig heart 
tissue, with a stronger beating strength and longer life-
time. Also, this biomimetic cell sheet strategy provides us 
with new ideas for applications, such as in vitro construc-
tion of artificial organs.

CSE in the treatment of ophthalmic diseases
With the continuous development of life science and 
biomaterials, CSE has made great progress in treating 
ophthalmic diseases. hiPSCs have been successfully dif-
ferentiated into multiple ocular-like cell lineages and 
used to fabricate a variety of cell sheets. In addition, 
some pre-clinical efforts have been made to exploit the 
efficiency and safety of cell sheets such as corneal stem 
cell sheets [72], corneal epithelial cell sheets [73], oral 
mucosa cells (OMECs) sheets [74], hPSCs derived reti-
nal pigment epithelium (RPE) sheets [75, 76], and MSCs 
sheets[77] in treating ophthalmic diseases.

Zhang et al. [27] used multilayered ESCs sheets to treat 
limbal stem cell deficiency (LSCD) model rabbits. The 
grafts on the corneal stroma experienced differentiation 
and facilitated the reconstruction of the corneal epithelial 

layer without conjunctival ingrowth or peripheral neo-
vascularization. ADSCs-derived corneal epithelium [78] 
was used to form cell sheets with the help of N-isopropyl 
acrylamide-co-glycidyl methacrylate (NGMA)-coated 
substrates. These cell sheets were then spread over the 
corneal surface that was hurt by n-heptanol. Also, this 
was indicative of injury concrescences as well as recon-
struction effects on the ocular surface.

The RPE-related lesion is another important compo-
nent of ophthalmic diseases. To solve a series of RPE defi-
ciencies like retinal degeneration, hPSCs such as hiPSCs 
[76] and hESCs [75] have been induced into RPE and 
fabricated hPSCs-RPE sheets which have long-term inte-
gration capacity in vivo and feasibility of surgical trans-
plantation in clinical application [79]. These engineered 
cell sheets expressed typical RPE markers, patterns of 
gene expression, polarized secretion of growth factors, 
and similar phagocytotic capacity to native RPE [76].

CSE in the treatment of oral and periodontal diseases
The regeneration of oral and periodontal tissues requires 
a highly coordinated spatiotemporal healing response; 
thus, its treatment is extremely challenging. However, 
CSE is conducive to regenerating and repairing oral and 
periodontal tissues [80], which promises a new method 
for treating oral and periodontal diseases.

Hu et  al. [81] formed multilayer human dental pulp 
stem cells (hDPSCs) sheets with the supply of Vc, which 
were then transplanted to the bone defect location of the 
periodontitis model swine [82], showing stronger bone 
regeneration capacity compared to cell suspension injec-
tion. Meng et  al. [83] created hTDM/hDPSCs complex 
by seeding hDPSCs onto human dentin matrix (hTDM), 
which can significantly up-regulate the mRNA expres-
sions of dentin sialophosphoprotein (DSPP), osteocalcin 
(OCN), and vascular endothelial growth factor receptor 
1 (VEGFR1) in hDPSCs [84]. Then, a mixture of matrigel 
and hDPSCs was injected into the complex cavity. Finally, 
this prepared construction was wrapped up using a Vc-
induced hDPSCs sheet. The ability of this sandwich 
structure to regenerate tooth roots was demonstrated 
by implanting it into the dorsum of mice. Another study 
used temperature-responsive culture plates to construct 
complex cell sheets containing approximately 10 layers 
of rat periodontal ligament cells (PDLCs) and osteoblasts 
(MC3T3-E1), testifying to the regenerative ability via het-
erotopic transplantation [85].

CSE also has great potential in treating cleft palate, 
canker sores, and xerostomia. Nam et al. [86] performed 
in  vitro and in  vivo studies of submandibular gland 
(SMG) cell sheets. In  vitro study results showed that 
monolayer SGM sheets could maintain secretory gran-
ules and cell–cell junctions, while double-layer cell sheets 
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had a glandular-like pattern. Furthermore, double-layer 
SMG sheets had a stronger agonist-mediated response 
and a promotion of salivary gland repair. Furthermore, 
Lee et  al. [87] fabricated MSCs sheets and observed 
a good curative effect in a rabbit model of chemically 
induced canker sores. The implanted cell sheet facilitated 
the complete coverage of basal cells and full-thickness 
mucosa healing in the ulcer region. They also assessed 
the effect of this cell model on repairing the cleft palate 
and attempted to search for the possibility of regenerat-
ing palatal bone with engineered cell sheets containing 
hMSCs and stem cells from human exfoliated deciduous 
teeth (SHEDs)[88].

CSE in skin wound healing and tissue defect repair
At present, cell sheets prepared from ADSCs [89], human 
keratinocyte and fibroblast cells [90], and OMECs [91, 
92] have been widely used in the study of skin wound 
healing and tissue defect repair, providing a feasible 
novelty method for the treatment of these diseases [93]. 
For example, autologous adipose-derived stromal cells 
(ASCs) sheets were implanted into the skin defects area 
in rats or mice [94, 95] to exploit the benefit of CSE in 
wound healing. The grafts could significantly enhance cell 
proliferation and angiogenesis, reduce the inflammatory 
response, and accelerate full-thickness wound healing 
via collagen accumulation [96]. Other studies compared 
cell sheet transplantation with traditional split-thickness 
skin grafts (STSGs) transplantation. Briefly, HUVECs 
and hMSCs were co-cultured to prepare pre-vascularized 
hMSC cell sheets (PHCS)[97], which were then plated 
onto the full-thickness excisional wound site [98]. Evalua-
tions of wound healing effects of these grafts showed that 
PHCSs transplantation was superior in reducing skin scar 
contracture and improving cosmetic appearance [99].

The therapeutic efficiency of cell sheets in deep soft tis-
sue defects was also proven in a splinted defect rat model 
[100]. To investigate the therapeutic efficiency of MSCs 
sheets and MSCs suspension, they were separately deliv-
ered to the injury site of splinted defect rats whose tra-
pezius muscle defect was induced by excising skin-fascial 
flap on the back. The wound healing rate was tested, 
MSCs sheets-grafting has shown earlier granulation tis-
sue formation and fibrosis occur, indicating that they had 
a higher healing efficiency in promoting defect contrac-
tion and scar formation.

Artificial ulcers, bleeding, and ulcerative esophageal 
contracture are common adverse events of endoscopic 
submucosal dissection (ESD)[101]. Over the years, sev-
eral therapeutic methods have been proposed to pre-
vent these events, including CSE. Ohki et al. developed a 
novel therapy combining ESD with OMSCs sheet trans-
plantation [28]. This method was tested in male beagle 

dogs after receiving ESD. Briefly, accelerated ulceration 
healing and reduced scar formation were observed after 
transplantation. Furthermore, the mature epithelium of 
the grafts was intact, stratified, and resembled the native 
esophagus surface, indicating that cell sheets grafts can 
reduce inflammation and prevent complications after 
ESD [28]. Besides, the effect of allogeneic transplantation 
of ADSCs sheets [102] and epidermal cell sheets [32] in 
preventing ulcerative esophageal contracture using ESD-
induced artificial esophageal ulceration model pigs has 
also been verified.

Pressure ulcers are usually caused when an area of skin 
is placed under pressure. People with impaired mobil-
ity or sensation, especially elderly patients undergoing 
natural skin changes with aging, are at the highest risk of 
pressure ulcers [103]. Moreover, patients with neurologic 
impairment (for instance, spinal cord injury), sedation, 
and peri-or postoperative immobilization are more likely 
to develop this kind of ulcer [104, 105].

Cell therapy has already shown improved rates of 
wound repair in pressure ulcers [106, 107]. Yet, deliv-
ery methods of therapeutic cells and their rapid loss 
in the wound bed limit their clinical application [108]. 
Therefore, CSE has become a selection of advantages. 
Alexandrushkina et  al. [109] compared the efficiency of 
inducing healing in cutaneous pressure ulcers between 
adipose-derived mesenchymal stromal cell injection and 
adipose-derived mesenchymal stromal cell sheets trans-
plantation. The results showed that adipose-derived mes-
enchymal stromal cell sheets could induce the recovery 
of dermal structure and its appendages, leading to obvi-
ous hair growth in pressure sores and their histological 
sites. On the other side, the retention of cell sheets was 
only 3–7  days. Before the rejection of CS, they fell off 
along with scab by natural detachment or during removal 
of wound dressing; however, this did not affect the treat-
ment efficiency of CS for PU [110, 111]. The rapid elimi-
nation of cell sheets means lower risk tumorigenesis is 
conducive to clinical safety.

In addition, the applications of cell sheet transplanta-
tion in strengthening the anastomotic strength of intes-
tinal anastomosis [112], enhancing healing of biliary 
anastomosis[113], and preventing pancreatic fistula in 
pancreatic surgery[114] have also been reported. Some 
researchers found that applying ADSCs sheets [113] and 
myoblast sheets [114] into the anastomosis area or pan-
creas section may promote pancreatic fistula and anasto-
mosis healing.

CSE in the treatment of some other diseases
In addition to the extensive research on cardiovascular, 
liver, skin, and mucosa, the potential of cell sheets for the 
urinary system, motor system, and reproductive system 
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has also been explored. In the motor system, repair and 
functional recovery of the rotator cuff in rotator cuff tears 
[115], as well as regeneration and repair of tendon and/
or ligament in tendon injuries [116], remain challenging. 
CSE has been recommended as an effective alternative 
approach for preventing fibrovascular scar formation and 
improving specific functions during healing. Liu et  al. 
[117] introduced a novel biomaterial constructing engi-
neered tendon-fibrocartilage-bone composite (TFBC) 
and BMSCs sheets, which positively affects rotator cuff 
repairs of acute and full-thickness tendon injury in a 
canine non-weight-bearing model. Besides, there have 
been many attempts to apply CSE in cartilage repair and 
bone regeneration. Osteochondral defects repair of vari-
ous cell sheets such as chondrocyte sheets [30], human 
amniotic mesenchymal stem cells (hAMSCs) sheets 
[118], ASCs-HUVECs-ASCs triple-layer sheets [119], 
frozen/fresh osteoblasts induced by gelatin membrane 
(FT/F—GCS) [120] have already been reported, thus hav-
ing a promising clinical application potential in motor 
system injuries.

End-stage kidney disease, including diabetic nephrop-
athy, is a serious life-threatening condition difficult to 
treat with traditional therapies [121]. Several studies 
have suggested using cell therapy to treat these diseases 
[122]. Takemura et  al. [123]found that transplantation 
of ASCs sheets may improve engraftment efficiency and 
retard the progress of renal injury in diabetic nephropa-
thy model rats. Moreover, powerful therapeutic effects of 
hepatocyte growth factor (HGF)—secreting mesothelial 
cell sheets [124] and BMSCs sheets [125] were reported 
in a rat model of chronic kidney disease(CKD). The grafts 
with a higher survival rate reduced the degree of renal 
fibrosis and renal microvascular injury, thus providing a 
great alternative for treating renal failure and its compli-
cations [126].

As an attractive resource of cell therapy, engineered 
cell sheets are also showing promising effects in liver-
related genetically coded diseases like hemophilia caused 
by a deficiency of coagulation factors. Hemophiliacs are 
generally treated with an expensive protein replacement 
treatment relying on a periodical supplement of coagu-
lation factors [127]. The fact that only a tiny amount of 
coagulation factors can maintain normal function makes 
it suitable for cell therapy with CSE to fit the treatment 
of hemophilia as it helps to resolve the difficulty of cells’ 
long-term maintenance and vascularized integration. 
Watanabe et  al. [128] performed lentiviral vector trans-
duction on murine ADSCs to endow them with the 
ability of human coagulation factor IX (hFIX) produc-
tion. The fabricated genetically modified ADSCs sheets, 
which could secret hFIX showed a novel choice in treat-
ing Hemophilia B. A similar operation was performed in 

blood outgrowth endothelial cells (BOECs) isolated from 
mice with hemophilia A. The results of in  vitro/in vivo 
analysis indicated that cell sheet implantation acquired a 
much better integration capacity than BOECs- Matrigel 
complexus and had a Long-term effect in treatment 
[129].

Endometrial cell sheets may also express specific mark-
ers, such as female-specific hormone receptors. These 
cells can be fabricated to reconstruct endometrium-like 
tissue in nude rats [130]. Furthermore, further studies 
of cell sheets in preventing intrauterine adhesions after 
endometrial injury [131], as well as improving uterine 
incision repair [132] and facilitating fertilization and 
pregnancy in endometrial defect model rats [133], were 
reported. Altogether, the CSE technique has great advan-
tages in regenerating endometria and might be a novel 
method for endometrial disorders treatment with huge 
potential.

Brief summary
In recent years, scaffold-free CSE has shown promising 
potential in tissue regeneration. This technology has been 
applied to several cell types, including BMSCs, ADSCs, 
thyroid cells, hepatocytes, fibroblast, PHHs, and HSCs. 
More recently, HUVECs, CMs, corneal epithelial cells, 
OMECs, and hDPSCs, together with cell sheet engineer-
ing, have already been reported to have an important 
part in tissue reconstruction and repair. Directed induc-
tion of functional cells from stem cells (either hESCs or 
hiPSCs) has shown to be a promising alternative for the 
reconstruction of dysfunction. stem-cell-derived CMs, 
stem-cell-derived hepatocyte-like cells, stem-cell-derived 
RPE and others are all virtually endless sources of cell 
sheets engineering. Preclinical studies have shown that 
cell sheets engineering plus cell therapy could be a prom-
ising, safe, and effective method for treating most types 
of body conditions.

Cell sheet engineering‑clinical trials
ECM layer, a kind of glue preserved in CSE, ensures cell 
sheets tightly adhere to the target of the host without 
using artificial scaffolds or conducting additional opera-
tions such as suturing [134]. At present, the application 
research of CSE in the medical field has shifted from 
basic, preclinical research to clinical trials. In the next 
paragraph, we will provide recent updates in the field.

Registered clinical trials of CSE
We retrieved the clinical trials registry database of the 
International Clinical Trials Registry Platform (ICTRP) 
and summarized the clinical trials related to cell sheet 
therapy (excluding termination status) published until 
September 2022 (Table 1). A total of 45 clinical trials have 
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been found, most of which focused on the esophageal 
mucosa and ocular surface lesions, which lack effective 
treatment methods. Also, the preferred cell resources are 
oral mucosa cells (Fig. 2). Because oral mucosa cells are 
non-keratinization, hair-free, anti-infection, and promot-
ing wound regeneration [135, 136]. Moreover, compared 
with other types of cells, oral mucosal cells are easier to 
obtain [137].

Japan has made the greatest progress in CSE and iPSCs 
research. More than 80% of the clinical trials related to 
cell sheets have been registered by Japanese scientists 
(Fig.  3). CSE has been mostly used to treat ophthalmic 
diseases, including Limbus Corneae Insufficiency Syn-
drome, Limbal Stem Cell Deficiency, age-related macular 
degeneration (AMD) et  al. [138, 139] (16 of 45) of reg-
istered clinical trials. Other studies included esophageal 
diseases and cardiovascular diseases (Fig. 4).

Reported clinical application of CSE
Some researchers have explored clinical applications of 
CSE and reported the results of these clinical trials.

Clinical trials of cell sheets in esophageal diseases
Ohki et  al. [140] prepared cultured oral mucosa cells 
(COMECs) sheets from 9 patients who suffered from 
superficial esophageal neoplasms and then, transplanted 
these autologous epithelial cell sheets onto the ulcer sur-
face through endoscopes when esophageal lesions were 
removed. In the follow-up and assessment, they reported 
the integration of the grafts and their preventive effects 
on scar formation and esophageal stenosis. Besides, 
patient-specific cell sheets were safe when transported 
by air [141]. These results indicate that cell sheet grafts 
promote the reepithelization of esophageal safely and 
effectively after ESD, improving the living quality of these 
patients [142]. Thus, CSE should be regarded as a safe 
and promising regenerative medicine technology.

Clinical trials of cell sheets in ocular surface diseases 
and retinal diseases
Nishida et al. reported the transplantation of autologous 
COMECs sheets in 4 patients with bilateral total cor-
neal stem-cell deficiencies, confirming that the trans-
plantation of cell sheets without suturing can be used 
to reconstruct the corneal surface and restore the vision 
of patients with bilateral severe ocular surface diseases. 
Since then, researchers [139, 143] have attempted to 
treat patients with limbal epithelial stem cell deficiency 
(NCT02149732) using autologous oral mucosa epithe-
lial cell sheets. They evaluated the safety and efficacy of 
cell sheet transplantation according to adverse events 
and composite criteria, including the unepithelialized 
cornea proportion, the epithelialized cornea proportion, 

improved visual acuity, corneal conjunctival epithelium, 
number of vascular pedicles, and vascular activity, etc. 
The results showed that COMECs sheet transplantation 
is an effective and safe method for ocular surface recon-
struction in patients with ocular surface diseases. A study 
(NCT02415218) published by Mahidol University pub-
lished in 2022 reported transplanting autologous culti-
vated oral mucosal cell sheets onto the cornea of these 
patients’ affected eyes. The results indicated that cell 
sheets transplantation could improve visual acuities and 
decrease vascularization and epithelial defect.

In addition to treating ocular surface diseases, CSE also 
provides a breakthrough for retinal regeneration. Taka-
hashi’s research team has successfully prepared a single 
layer of RPE (hiPSC-RPE) sheet that can meet the clini-
cal needs [76] and evaluate the effect of the autologous 
hiPSC-RPE sheet on age-related macular degeneration 
(AMD) in clinical trials [144] (UMIN000011929). They 
found that the grafts had satisfied integrity after trans-
plantation, and the enlargement of pigmented colonies 
was similar to that in a study (NCT01345006) on the 
treatment of AMD with hESCs-RPE suspension injection 
reported in 2015 [145], which suggested that some pho-
toreceptor cells have been regenerated and recovered.

Clinical trials of cell sheets in cardiac diseases
In 2012, Sawa et  al. [146] first reported a significant 
improvement in clinical condition in a 56-year-old male 
patient with dilated cardiomyopathy (DCM) after receiv-
ing autologous myoblast cell sheet transplantation. This 
patient discontinued a left ventricular assist system 
(LVAS) after transplantation and did not develop life-
threatening arrhythmia. Thereafter, the same team [147] 
evaluated the safety and efficacy of autologous bone 
myoblast sheets (TCD-51073) in the treatment of heart 
failure caused by severe ischemic heart disease through 
clinical trials in 7 patients with severe ischemic heart 
disease and chronic heart failure (Registration Number: 
UMIN000008013). With the changes in New York Heart 
Association (NYHA) class, specific activity scale (SAS), 
and echocardiographic parameters such as left ventricu-
lar ejection fraction (LVEF),  it was believed that TCD-
51073 could maintain and improve cardiac function, 
demonstrating the feasibility and safety of TCD-51073 
transplantation in patients with severe ischemic heart 
disease and chronic heart failure.

Another study (Registration Number: UMIN000003273) 
isolated autologous skeletal muscle cells from 15 patients 
with ischemic cardiomyopathy and 12 patients with 
dilated cardiomyopathy to prepare cell sheets [148], con-
firming the safety and feasibility of cell sheets in the treat-
ment of severe congestive heart failure. However, not 
until recently has the incidence of left ventricular (LV) 
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Fig. 2 Cell resources used in 45 clinical trials assessing cell sheets-associated clinical trials. A The chart shows a pie diagram of the 12 kinds of cells 
used in cell sheet-associated clinical trials; the number of clinical trials for each cell type. B Bar graph indicating the percentage of each cell type 
used in cell sheet-associated clinical trials. C Table with 12 cell types and their corresponding number of clinical trials and percentage among the 45 
clinical trials
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Fig. 3 Major contributors in the field. A Japan has made the greatest progress in the field of CSE and iPSCs research, followed by China, the 
Republic of Korea, France, Sweden, and Thailand. Also, the number of registered clinical trials in each country was noted on the chart. B, C The bar 
graph indicates that 80% of trials have been registered in Japan. China and the Republic of Korea ranked second
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Fig. 4 Aimed condition or diseases of the 45 registered cell sheets-associated clinical trials. A The aimed condition or diseases of these clinical trials 
were ophthalmic diseases, esophageal diseases, cardiovascular diseases, locomotor diseases, oral and periodontal diseases, and so on. B, C The 
proportion of each target disease in registered clinical trial
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recovery and the long-term outcomes following cell sheet 
transplantation been clarified (Registration Number: 
UMIN000012906) [149], and this latest report declared 
that 70% of ischemic cardiomyopathy patients benefit 
long-term advantages from the cell sheet transplantation 
not only on LV function but also on functional capacity 
and survival [149]. Moreover, the cell sheet prepared by 
hiPS-CMs has also been approved for clinical trials to 
treat heart disease patients [150, 151]. These results pro-
vide strong support for the practical application of cell 
sheets in treating “no-option” cardiac disease.

Clinical trials of cell sheets in other diseases
Cell sheets are reported in sealing air leaks, periodontal 
diseases, cutaneous ulcers, and knee osteoarthritis [33, 
152]. Yamato et  al. fabricated autologous dermal fibro-
blast sheets (DFS) and made their works as bio-artificial 
pleura and sealing air leaks in a patient with multiple bul-
lae (Registration Number: UMIN000022554.). In 2018, 
Iwata et al. [152] evaluated the safety and effectiveness of 
cell sheets derived from autologous periodontal ligament 
(PDL) in clinical settings. They isolated PDL-derived 
cells from patients with periodontitis and transplanted 
the prepared PDL-derived cell sheets to the target area. 
During the mid-long-term follow-up period, no serious 
adverse events were found. Meanwhile, the periodontal 
defect was effectively healed, and the occlusal function 
was restored 6  months after transplantation. Hamano 
et al. [153] published the safety and effectiveness of cell-
mixed sheets consisting of autologous fibroblast cells and 
peripheral blood mononuclear cells in cutaneous ulcers 
(Registration Number: UMIN000031645). The venous leg 
ulcers of two patients who had received the cell-mixed 
sheet transplantation decreased in size or healed.

Conclusions and future outlook
CSE is a new technology that has shown promising 
potential in tissue regeneration. CSE uses special surfaces 
to form a dense cell sheet that can be detached under 
different stimulations such as temperature variation, 
magnetic force, controllable electrochemical change, 
and lightly applied to regulate cell adhesion and detach-
ment. Multiple types of cell sheets can be prepared using 
various fabrication methods [138, 160–162], generat-
ing various kinds of 3D tissue constructs without using 
3D scaffolds [154, 155]. In  vitro vascularization using a 
vascular bed has also been successfully developed and 
enlarged the thickness and volume of cell-dense tissue 
without necrosis in the tissue center. Cell sheets can form 
structures mimicking tissues and organs, which further 
opens a way for personalization and precision medicine.

Products constructed using CSE technology retain 
intact cell–cell junctions and associated ECM. Cell 
therapy based on this technology can deliver a variety 
of therapeutic cells to the injured site, and the grafts can 
stably exist in the preset position without suturing, thus, 
avoiding additional damage to the body. Many preclinical 
studies have confirmed that cell sheet transplantation is 
superior in safety and efficiency to cell suspension injec-
tion. Organoids are defined as “ a 3D structure derived 
from either PSCs, neonatal tissue stem cells or adult 
stem cells/adult progenitors spontaneously self-organ-
ize into properly differentiated functional cell types and 
progenitors, resembling their in  vivo counterpart and 
recapitulating at least some function of the organ” [156, 
157]. Organ buds fabricated by cells self-assembly of co-
cultured cells (MSCs is essential as they drive cells con-
densation) are also a sort of Organoids[158]. Organoids 
are sphere-like structures that are not easy to adhere to 
the surface of organs, and the accumulation of grafts is 
not easy for the supply of oxygen and nutrients, which 
leads to the rising risks of necrosis. Moreover, self-organ-
ized cell clusters of organoids fabrication lack scalability 
or reproducibility in size and cellular organization. These 
problems cause the status organoids to be used sparingly 
in regenerative medicine [159]. The organoids technology 
is a novel culture strategy that better maintains cells in 
a near-native state and has apparent advantages in vitro 
drug screening and precision medicine [160]. Novel tech-
nologies such as 3D bio-printing may help to construct 
organoids-based products with larger sizes and more 
similar structures, which may be more advantageous in 
cell therapy. CSE harvested sheet-like structures. And 
the basis of CSE is novel cell harvest technology, and the 
application of cell sheets concentrates upon cell delivery 
of regenerative medicine [160]. Even though the complex 
multi-layered cell sheets or multi-cells-derived cell sheets 
are more complex in the cell compositions or structure, 
they remain sheet-like, cylinder-like, or cuboid-like 
structures and achieve a relatively large contact area, 
which is conducive to achieving adhesion in the host and 
have advantages in regenerative medicine[161]. Also, the 
application of CSE in ocular surface reconstruction, reti-
nal photoreceptor regeneration, periodontal tissue repair, 
esophageal mucosa healing, and epidermal skin regen-
eration has entered clinical trials. However, CSE and 
organoids technology have their own advantages and are 
currently used more in regenerative medicine and com-
plex in  vitro models. Evidence shows that they can also 
realize the other’ s superior applications. For example, a 
cell-sheet-based in vitro NASH model containing hepat-
ocytes, which are similar to ballooned hepatocytes in 
human nonalcoholic steatohepatitis (NASH), was estab-
lished [63]. Also, the combined application of CSE and 
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organoids technology may be a great solution for com-
plex in vitro models (CIVM) formation and regenerative 
medicine.

CSE also has several limitations: (1) the cost of cell 
sheet fabrication is still high, which may limit the pop-
ularization of this technic; (2) compared with other 
transplantation strategies, the preparation and harvest 
of cell sheets or thicker tissue are time-consuming. Yet, 
the storage technique of cell products, cryopreservation 
[162] of cell sheets, has also been improved, reducing 
the cost of regenerative medicine and promoting its use. 
In recent years, researchers have been exploring more 
widely applicable cell resources and more economical 
preparation methods, developing and updating surface 
materials, and designing rapid preparation methods to 
solve cost and time problems. iPSCs/hESCs derived cells 
have been reported as new cell resources [54], which has 
already significantly reduced the price of this technology; 
new surface materials have been prepared to support the 
rapid preparation and harvest of cell sheets, which may 
shorten the fabrication time [163, 164].

Meanwhile, the development of 3D printing, organoids 
technology, and other emerging technologies has pro-
vided new opportunities for the design and manufac-
ture of patterned cell sheet culture surfaces and culture 
vessels adapted to the requirements of the preparation 
of complex structures or systems [165–167], which fur-
ther suggests that CSE could be an alternative to injury 
repair and participate in constructing drug research 
models and drug screening platforms. Advances in CSE 
technology are expected to expand the number of tar-
get diseases in regenerative medicine and enable us to 
produce constructs for treating diseases that traditional 
therapies cannot cure. In the future, pre-vascularized 3D 
tissues with complex structures and micropattern cell 
sheets that can rebuild tissue polarity and simulate native 
structures may be used. With the mutual support of vari-
ous interdisciplinary disciplines, the reconstruction and 
regeneration of larger organizations are expected to be 
realized in the future, providing refractory diseases with 
new medical resources.
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