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Abstract 

Stem cells possess the unique ability to differentiate into specialized cell types. These specialized cell types can be 
used for regenerative medicine purposes such as cell therapy. Myosatellite cells, also known as skeletal muscle stem 
cells (MuSCs), play important roles in the growth, repair, and regeneration of skeletal muscle tissues. However, despite 
its therapeutic potential, the successful differentiation, proliferation, and expansion processes of MuSCs remain a 
significant challenge due to a variety of factors. For example, the growth and differentiation of MuSCs can be greatly 
influenced by actively replicating the MuSCs microenvironment (known as the niche) using mechanical forces. 
However, the molecular role of mechanobiology in MuSC growth, proliferation, and differentiation for regenerative 
medicine is still poorly understood. In this present review, we comprehensively summarize, compare, and critically 
analyze how different mechanical cues shape stem cell growth, proliferation, differentiation, and their potential role 
in disease development (Fig. 1). The insights developed from the mechanobiology of stem cells will also contribute to 
how these applications can be used for regenerative purposes using MuSCs.
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Introduction of muscle stem sells
Functional role of muscle stem cells
Functional skeletal muscles are integral in daily activi-
ties, and they undergo consistent loading stress. When 
they are unable to support the excessive tensile strength, 
muscle injury inevitably occurs on post-mitotic cells 
that do not possess the capability to undergo cell divi-
sion. As such, the main role of muscle tissue regenera-
tion falls solely on MuSCs which play important roles 
in the growth, repair, and regeneration of skeletal mus-
cle homeostasis [1]. They exist within quiescent cells in 
healthy adult mammals, accounting for around 2.5–6.5% 
of all muscle fiber-associated nuclei. In the resting state, 
they are mitotically quiescent in the G0 phase, suggesting 
the cells do not undergo active proliferation. These quies-
cent MuSCs are characterized by the expression of paired 
box transcription factor paired box 7 (Pax7) that plays an 
important role in the maintenance and self-renewal of 
MuSCs [2, 3] (Fig. 1).
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The proliferative capability of MuSCs serves two pur-
poses; (1) replenishment of the MuSCs pool in the stem 
cell niche and (2) generation of committed myoblasts 
that are key to muscle tissue regeneration. PAX7 is an 
important transcription factor that plays a role in skel-
etal precursor cells proliferation [3, 4], while myoblast 
determination protein 1 (MyoD) is one of the earliest 
key markers in muscle cell commitment and differen-
tiation and increase in MyoD expression is critical for 
further differentiation of myoblasts into myotubes [5, 
6]. To replenish the MuSCs niche, an individual MuSC 
undergoes symmetric cellular division to give rise to 
identical MyoDlow/Pax7high daughter cells that are capa-
ble of self-renewal to meet future demands of muscle 
tissue regeneration [7, 8]. When muscle tissue injury 
occurs, a small population of MuSCs undergoes asym-
metric cellular division, with a self-renewing daughter 
clone (MyoDlow/Pax7high) and a committed daughter 
clone (MyoDhigh/Pax7low) that exits the cell cycle. These 
MyoDhigh/Pax7low committed cells eventually differenti-
ate into myoblasts expressing MyoD, myogenic regula-
tory factor 4 (Mrf4) and myogenic regulatory factor 5 

(Myf5) [9]. Subsequent differentiation of these myoblasts 
into myofibers is accompanied by the decrease of Pax3/7 
and Myf5 expression and an increase of myogenin and 
myosin heavy chain (MHC) [10, 11]. As such, muscle tis-
sue homeostasis is balanced by the constant self-renewal 
process of (MyoDlow/Pax7high) MuSCs that are capable 
of self-renewal and MyoDhigh/Pax7low MuSCs for further 
commitment toward repairing muscle tissue damage. In 
fact, when Pax7 + MuSCs are eliminated in mice through 
transgenic targeting of Pax7Cre, the mice experienced 
> 90% failure in muscle regeneration [12–15].

Inside the skeletal muscle, MuSCs reside in a spe-
cialized niche that is located between the muscle fiber 
plasma membrane and the basal lamina that surrounds 
the muscle fiber [16–18]. Inside this specialized niche, 
the muscle fiber basal lamina consists of extracellular 
matrix (ECM) components such as entactin, fibronectin, 
laminin and type IV collagen [19] and MuSCs are able 
to interact with them through the expression of a7- and 
B1-integrins [20]. As a result, various growth factors 
such as basic fibroblast growth factors (bFGF), epider-
mal growth factor (EGF) and hepatocyte growth factor 

Fig. 1  A schematic diagram that summarizes the role of mechanical forces in myoblast differentiation
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(HGF), and insulin-like growth factor-1 (IGF-1) promote 
the survival and proliferation of MuSCs [21–24].

Muscle stem cells in aging and their influence on cell 
microenvironment
MuSCs possess a high regenerative potential which can 
be used to replenish lost MuSCs. However, the regen-
erative capacity of the MuSCs declines during the natu-
ral aging process; the properties of muscle tissues start 
to change as the muscle stem niche starts to undergo 
remodeling [25]. Damage to skeletal muscle tissue even-
tually results in fibrosis and stiffening of the extracellular 
matrix (ECM) [26, 27]. Consequently, the microenviron-
ment of MuSCs is remodeled, suggesting that a greater 
collagen deposition increases muscle stiffness [28]. This 
stiffness of the microenvironment may be due to altera-
tions to collagen and advanced glycation end-products 
(AGE), which impair MuSCs proliferation [29]. Many 
studies have shown that the aging MuSC niche also plays 
a key role in the impairment of self-renewal ability in 
MuSCs [30–33].

There is still controversy over the aging effects that 
result in the loss of MuSCs. While some studies have 
revealed that there were no differences in MuSC counts 
in young and aged muscles [34–36], others have shown 
that estimated MuSC counts increase or decrease with 
age [37]. Aged MuSCs exhibit impaired proliferative 
potential due to a delayed response to activation [34, 38]. 
These aged MuSCs also exhibit susceptibility to tumor 
necrosis factor-α (TNF-α)-induced apoptosis [39, 40]. 
Rejuvenation of activation ability in aging muscle stem 
cells is dependent on physical exercise that restores Cyc-
lin D1 expression.

Current challenges in the differentiation 
and proliferation processes of muscle stem cells
MuSCs are a rare population of cells, accounting for 
around 2.5–0.5% of all muscle fiber-associated nuclei. 
Due to the limited amount found in the human body, 
several groups have started to look at other types of 
stem cells such as mesenchymal stem cells (MSCs). 
There are several pieces of evidence showing the poten-
tial of MSCs giving rise to MuSCs after transplantation 
into mdx mouse model [41, 42]. Stem cells are undif-
ferentiated cells that possess the ability to undergo self-
renewal and differentiate into different lineages such as 
cardiac [43], hepatic [44], neuronal [45], and pancreatic 
[46, 47]. In general, stem cells can be differentiated in a 
stepwise guided process using growth factors, chemicals, 
and small molecules of which developmental potency 
decreases at each specific stage. The differentiated end-
point cells can be used for cell and drug therapies.

The development and growth of skeletal muscle cells 
from the embryo stage to the adult stage are generally 
well understood. For the past few decades, researchers 
have also been searching for ways to generate skeletal 
muscle cells from pluripotent stem cells in  vitro. These 
efforts are made possible with our understanding of the 
biochemical and molecular aspects of directed differen-
tiation and directed reprogramming of stem cells at dif-
ferent stages to skeletal muscle cells [48]. Traditionally, 
the activation of signaling pathways was often carried out 
by using specific growth factors, small molecules, and 
chemicals. However, usage of these growth factors is very 
costly due to the short half-life of the proteins. Moreover, 
these growth factors may inevitably induce certain unin-
tended signaling pathways that may be detrimental to the 
survival, proliferation, and differentiation of MuSCs.

While MuSCs have been shown to promote muscle 
regeneration, they often exhibit loss of potency when 
they are expanded ex  vivo. MuSCs also exhibit limited 
in vivo migration, suggesting limited regenerative poten-
tial in injury sites. It has also been shown that MuSCs 
rapidly lose their stemness with the removal of their stem 
cell niche [49, 50]. There is an urgent need to recapitulate 
the MuSC niche in vitro so that they are able to remain 
in a quiescent state. A cocktail combination of 4 differ-
ent factors, interleukin 1α (IL-1α), interleukin 13 (IL-13), 
tumor necrosis factor-α (TNF-α) and interferon γ (INF-
γ), promoted the proliferation and differentiation of myo-
satellite cells for more than 20 passages. The myosatellite 
cells that are expanded ex  vivo under such conditions 
expressed high Pax7 and low MyoD expression levels and 
were able to repopulate the stem cell niche [51].

Mechanical forces are being investigated to under-
stand how they can complement the use of growth fac-
tors in promoting MuSC regeneration and maintaining 
the stemness of muscle stem cells. In addition, in consid-
eration of the fact that skeletal muscle tissues are always 
under mechanical loading and stretching, it makes sense 
to investigate the role of mechanical forces in promoting 
MuSCs proliferation and differentiation, which in turn 
results in improved muscle regeneration. In the following 
section, we review such influences.

Mechanobiology of skeletal muscle stem cells
In the body’s natural microenvironment, stem cell fate 
and proliferation are constantly regulated by biophysi-
cal cues. Biological cells are known to sense mechanical 
forces and their mechanical environment and translate 
these mechanical cues into biochemical signals. Exam-
ples include the effect of fluidic shear stress, strain, and 
ECM stiffness on endothelial cells [52, 53], smooth mus-
cle cells [54], and cancer cells [55], respectively. Simi-
larly, cells of the musculoskeletal system are also capable 
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of sensing mechanical forces. Additionally, it has been 
observed that skeletal muscle cells change their size and 
structural properties in response to mechanical stimula-
tion [56].

Stem cells are also capable of sensing mechanical cues 
and mediating their differentiation accordingly. They 
sense mechanical forces and the environment through 
various mechanosensory mechanisms. Cell density, 
shape, and the adhesion area of human mesenchymal 
stem cells (hMSC) have been shown to drive their com-
mitment switch between osteogenic or adipogenic 
fates—larger adhesion area drives hMSC commitment 
toward osteogenesis and activates ras homology fam-
ily member A (RhoA) expression. RhoA then signals 
through its effector—Rho-associated protein kinase 
(ROCK) to activate myosin II and cytoskeletal tension 
activity [57]. Another signaling pathway that is involved 
in the mechanosensing of hMSC is the Yes-associated 
protein/Taffazin (YAP/TAZ) pathway. The spreading of 
hMSC on a larger adhesion area increases the localiza-
tion of YAP/TAZ in the nucleus and this regulation is 
independent of the Hippo pathway. In addition, ECM 
stiffness, which is known to regulate hMSC, also affects 
YAP/TAZ activation. Regulation of stiffness-mediated 
differentiation of hMSC is abrogated when YAP/TAZ 
pathway is inhibited, suggesting the important role of 
YAP/TAZ pathway in the mechanoregulation of hMSC 
differentiation. YAP/TAZ activity also requires the ten-
sion of the actin cytoskeleton and Rho [58]. Cell spread is 
measured by cell aspect ratio—a ratio between width and 
length; the ratio was found to influence stem cell lineage 
commitment in a microfilament and ROCK-dependent 
manner [59]. The aforementioned evidence shows that 
stem cells sense their mechanical environment partially 
through adhesion and cytoskeletal activity. These will be 
discussed in detail in the next section.

Influence of mechanical factors on muscle stem cell 
properties
Substrate stiffness
Stiffness, commonly known as rigidity, is a mechani-
cal property that measures the resistance of the material 
to deformation. It is measured by Young’s modulus—
a ratio between stress and strain (E = σ/ε) in the unit of 
Pascals. Stiffness characterization of biological cells and 
ECM have been shown to be important for understand-
ing cellular physiology, development, and pathological 
progression of diseases [60–65]. In particular, ECM stiff-
ness has been shown to regulate cell migration [66, 67], 
apoptosis [68], and proliferation [69]. ECM stiffness is 
also known to govern stem cell behavior. For example, 
adipose-derived stem cells cultured on hydrogels with 
a linear stiffness gradient revealed that cell aspect ratio 

and expression of mechanosensitive markers lamin A, 
nucleus YAP translocation, and myocardin-related tran-
scription factor A (MRTFa) were positively correlated to 
substrate stiffness via myosin and Rho/ROCK signaling 
[70].

Out of all mechanical cues, ECM stiffness plays a major 
role in stem cell differentiation. hMSC commits to line-
ages toward the cell type where in vivo stiffness matches 
the stiffness of the matrix. For instance, while soft poly-
acrylamide gels that mimic brain and fat tissue environ-
ment drive neurogenic and adipogenic differentiation 
respectively, stiff polyacrylamide gels that mimic the 
bone drive osteogenic differentiation [58, 71]. Cytoskel-
eton tension is involved in stiffness-regulated differen-
tiation. A similar observation was also made when MSCs 
were cultured within 3-dimensional arginylglycylaspartic 
acid (RGD)-alginate microspheres [72]. Hence, stem cells 
would differentiate into skeletal muscle cells if they were 
grown on ECM with stiffness that emulates those of skel-
etal muscles.

To maintain MuSCs stemness, a 3D micro scaffold 
(~ 1–2 kPa) composed of collagen, recombinant laminin 
and α4β1 integrin was used in muscle stem cell culture 
and they were able to maintain muscle cell stemness [73]. 
The stiffness of mouse skeletal muscle and myoblast cell 
lines (C2C12) was found to be around 12  kPa through 
atomic force microscopy (AFM) indentation [74, 75]. 
Myoblasts were also found to exhibit a higher level of 
differentiation, striation, and fusion to myotubes when 
they were cultured on collagen-coated polyacrylamide 
gel substrates that mimic the stiffness of skeletal muscles 
(~ 12  kPa). Interestingly, there was little striation when 
myoblasts were cultured on stiff glass substrates [75].

Human bone marrow- and dental-derived MSCs, 
or gingival MSCs, were able to undergo myogenic dif-
ferentiation when they were encapsulated in alginate 
microspheres (enriched with myogenic cocktail) with 
well-tuned stiffness. Both MSC grown on alginate micro-
spheres with a stiffness of 15 kPa, compared with 5 and 
45 kPa, had the highest expression of MyoD protein, sug-
gesting that a stiffness of 15  kPa (stiffness close to the 
stiffness of skeletal muscle) provides an optimal mechan-
ical environment for myogenic differentiation [76].

Self-renewal of stem cells is essential because they 
replicate and regenerate more stem cells to help in tis-
sue regeneration. MuSCs cultured on soft poly(ethylene 
glycol) (PEG) hydrogel substrates that have a stiffness 
of 12  kPa, compared with cells cultured on stiff plastic 
dishes, exhibited self-renewal phenotype in  vitro. These 
stem cells were successfully transplanted into mice and 
contributed to muscle regeneration [77]. It has also 
been shown that hematopoietic and progenitor cells cul-
tured on elastic tropoelastin had a higher expansion of 
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undifferentiated cells compared with culture multiwell 
plates [78]. Human MuSCs were also shown to remain 
quiescent and maintain their ‘stemness’ when they were 
cultured on soft poly-L-lysine/hyaluronic acid films, 
while their counterparts cultured on stiff films were acti-
vated and began to differentiate and proliferate [79].

Changes in stiffness can occur in muscle injury. Muscle 
stiffness was found to increase from around 13–20  kPa 
after mice muscles were injured using barium chlo-
ride (BaCl2), and this stiffness remained elevated after 
completion of muscle regeneration 28  days after injury. 
Further, strain-promoted azide–alkyne cycloaddition 
(SPAAC) hydrogels with a PEG precursor were used to 
mimic the stiffness of injured muscles and myoblast cell 
line (C2C12) cells cultured on them exhibited increased 
proliferation and migration, and localization of YAP/
TAZ to the cell nucleus [80]. A similar observation was 
also made by increasing muscle stiffness from 12 kPa to 
approximately 25  kPa in the first three days post-injury 
[81]. Importantly, PEG-based hydrogel stiffness was 
found to synergize with NOTCH signaling to regulate 
muscle stem cell fate—Jagged-1 tethered on stiff hydro-
gel (42  kPa) as compared with soft hydrogel (12  kPa), 
reduced myoblast myogenin expression and that is 
dependent on ROCK [81]. Isolated shrunken and col-
lapsed myofibers cultured ex vivo were also found to have 
significantly higher stiffness (2 kPa) compared with their 
intact counterparts (0.5 kPa) and the provision of a stiffer 
microenvironment for satellite cells in turn promoted 
muscle progenitor cells (MPCs) proliferation. MPCs 
that were grown on a 2  kPa polyacrylamide-based sub-
strate that mimics collapsed myofibers stiffness exhibited 
higher proliferation and reduced spontaneous differen-
tiation compared to MPCs grown on a 0.5  kPa [82]. At 
the cellular level, MuSCs stiffness increased by 2.9-fold 
during skeletal muscle regeneration after BaCl2-induced 
injury. High 3-dimensional niche stiffness (21.7  kPa) 
increased the amount of planar orientation of self-
renewal division via the Wnt family member 7a (Wnt7a) 
and non-canonical Wnt pathway, as compared with low 
3D niche stiffness (5.9 kPa) [62].

ECM stiffness has also been studied in the context of 
skeletal muscle aging, a condition that is characterized by 
declining muscle strength, which leads to reduced mobil-
ity and muscle function. This condition has been partly 
attributed to the defects in MuSC regeneration [25]. 
Aged muscles that were injured were found to have high 
ECM deposition, rather than undergoing myofiber repair 
(Grounds, 1998), which in turn increases muscle stiffness 
[83, 84]. MuSCs that were grown on decellularized aged 
ECM (with high stiffness) exhibited lower myogenic and 
higher fibrogenic markers than those grown on decellu-
larized young ECM. Fibroblasts grown on stiff silicone 

gels (32  kPa) that mimic the stiffness of aged muscle 
expressed higher YAP/TAZ nuclear translocation and 
secreted soluble mediators that inhibit myogenesis [84]. 
Furthermore, another study found that only one-third of 
MuSCs from aged mice retain their renewal ability and 
capacity to repair myofibers. This defect was rescued 
by culturing aged muscle stem cells on soft PEG-based 
hydrogel (12  kPa) in conjunction with p38α and p38β 
inhibition. Interestingly, tuning substrate stiffness alone 
was not sufficient to enhance cell renewal suggesting that 
mechanical and biochemical cues are required to syner-
gistically modulate stem cell renewal in aged muscle [85].

Substrate viscoelasticity
Most studies characterized the effect of ECM stiffness 
on stem cell fate. However, it is important to note that 
ECM-like fibrin and collagen are viscoelastic materials 
[86, 87]. Hence, investigating the effect of elasticity alone 
does not uncover the true mechanobiological behavior 
of stem cells. In contrast to pure elastic material, viscoe-
lastic materials exhibit a time-dependent response to an 
applied load due to the flow and remodeling of the ECM. 
In particular, ECM exhibits time-dependent stress relaxa-
tion: cells cultured on a viscoelastic material first experi-
ence the stiffness of the material, and then the traction 
force of cells reduces as ECM is relaxed over time. Cell 
spreading and proliferation on viscoelastic materials that 
exhibit stress relaxation were larger than those cultured 
on purely elastic ECM with the same stiffness. Fibroblasts 
cultured on viscoelastic material were also found to have 
high nuclear translocation of YAP than those cultured on 
pure elastic materials. These effects are mediated through 
actomyosin-based contractility and integrin adhesions 
[88].

Consistent with the above observation [88], hMSCs 
cultured on polyacrylamide gel with higher loss modu-
lus, a measure of energy dissipation under dynamic 
mechanical testing, exhibited higher spread area, greater 
proliferation, and differentiation potential. Interestingly, 
hMSCs were more sensitive to changes in loss modu-
lus, as compared with the change in stiffness. Changing 
the loss modulus by two orders of magnitude resulted in 
the same fold-change in cell spread area as differences in 
stiffness by three orders of magnitude. In the presence 
of the inductive myogenic, adipogenic, and osteogenic 
medium, hMSCs cultured on the substrate with higher 
loss modulus expressed significantly higher levels of dif-
ferentiation markers, suggesting that higher loss modulus 
of the substrate is more favorable for MSC differentia-
tion. This observation was attributed to higher cell spread 
area and loss of cytoskeletal tension through the loss 
of energy resulting from material creep within the sub-
strates with high loss modulus [89]. The same group went 
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on to prove that substrate loss modulus-mediated Rac1 
activation, increased N-Cadherin expression, and higher 
hMSCs motility and lamellipodial protrusion rates are 
the underlying mechanisms for enhanced differentiation 
toward smooth muscle cell lineage [90]. Another study 
by Chaudhuri et  al. (2016) also supported this observa-
tion—MSCs spreading, proliferation, YAP nuclear trans-
location, and osteogenic differentiation were enhanced 
when they were cultured on polyacrylamide hydrogels 
with faster relaxation time [91].

Although ECM viscoelasticity has an important role 
in stem cell differentiation, its role in skeletal stem cell 
differentiation has not been investigated. This remains a 
research gap that should be filled to have a comprehen-
sive understanding of the role of ECM mechanics on 
skeletal stem cell differentiation.

Stretching
Skeletal muscle is a mechanically dynamic tissue, and 
they contract and relax up to 17% of their length to pro-
duce voluntary motion [92]. Mechanical strain has been 
shown to result in skeletal muscle strengthening and 
hypertrophy [93] and maintenance of muscle progeni-
tors [94]. Hence it is important to understand the role of 
mechanical strain in the regeneration of skeletal muscle 
cells—particularly self-renewal and myogenesis of mus-
cle stem cells and their precursor cells. In most studies, 
mechanical strain is characterized as a ratio of change in 
length (transverse or longitudinal length) to the original 
length; it is often expressed as a percentage.

Biaxial cyclic strain (10%, 0.17 Hz) was found to inhibit 
hESC differentiation, as evidenced by the upregulated 
expression of Oct4 and SSEA-4. Mechanical strain also 
promoted hESC self-renewal while maintaining their 
pluripotency. Medium conditioned by strained-hESCs 
did not inhibit unstrained-hESC differentiation, sug-
gesting that only mechanical force, but not other soluble 
mediators, was responsible for the inhibition of differ-
entiation [95]. The same group went on to demonstrate 
that the same mechanical strain-induced TGFβ1, activin 
A, Nodal expression and Smad 2/3 phosphorylation are 
responsible for strain-induced inhibition of hESC dif-
ferentiation and stimulation of self-renewal [96]. How-
ever, mechanical strain does not inhibit commitment in 
all types of lineages. Cyclic strain (10%, 1  Hz) inhibited 
osteogenic and neurogenic differentiation of bone mar-
row-derived MSCs but promoted smooth muscle dif-
ferentiation of these cells. Round cells, among other cell 
shapes, were most sensitive to mechanical strain, while 
spindle cells and amebocytes were only responsive to 
mechanical strain for vascular smooth muscle and neuro-
genic differentiation [97].

In the context of skeletal muscle regeneration, MSCs, 
myoblast, and skeletal MuSCs were stretched to inves-
tigate the effects of strain on stem cell proliferation and 
differentiation. Mouse myoblast (C2C12) subjected to 
uniaxial strain (12.2–14.2%, 0.5 Hz) aligned perpendicu-
lar to the direction of strain [98]. This has been shown 
to be dependent on strain amplitude as other studies 
that applied lower strain magnitude (7%, 0.5  Hz, and 
2%, 1  Hz) reported lower orientation angle (7% strain) 
or no alignment (2% strain) [99, 100]. Alignment was 
not observed when C2C12 were subjected to equibiaxial 
strain (approximately 10%, 0.5 Hz). Moreover, equibiaxial 
strain resulted in cell membrane damage. Uniaxial strain, 
but not equibiaxial stain, enhanced myogenic differentia-
tion, evidenced by myotube/myoblast ratio and myosin-
positive myotubes [98]. In contrast to that, a study has 
shown that equibiaxial strain (3%, 0.05 Hz) also enhanced 
myotube formation [101]; the cause for the discrepancy 
observed between this study and Pennisi et al. (2011)’s is 
not clear.

Not all studies supported the effect of strain in the 
inhibition of differentiation: In a study by Boonen et  al. 
(2010), C2C12 and MPCs subjected to uniaxial ramp 
strain (0–2%) for two days, followed by intermittent 
dynamic strain (2–6%, 3 h on, 3 h off, 1 Hz) showed sup-
pressed myotube formation and maturation [100]. High 
uniaxial cyclin strain (17%, 1 Hz) was also found to pro-
mote the proliferation of C2C12 and inhibited myotube 
formation in C2C12 culture via the activation of NF-κΒ, 
Ras-related C3 botulinum toxin substrate 1 (Rac-1), and 
focal adhesion kinase (FAK) [102]. The inconsistency of 
the effect of uniaxial strain is likely due to the lower or 
higher strain magnitude (less than 10% or above 15%) and 
different strain application strategies adopted by them.

Skeletal muscle inflammation can result in muscle 
protein degradation and inhibit myogenesis [103]. Myo-
tube formation was inhibited in C2C12 treated with pro-
inflammatory cytokine TNF-α through the activation of 
NF-κB pathway and induction of nitric oxide synthase 2A 
(NOS2A) and nitric oxide (NO) production [104, 105]. 
Equibiaxial cyclic strain (3, 6, 9, 12, and 18%, 0.05  Hz) 
was found to inhibit TNF-α-induced expression of NOS2 
in a magnitude-dependent manner, and it (3%, 0.05 Hz) 
also rescued impairment of myogenesis caused by TNF-α 
[101].

The effect of mechanical strain on muscle stem cells 
was also investigated. Primary isolated satellite cells, 
as opposed to transformed myoblastic cell lines such as 
C2C12, provide better insight into how mechanical strain 
affects myogenesis as these cells are stem-like cells that 
differentiate into myoblasts in  vivo. Mechanical strain 
(10%, 0.25 Hz) promoted bovine satellite cell proliferation 
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and reduced myogenic differentiation via the activation 
of extracellular signal-regulated kinase (ERK) [106].

Although skeletal muscle stem cells are the most stud-
ied cell type in tissue regeneration, its lack of differentia-
tion capacity poses a challenge for use in therapeutics. 
Other sources of stem cells such as adipocyte-derived 
stem cells (ASCs) and bone marrow-derived mesenchy-
mal stromal cells (BMSCs) are sought after as an alterna-
tive to skeletal muscle stem cells. ASCs can participate in 
muscle regeneration by fusion or co-culturing with myo-
blasts to form myotubes [107–109]. Uniaxial strain (15%, 
0.5  Hz) has been shown to enhance ASCs fusion with 
skeletal myocytes. More myotubes were formed when 
ASCs are strained while cocultured with mouse skeletal 
muscle myoblasts (C2C12) [110]. As for BMSCs, uni-
axial strain (10%, 0.17 Hz) enhanced myogenic differen-
tiation and reduced proliferation and motility. Strain also 
aligned BMSCs parallel to the strain direction, and this is 
different from what was reported in myoblasts [98, 110, 
111].

Topography
Topographical cues can significantly affect the cellu-
lar morphology and phenotype of various cell types 
such as epithelial cells [112, 113], fibroblasts [114], and 
endothelial cells [115]. Stem cells were also found to be 
influenced by topography. ESCs grown on Polydimethyl-
siloxane (PDMS) gratings with 600 nm features and spac-
ing showed stronger alignment and elongation. The same 
study also showed that nanotopographic cues altered the 
organization of various cytoskeletal components, includ-
ing F-actin, vimentin, γ-tubulin, and α-tubulin, and the 
observed changes in proliferation and morphology were 
abolished by the effect of actin-disrupting agents like 
cytochalasin D and latrunculin B [116].

Skeletal muscles consist of highly aligned multinucle-
ated myotubes and their alignment is required for myo-
tube fusion [117]. During in  vivo myogenesis, grooves 
formed between muscle fibers have a depth and width of 
between 1–4.5 μm and 2–3 μm, respectively. Myoblasts 
grew and aligned themselves along the grooves and dif-
ferentiated into well-aligned and fused skeletal muscle 
tissue [118]. Therefore, it is not surprising that topog-
raphy can direct stem cell alignment and differentiation 
toward myogenesis. Primary myoblasts and C2C12 myo-
blasts were found to align well along grooves with a range 
of subcellular widths between 2 and 75  μm [119–124]. 
In addition to width, the depth of grooves was found to 
affect myoblast alignment too. C2C12 cells seeded in 
2 μm wide and 7 μm deep PDMS grooves aligned better 
than those seeded in 2 μm wide and 2 μm deep grooves—
this is likely because the shallow grooves did not provide 
sufficient contact guidance for cell alignment. C2C12 

cells seeded in 2  μm wide and 7  μm deep grooves also 
had better formation and fusion of multinucleated myo-
tubes [124]. Grooves are also found naturally in cellulose. 
Decellularized green onion has natural grooves measur-
ing 20  μm wide by 10  μm deep, and C2C12 myoblasts 
grown on them were aligned with more myotube forma-
tion [120]. Similar observations were also made when 
C2C12 myoblasts were grown on submicron grooves 
made of polystyrene, polycaprolactone, and PEG-based 
hydrogel [125–127].

With advances in biomaterials, the effect of nanoscale 
topography on muscle stem cells can be investigated. For 
example, cellulose nanowhiskers (CNWs) extracted from 
Ascidiella aspersa and Halocynthia roretzi have widths 
of 6–7 nm and 10–15 nm, respectively. C2C12 myoblasts 
seeded on this nanoscale topography showed a higher 
degree of multinucleated myotube fusion with fibrillar 
fibronectin deposition on the surface of highly oriented 
CNWs [128, 129]. Similarly, C2C12 cells grown on algi-
nate nanofibers made using a modified electrospinning 
process had higher adhesion, alignment and myotube 
formation [127].

MSCs derived from bone marrow, fetal tissue, and 
adipose grown on microcontact printed-20  μm wide 
fibronectin lanes had aligned actin filaments and vin-
culin, and elongated nuclei. The alignment caused by 
the lanes was found to drive myogenic differentiation in 
these cells too [130]. Similarly, ASCs seeded in 100  μm 
wide and 27  μm deep grooves made of polyacrylamide 
hydrogel exhibited a higher level of alignment and myo-
tube fusion compared to unpatterned control [131]. 
Some studies have also attempted to grow cells on a com-
plex 3D contour. For instance, a study developed a novel 
molding technique to replicate human skeletal muscle 
myoblast features and contour by creating an inverted 
pattern on poly(urethane acrylate)(PUA). hMSCs grown 
on 3D ‘pockets’ with myoblasts features took the shape 
and alignment of the topography and are committed to 
myogenesis, compared with hMSCs grown on a flat con-
trol [132].

Conclusion
In summary, MuSCs possess high regenerative capabili-
ties for muscle tissue repair and regeneration. However, 
current understanding and knowledge of MuSCs biology 
were always based on 2D monolayer cultures on a tis-
sue culture dish. This outdated approach does not reca-
pitulate the in vivo 3D microenvironment where external 
mechanical cues like substrate stiffness, strain, and 
topography play important roles in MuSC survival and 
proliferation. Moreover, the biological effects whereby 
MuSCs are governed by mechanobiological forces are not 
well-studied. Hence, there is a need to carry out in vitro 
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3D studies to understand how mechanobiological forces 
govern MuSCs self-renewal, proliferation, and survival. 
Further work may involve high-throughput screening of 
MuSC response to mechanobiological cues to elucidate 
novel mechano-signaling pathways. Such approaches 
may support the use of mechanobiology forces to prime 
MuSCs for enhanced survival and proliferation. This will 
also lead to the discovery of certain drugs that will aug-
ment MuSCs growth. One possible suggestion would be 
to incorporate both aspects of biomechanical cues (novel 
biomaterials and external mechanical forces) and exoge-
nous biological signals (growth factors such as EGF, HGF, 
and IGF) to promote muscle tissue regeneration. A thor-
ough understanding of the mechanical forces regulating 
MuSCs allows for the development of bio-inspired extra-
cellular matrix which can serve to increase mature mus-
cle fiber differentiation.

Yet, our current understanding of how biomechani-
cal cues and biochemical signals orchestrate is far from 
comprehensive. Extensive characterization of mechano-
biological aspect of MuSCs renewal, survival, and differ-
entiation needs to be carried out. The combination of the 
therapeutic effects of growth factors into novel bioma-
terials with well-tuned mechanics would help push the 
frontiers of skeletal muscle regeneration.
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