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Abstract 

Mesenchymal stem/stromal cells (MSCs)‐based therapy brings the reassuring capability to regenerative medicine 
through their self‐renewal and multilineage potency. Also, they secret a diversity of mediators, which are compli-
cated in moderation of deregulated immune responses, and yielding angiogenesis in vivo. Nonetheless, MSCs may 
lose biological performance after procurement and prolonged expansion in vitro. Also, following transplantation 
and migration to target tissue, they encounter a harsh milieu accompanied by death signals because of the lack of 
proper tensegrity structure between the cells and matrix. Accordingly, pre-conditioning of MSCs is strongly suggested 
to upgrade their performances in vivo, leading to more favored transplantation efficacy in regenerative medicine. 
Indeed, MSCs ex vivo pre-conditioning by hypoxia, inflammatory stimulus, or other factors/conditions may stimulate 
their survival, proliferation, migration, exosome secretion, and pro-angiogenic and anti-inflammatory characteristics 
in vivo. In this review, we deliver an overview of the pre-conditioning methods that are considered a strategy for 
improving the therapeutic efficacy of MSCs in organ failures, in particular, renal, heart, lung, and liver.
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Introduction
Researchers have focused on mesenchymal stem/stro-
mal cells (MSCs) for the past 60  years because of their 
unique competencies, such as ease of isolation, lower 
immunogenicity, and immunoregulatory capacities [1]. 
These cells are highly amenable to cultivation in  vitro; 
they can differentiate independently and secrete various 
growth factors and cytokines [2]. First, MSCs were pro-
cured from murine bone marrow (BM) by Friendenstein 
et  al. and were called hematopoiesis-supporting cells 
in BM [3]. After that, Kaplan firstly proposes the term 
"mesenchymal stem cells," which are cells isolated from 
fully developed bone marrow (BM) that can usually dif-
ferentiate into several types of mesenchymal origin cells 
[4]. Following the first successful human MSCs isola-
tion from BM tissue [5], MSCs isolation from a diversity 
of adult tissues, such as the perivascular area, has been 
managed [6, 7]. Although there is no particular quan-
titative assay to provide MSCs identification in mixed 
cells population [8], the International Society for Cellu-
lar Therapy (ISCT) has provided minimum principles to 
determine MSCs. These criteria are the plastic adherence 
property, expressing CD73, D90, CD105 without CD14, 
CD34, CD45, and human leucocyte antigen-DR (HLA-
DR) expression, and finally differentiation into adipocyte, 
chondrocyte, and osteoblast in vitro. The stromal vascu-
lar fraction of adipose tissue (AT) and BM are the two 
most common reservoirs of human MSCs [9]. However, 
the umbilical cord and the placenta, often discarded after 
delivery, are also excellent sources for human MSCs [10, 
11]. Multiple types of cells, including adipose tissue, car-
tilage, bone, and even macrophages, have been shown to 
originate from MSCs [12, 13]. Importantly, MSCs have 
emerged as one of the most promising and vital potential 
sources for new clinical treatments for organ failure [14, 
15].

Stem cell therapy has been the subject of many stud-
ies for its potential to cure many disorders. These 
include transplant infectious disease, progressive mul-
tiple sclerosis, diabetes, stroke, bronchopulmonary 
dysplasia, cardiomyopathy, and osteoarthritis [16]. Vari-
ous in  vivo reports indicated that MSCs could interfere 
with immune cells’ infiltration, proliferation and activa-
tion post-transplantation [17, 18]. They also can inspire 
angiogenesis by direct differentiation, cell-to-cell interac-
tion, or paracrine effects. Also, MSC-exosome contains 
cytokines, chemokines, microRNAs (miRNAs), growth 
factors, and proteins, making it an ideal therapeutic 
option [19]. According to these properties, they are an 
excellent candidate for treating organ failure, which is 
characterized by the inability of at least one of the body 
organs to conduct normal body functions [20]. However, 
natural MSCs in vivo survival and their biological effects 

on tissue recovery decrease with long-term cultivation 
called aging and also injected cells demonstrate poor tar-
geted migration [21]. The harsh microenvironment with 
ischemia, inflammation, oxidative stress, and mechani-
cal stress result in low survival rate of administrated 
cells [22]. Besides, MSC homing is inefficient, with only 
a small population of cells reaching the target tissue post 
systemic administration. These attritions signify a critical 
bottleneck in determining the full therapeutic compe-
tence of MSC-based therapies [23]. Thus, scientists have 
sought different modalities to bypass this drawback.

In recent years, researchers have focused on designing 
or developing novel approaches to expand the therapeu-
tic merits of MSCs [24]. In this light, pre-conditioning 
has engendered significant interest. Pre-conditioning is 
a method depending on a diversity of means to improve 
the potential of MSCs during ex  vivo growth [25, 26]. 
Universally, pre-conditioning strategies comprise 
hypoxia, cell exposure with pharmacological/chemical 
agents or trophic factors/cytokines, pre-conditioning 
with physical factors, and finally, gene modification [27]. 
The pre-conditioning strategies, in turn, promote the var-
ious attributes of the, including their proliferative, secre-
tory, migratory, pro-angiogenic, and anti-inflammatory 
aptitudes. These properties may bring about more pre-
ferred beneficial outcomes in vivo. For example, low O2 
levels decrease the prolyl hydroxylation under hypoxic 
conditions, leading to hypoxia-inducible factor 1-alpha 
(HIF-1α) accumulation and nuclear translocation. In 
the nucleus, HIF-1α creates a heterodimer with HIF-1β 
and subsequently binds to the hypoxia-response ele-
ment (HRE) in the target genes, allied with CBP/p300 
(Fig. 1) [28, 29]. This assemblage adjusts the transcription 
of more than 70 genes, primarily complicated in angio-
genesis, invasion/metastasis, survival, and proliferation 
(Table  1). Also, MSCs pre-treatment with carboxyl‐ter-
minated hyperbranched polyester (CHBP) supports the 
mitochondria membrane potential (MMP) and mito-
chondrial membrane integrity in MSCs and also induces 
the Nrf2/Sirt3/FoxO3a pathway, thereby offering more 
resistance to oxidative stress [30].

Herein, we will look into the use of pre-conditioned 
MSCs in organ failure to deliver a unified and compre-
hensive view of the best approach to augment the thera-
peutic influences of MSCs in these conditions, with a 
particular focus on the recent preclinical reports.

The MSCs sources and their differences
Stem/progenitor cells with MSC-like biological features 
have been detected in different mature tissues in the 
past decade, including the BM, skin, placenta, umbili-
cal cord blood (UCB), umbilical cord tissue, adipose tis-
sue (AT), dental pulp, infant teeth, testicles, brain, etc. 
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With mounting evidence that MSCs isolated from differ-
ent sources form a diverse cell population, the develop-
ment of uniform criteria for identifying MSCs became an 
urgent necessity [31].

Expression of CD73, CD90, and CD105 constitute the 
minimum criteria for identifying tissue-isolated MSCs 
[32]. The hBM-MSCs, hAT-MSCs, human adipose-
derived stromal cells (hADSSCs), and human muscle-
derived progenitor cells (hMDPCs) all express these 
markers at high levels [17, 33–35]. These cells also lack 
the hematopoietic markers CD34 and CD45. In this light, 
CD146 is a second MSC marker expressed by MSCs 
from different sources [17, 31]. Also, MSCs from various 

sources have varying degrees of paracrine potential, sig-
nificantly impacting their aptitude to influence target 
cells and either dampen or amplify the immune response. 
MSCs derived from BM and secrete cytokines and 
growth factors such as interleukin (IL)-6, IL-8, monocyte 
chemoattractant protein-1 (MCP-1), vascular endothe-
lial growth factor (VEGF), osteoprotegerin, and tissue 
inhibitor of metalloproteinases 2 (TIMP2) [36]. Also, 
increased levels of the interferon-gamma (INF-γ), plate-
let-derived growth factor A (PDGFA), VEGF, IL-10, and 
stromal-derived factor (SDF) were found in human exfo-
liated deciduous teeth (SHED) in comparison to Whar-
ton’s jelly (WJ)- and BM-MSC [37]. Significantly, the 

Fig. 1  Hypoxia-inducible factor 1α (HIF-1α) signaling pathway. The figure depicts the action mechanism of HIF-1α in promoting the mesenchymal 
stem/stromal cells (MSCs)-mediated therapeutic influences. Hypoxia-response element (HRE), Hypoxia-inducible factor 1β (HIF-1β), CREB binding 
protein (CBP), HIF-1 prolyl hydroxylase (HPH), Indoleamine 2, 3-dioxygenase (IDO), Prostaglandin E2 (PGE2), Cyclin-dependent kinase (CDK), Vascular 
endothelial growth factor (VEGF), Hepatocyte growth factor (HGF), Fibroblast growth factor (FGF), Transforming growth factor beta (TGFβ), BCL-2 
associated agonist of cell death (Bad), TNF-stimulated gene-6 (TSG-6)
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Table 1  The effects of the hypoxia pre-conditioning on the gene expression profile of MSCs (preclinical studies)

Mesenchymal stem/stromal cells (MSCs), Adipose tissue (AT), Bone marrow (BM), Umbilical cord (UC), Umbilical cord blood (UCB), Wharton’s jelly (WJ), Embryonic stem 
cells (ESCs), Runt-related transcription factor 2 (Runx2), Twist-related protein-1 (TWIST), Vascular endothelial growth factor (VEGF), Hepatocyte growth factor (HGF), 
NLR family pyrin domain containing 3 (NLRP3), Indoleamine 2, 3-dioxygenase (IDO), Prostaglandin E2 (PGE2), Human leukocyte antigen G (HLA-G), High mobility 
group box 1 (HMGB1), B cell lymphoma 2 (BCL-2), Hypoxia-inducible factor (HIF), Peroxisome proliferator-activated receptor gamma (PPARG), Cyclin-dependent kinase 
2 (CDK2), Stromal cell-derived factor 1 (SDF-1), Cyclooxygenase 2 (COX-2), Extracellular signal-regulated kinases (ERK), C-X-C chemokine receptor type 4 (CXCR4), 
Osteocalcin (OCN), Protease regulatory subunit 8 homolog (SUG1), Alkaline phosphatase (ALP), Collagen type IA (COL1A), Platelet-derived growth factors (PDGF), 
Insulin-like growth factor-binding protein 6 (IGFBP-6), SRY-box 2 (SOX2), Pour octamer-binding transcription factor 4 (OCT4), Protein kinase A (PKA), Phosphoinositide 
3-kinases (PI3Ks), Forkhead box O (FOXO)

Cell source Origin Target gene Expression pattern Results (ref)

BM Human Runx2 and TWIST Down-regulation Inhibited the osteogenic potential of the MSCs (in vitro) 
[174]

BM Rat VEGF and HGF Up-regulation Attenuated renal fibrosis (in vivo) [28]

BM Rat - - Improved renal function (in vivo) [131]

BM Human NLRP3 and caspase-1 Down-regulation Reduced microglial pyroptosis following the intracerebral 
hemorrhage [175]

AT Mouse HLA-G, PGE2, and IDO Up-regulation Improved immunomodulation capacity [29]

BM

WJ

BM Human 26S proteasome Down-regulation Increased immunogenicity [176]

AT Human p-Akt Up-regulation Improved angiogenic and anti-oxidative capacities (in vivo) 
[177]

BM Porcine Human VEGF Up-regulation More favored therapeutic characteristics [178]

HMGB1, BCL-2 and caspase-3 Down-regulation

BM Human PPARG​ Down-regulation Improved osteogenesis but inhibited adipogenesis of MSCs 
[179]

HIF-1ɑ and RUNX2 Up-regulation

Placental Human Cyclin A2/E1 and CDK2 Up-regulation Improved proliferation [180]

P21 Down-regulation

BM Mice HIF-1α Up-regulation Induced MSC migration [181]

BM Human SDF-1 and VEGF Up-regulation Enhanced myogenesis under hypoxic conditions (in vitro) 
[182]

Pig

BM Rat COX-2 Down-regulation Reduced immunoprivilege of allogeneic MSCs (in vitro and 
in vivo) [183]

Placental Human ERK, AKT, and CXCR4 Up-regulation Improved migration and proliferation (in vitro) [184]

BM

BM Human SUG1 Up-regulation Improved the survival of transplanted cells (in vivo) [185]

Rat

BM Rat HIF-1α Up-regulation Enhancedviability and reduced apoptosis [186]

BM Mouse ALP, RUNX2, COL1A, and OCN Up-regulation Improved proliferation and osteogenic differentiation (in 
vitro) [187]

BM Mouse HIF-1α and Akt Up-regulation Improved proliferation and antioxidant activity [188]

BM Human HLA-DRα Up-regulation Reduced immunoprivilege of MSCs (in vivo) [189]

BM Human Akt Up-regulation Improved chondrogenesis and inhibited terminal differen-
tiation by inducing the PI3K/Akt/FoxO pathway [190]

ESCs Human PDGF-BB, IGFBP-6, VEGF-A, 
and angiogenin

Up-regulation Improved viability (in vivo) [191]

AT Human VEGF Up-regulation Enhance angiogenesis by PKA signaling pathway (in vitro) 
[192]

UC Equine SOX2, OCT4, and Nanog Up-regulation Enhanced stemness of MSCs [193]

BM Mouse HIF-1α Up-regulation Increase MSC proliferation and long-term survival post-
irradiation [194]

UCB Human HIF-1α Up-regulation Improved expansion [195]

Olfactory mucosa Human p16INK4A, p21, and p53 Down-regulation Reduced senescence [196]
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microenvironment of MSCs affects the paracrine abilities 
of stem/progenitor cells. Interestingly, compared to other 
sources, skin-derived MSCs can secrete higher levels of 
trophic substances such as VEGF, granulocyte colony-
stimulating factor (G-CSF), hepatocyte growth factor 
(HGF-1), and basic fibroblast growth factor (bFGF) [38]. 
Ribeiron et  al. also found that AT-MSCs inhibited NK 
and B cells more effectively than BM- and UCB-MSCs 
[39]. Furthermore, compared to UC-MSCs, AT-MSCs 
showed more significant inhibitory effects on serum IL-1, 
IL-6, and IL-8 levels in lipopolysaccharide (LPS)-treated 
mice [40]. UC-MSCs also have demonstrated more evi-
dent proliferation and clonality due to the reduced 
expression of p53, p21, and p16 compared to cells derived 
from BM and AT [40]. In another study, BM-MSCs and 
WJ-MSC showed superiority over AT-MSCs in terms of 
proliferation and clonality potential [41]. In addition, AT-
MSCs and UC-MSCs can demonstrate more prominent 
osteogenic potential compared to chorionic membrane 
(CM)- and decidua (DC)-MSCs [42].

Taken together, while MSCs from various tissues share 
many traits, their biological activity and some mark-
ers vary depending on the tissue from which they were 
derived. For researchers interested in the use of MSCs in 
clinical settings, understanding the biological principles 
underlying MSCs should be a key factor. For instance, 
higher CD146 expression promotes the cells migration 
capability in  vitro and in  vivo, and its down-regulation 
has correlation with higher osteogenic capacity [43]. 
These proofs verify differences between the MSCs from 
various sources, highlighting the importance of deter-
mining better sources respecting the conditions.

MSCs’ rationality for treatment of organ failure
In vitro, MSCs can differentiate into numerous meso-
derm lineages and differentiated cells, such as osteoblast, 
fats, skeletal muscle myocytes/myotubes, pancreatic 
islet cells, and cardiomyocytes, when grown in a growth 
factor-rich culture environment [31]. However, small 
populations of MSCs differentiate into functional cells 
in vivo [44, 45]. To influence other cells, MSCs produce 
exosomes and micro-vesicles that carry potent angio-
genic mediators, cytokines, or mRNA molecules [46]. The 
process by which MSCs are released from BM is critically 
vital to their regenerative function. These cells reside pri-
marily in BM but can be found in other organs and tis-
sues because of their mobile nature. Elm et  al. detected 
the presence of MSCs in the PB of people who had suf-
fered hip fractures [47]. Based on their observations, 
MSCs were found in peripheral blood (PB) from 22% of 
hip fracture patients, 46% of younger fracture patients, 
and in none of 63 pre- and postmenopausal women with 
hip OA [47]. Meanwhile, several lines of evidence suggest 

that MSCs are secreted from the BM in response to sys-
temic cues; hypoxia recruits MSCs to the PB, triggering 
liver injury. Also, MSCs could be released from adipose 
tissue in response to inflammation and then collected 
in lymph nodes and blood arteries [48]. Recent research 
has demonstrated the importance of CCR9, CXCR4, and 
c-MET in guiding endogenous MSC migration to the 
damaged liver [49]. Further, MSCs have garnered interest 
as they could promote tissue regeneration and homeosta-
sis in inflammatory conditions such as graft-versus-host 
disease (GVHD), multiple sclerosis (MS), lung inflamma-
tion, arthritis, and Crohn’s disease (CD) [50, 51]. Exog-
enous MSCs are frequently applied to bring about tissue 
recovery in  vivo due to their anti-inflammatory proper-
ties and their capacity to provoke angiogenesis and boost 
the proliferation of damaged cells [52–55].

Inhibition of inflammation
Recent years have seen remarkable progress in our 
knowledge of how MSCs modulate the immune sys-
tem and reduce inflammation. MSC responses may vary 
with the intensity of environmental cues. In the earliest 
stages of inflammation, MSCs amplify the inflammatory 
response by sensing pro-inflammatory signals through 
IL-1-receptors (IL-1Rs), IFN-receptors (IFNRs), toll-like 
receptors (TLRs), and TNF- receptors (TNFRs) [56]. 
They increase T cell activation by secreting chemokines 
like C-X-C motif ligand (CXCL)-9, macrophage inflam-
matory protein-1 (MIP-1), CCL5, and CCL10. Low levels 
of inflammatory signals like TNF-ɑ and IFN-γ enhance 
the rise in chemokine secretion at this time [57, 58]. In 
later phases, when pro-inflammatory molecules like IL-1, 
IFN-γ, and TNF-α are present in more significant con-
centrations, MSCs are activated, and then secrete TGF-β 
and IL-10 to bypass inflammation and halt autoimmune 
responses [59]. Indoleamine 2,3-dioxygenase (IDO) and 
inducible nitric oxide synthase (iNOS) decrease the pro-
liferation, migration, and maturation of dendritic cells 
(DC) and T cells and thus bargain their ability to deliver 
antigens. Therefore, IDO or iNOS levels may determine 
the pro-inflammatory or anti-inflammatory effects of 
MSCs [60]. Additional studies show that CD5 + regu-
latory B cells protect against colitis when treated with 
human MSCs, CD23 + CD43 + B cells and MSCs gen-
erated from human umbilical cords [61]. Each of these 
cells play a role in reducing intestinal inflammation [61]. 
Therefore, MSCs may suppress inflammation by enhanc-
ing anti-inflammatory factors and decreasing pro-inflam-
matory mediators [62, 63]. When MSCs come into direct 
contact with cells, they can dampen immune responses 
[61]. For instance, studies in rodents with GVHD exhib-
ited that systemic injection of human MSC-exosome 
improved animals’ survival by inhibiting CD4+ and CD8+ 
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T cell performance and infiltration and increasing Treg 
cell activity [64]. In addition, TNF-α, NF-κB, IL-6, and 
IL-8 levels were reduced in the lung tissue of animals 
with acute lung injury upon MSCs systemic administra-
tion [65].

Induction of angiogenesis
Impaired angiogenesis and endothelial dysfunction are 
probably involved in the augmented prevalence of organ 
dysfunction. Angiogenesis is required for tissue repair, 
and a sufficient vascular network is paramount to sup-
ply blood and growth factors to damaged tissues [66]. 
Because of the marked positive effect on angiogen-
esis, MSCs have significant therapeutic power for treat-
ing organ failure such as heart failure (HF). Of course, 
the application of MSC-based therapies is confined by 
their low persistence level in targeted tissues and the 
low capabilities of transdifferentiation in  vivo [67]. The 
most crucial property of MSCs for treating ischemic dis-
eases is the secretion of pro-angiogenic mediators like 
VEGF, HGF, and FGF and their differentiation potential 
into vascular phenotypes in  vitro [68]. They can pro-
mote endogenous angiogenesis via microenvironmental 
modulation and differentiating into various types of vas-
cular cells [69]. Some proofs demonstrated that MSCs 
could be injected into injured areas and develop into 
the heart and endothelial cells [70]. Further, some clini-
cal investigations indicate that MSCs can ameliorate key 
clinical parameters in patients suffering from organ fail-
ure [71]. MSCs can stimulate organ normal function by 
inducing angiogenesis through the secretion of VEGF, 
macrophage colony-stimulating factor (MCF), and IL-6. 
Meanwhile, VEGF serves essential roles in angiogenesis 
and microvascular permeability. Interaction between 
VEGF/VEGFR signaling in endothelial cells (EC) facili-
tates the production of cytokines and chemokines and 
up-regulates the cell adhesion molecules expression [72]. 
To promote local angiogenesis, MSCs can secrete both 
hepatocyte growth factor (HGF) and stromal cell-derived 
factor 1 (SDF-1) [73, 74]. SDF-1 is a critical chemokine 
that can regulate various physiological processes, includ-
ing stimulating the proliferation of ECs and generating 
capillary tubes [75]. The ECs express the receptor c-Met, 
by which HGF exerts its angiogenic effect by tyrosine 
phosphorylation. The therapeutic efficacy of HGF was 
studied in a clinical experiment, offering some benefits in 
organ ischemia [76, 77].

Enhancing target cell proliferation and differentiation
Replacing damaged cells is needed for ameliorating organ 
dysfunction. Human MSCs are a great source of cells for 
cell transplantation and tissue engineering because of 

their capacity to stimulate target cell proliferation. For 
instance, MSCs secreted IGF-1 can promote primary 
hepatocyte proliferation [78]. In co-culture conditions, 
MSCs enhanced the numbers of the proliferating cell 
nuclear antigen (PCNA) expressing hepatocyte in  vitro 
[79]. Likewise, MSCs-derived exosomes intensified car-
diomyocyte proliferation by miR-210 delivery [80]. The 
miR-210 overexpressing MSC-exosomes also could 
improve myocyte protection in response to both in vitro 
and in vivo stress [80]. Exosomal miR-25-3p from MSCs 
was capable of decreasing cardiomyocytes apoptosis 
and sustaining their expansion by negative regulation of 
enhancer of zeste homolog 2 (EZH2) [81]. In addition, 
Yi et  al. found that miR-30b-3p-overexpressing MSCs 
increased type II alveolar epithelial cells (AECs) growth 
and protected versus lipopolysaccharide-induced lung 
damages by inhibiting serum amyloid A 3 (Saa3) [82].

The rationality of MSCs pre‑conditioning
Cultural conditions are the most imperative factors 
influencing the functional potential of MSCs. Regen-
eration functions of MSCs and their clinical imple-
mentation for repairing and regenerating damaged and 
destroyed tissues are also hindered by "disease condi-
tions" and the "age" of the donor. Accordingly, stem 
cells are suggested to be manipulated before their use 
in clinical settings to potentiate their survival, migra-
tion, and therapeutic competencies in  vivo [83]. Pre-
conditioning cells in a particular design/engineering 
with varied physical or chemical characteristics and 
variables under ex  vivo settings has increased MSCs’ 
capability to survive in hostile microenvironments and 
boost their immune responses [84]. Several methods, 
such as low-heat shock, glucose depletion, and pre-con-
ditioning with growth factors, have been employed to 
accomplish this. Since oxygen levels are already low in 
stem cell niches compared to typical situations, hypoxic 
pre-conditioning may improve their natural capabili-
ties [85]. Adapting cells to their external environment, 
reducing oxidative stress, switching metabolism to 
glycolysis, increasing cell proliferation, differentia-
tion, and stemness maintenance, and increasing their 
movement to sustain hypoxic conditions after trans-
plantation all suggest that hypoxia may be a valuable 
strategy for improving cell functions [83]. Hypoxic pre-
condition up-regulates anti-apoptotic proteins expres-
sion in MSCs and thus promotes their survival in the 
hostile environment. Hypoxic pre-conditioning also 
reduces MSCs’ glucose consumption, lactate release, 
and cytochrome c and heme oxygenase-1 (HO-1) lev-
els [86]. Further, the human MSCs’ exposure to IFN-γ 
could ease the inhibition of NK activation and improve 
the protection of MSCs from NK-induced cytotoxicity 
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[87]. Besides, 3-dimensional cell culture could inten-
sify the immunomodulatory aptitudes of human MSCs, 
as shown by reduced TNF-α, IL-6, IL-12p40, IL-23, 
and CXCL2 and improved IL-10 levels in conditioned 
media [88]. Recent reports also indicated that MSCs 
pre-treatment with angiotensin II enhances the out-
come of MSC-based therapy for myocardial infarction 
(MI) in part via increasing the paracrine production 
of VEGF, and supporting gap junctions (GJs) [89]. The 
positive effects of the MSCs on angiogenesis could also 

be further heightened by hypoxia pre-treatment as 
a result of the increased secretion of VEGF [90]. Fig-
ure  2 depicts the effects of the pre-conditioning on 
MSCs’ therapeutic benefits in  vivo. As described, pre-
conditioned MSCs show better therapeutic efficacy 
over naïve MSCs concerning the. They raise target cell 
growth, persuade angiogenesis and modify immune 
responses.

Fig. 2  The rationality of the pre-conditioning of mesenchymal stem/stromal cells (MSCs). Pre-conditioning, such as exposure to specific ingredients 
or biomolecules and genetic modification of MSC, improves MSC function in vitro and in vivo
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Pre‑conditioned MSCs in lung failure
Lung failure is the most shared organ failure seen in the 
intensive care unit. The pathogenesis of acute respiratory 
failure (ARF) can be categorized as (1) neuromuscular 
in origin, (2) secondary to acute and chronic obstructive 
airway disorders, (3) alveolar procedures like cardiogenic 
and noncardiogenic pulmonary edema and pneumo-
nia, and (4) finally vascular disorders such as acute or 
chronic pulmonary embolism [91, 92]. Based on the lit-
erature, MSCs and their secreted products can attenu-
ate lung inflammation and support its structure and 
performance [93, 94]. The safety, feasibility and efficacy 
of MSCs administration is under-investigation in phase 
1 and phases 2 trials in patients with lung failure and 
related conditions (NCT02112500, NCT04392778 and 
NCT04537351).

As previously described, a growing body of reports has 
signified that hypoxia, thermal shock, small-molecule 
medicines, cytokines and growth factors could increase 
the therapeutic merits of MSCs transplantation [96–98]. 
Genetic modification and overexpression of pro-survival 
genes, chemokine receptors, or anti-apoptotic proteins 
can also be used to perform cellular pre-conditioning 
before transplantation [99–102].

In 2019, Chen et al. found that BM-MSCs overexpress-
ing heme oxygenase-1 (HO-1) could alleviate lipopoly-
saccharide (LPS)-induced acute lung injury (ALI) and 
resultant lung failure in rats [103]. The HO-1 has antioxi-
dant, anti-inflammatory, and anti-apoptotic properties 
[103]. The release of HO-1 by MSCs post-transplantation 
has been shown to elicit protective effects against ALI. 
Compared to parental MSCs, MSCs-HO-1 transplanta-
tion showed significant improvements in cell survival, 
apoptosis, and paracrine activity in  vivo [103]. Further, 
MSCs-HO-1 exhibited more evident pro-survival and 
anti-apoptotic impacts and paracrine activity in  vitro. 
These findings shed light on the potential of genetic 
engineering of MSC for managing ALI [103]. Likewise, 
systemic injection of manganese superoxide dismutase 
(MnSOD)-overexpressing MSCs led to reduced lung 
inflammation, as shown by decreased IL-1, IL-6, and 
TNF-α levels [104]. Importantly, MnSOD-MSCs differ-
entiated into epithelial-like cells in  vivo [104], indicat-
ing the excellent capability of MnSOD-MSCs. Also, Liao 
et al. (2023) have found that administration of IL18-hUC-
MSCs could drastically decrease viral load, fibrosis, and 
cell apoptosis in acute lung injuries [105]. Notably, T 
cell exudation and pro-inflammatory cytokine release in 
bronchoalveolar lavage fluid (BALF) were significantly 
inhibited by IL18-hUCMSC therapy [105].

Pre‑conditioned MSCs in heart failure
Heart failure (HF) is a clinical syndrome characterized 
by structural and functional failings in the myocardium, 
eventually weakening ventricular filling or the ejection 
of blood. The HF often results from poor left ventricu-
lar function [106]. Decreased diastolic filling and ejection 
fraction can both result in less blood leaving the heart 
into systemic circulation [107]. Of course, deficits in the 
pericardium, myocardium, endocardium, heart valves, or 
great vessels alone or in combination are also allied with 
HF. Over the past two decades, numerous investigations 
have been carried out on the potential of MSCs for car-
diac cell regeneration [108, 109]. Several MSCs-based 
strategies have been studied by employing the three ways 
of direct differentiation to heart cells, differentiation to 
vascular cells, and paracrine signaling [110]. The safety 
and modest efficacy of UCB-MSCs systemic administra-
tion has been verified in patients with HF [111]. Improve-
ments in left ventricular function, functional status, and 
quality of life were detected in treated patients [111]. 
BM-MSCs transplantation by intra-myocardial [112] 
and intra-coronary route [113] also were safe and led to 
increased myocardial function in patients with HF.

In vitro, hypoxia pre-conditioning boosts hUC-MSCs 
proliferation and enhances their differentiation into 
cardiomyocyte-like cells (CLCs) [114]. Besides, it has 
previously been found that the growth arrest of par-
ticular gene 6 (Gas6) influences cell growth, adhesion, 
chemotaxis, mitogenesis, and cell survival because of 
the presence of gamma-linolenic acid-carboxyglutamic 
acid (Gla) [115]. Functional studies suggest that Gas6 
overexpression could significantly reduce MSC apop-
tosis and increase MSC survival in vitro and in HF ani-
mal models compared to naïve MSCs. Also, Gas6 could 
enhance VEGF, bFGF, SDF, and IGF-1 secretion from 
MSCs [116]. Likewise, HIF-1-overexpressing MSCs were 
found to increase cardiac output and decrease the size 
of myocardial scars in HF in vivo models [117]. Further, 
HIF-1 overexpression significantly augmented the secre-
tion of angiogenesis proteins like activin A, angiopoi-
etin, artemin, endothelin-1, MCP-1, and remodeling 
factors ADAMTS1, FGFs, TGF-β, MMPs, and serpins 
in MSCs in  vitro [117]. Genetically modified MSCs to 
overexpress VEGF in hypoxic conditions also increased 
myocardial neovascularization in ischemic heart disease 
[118]. These engineered MSCs also decreased the apop-
totic cell numbers in the infarcted area and caused the 
reduction of left ventricular remodeling in  vivo [118]. 
Besides, another study on a mouse model of heart failure 
demonstrated that overexpression of anti-fibrotic sub-
stances, adrenomedullin (ADM), dramatically improved 
heart function, decreased fibrotic area, and decreased 
MMP-2 expression [119–122]. The ADM-MSC-treated 
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group also shows markedly higher MSCs survival after 
transplantation. These findings indicate that MSCs over-
expressing ADM can potentially increase anti-fibrotic 
actions, improving heart function in animals with heart 
failure [119]. Finally, pre-conditioning MSCs with cas-
pase inhibition and hyperoxia could boost their capacity 
to diminish left ventricular remodeling and sustain left 
ventricular activity [123]. Additionally, gene and protein 
expression of caspases 1, 3, 6, 7, and 9 were decreased 
drastically in MSCs pre-conditioned with hyperoxia, 
caspase inhibition, or both, while up-regulating Akt1, 
NF-κB, and Bcl-2 expression in pre-conditioned MSCs. 
These alterations ultimately led to a substantial increase 
in MSC proliferation in hypoxic environment in  vivo 
[123].

Pre‑conditioned MSCs in renal failure
The term renal failure means incapability of the kidneys 
to accomplish the excretory activity, driving retention of 
nitrogenous waste yields from the blood. Once a patient 
necessities renal replacement therapy, the ailment is 
named end-stage renal disease (ESRD) [124]. Although 
kidney transplantation is now the gold standard for treat-
ing ESRD, significant difficulties exist in this field, par-
ticularly in preventing transplant rejection and ensuring 
long-term organ acceptance. In recent years, the proba-
bility of acute rejection (AR) has been mitigated by using 
triple immunosuppressive medication [125]. Given their 
involvement in regulating the immune system, MSCs 
have emerged as a promising candidate in this context 
[85]. Recently, Shao et  al. (2021) exhibited that intra-
venous administration of autologous BM-MSCs led to 
improvement in renal and systemic functional parame-
ters from baseline in Chinese renal failure patients [126].

One of the most prevalent injuries sustained with a 
kidney transplant is ischemia/reperfusion (I/R) dam-
age. As a result of their ability to heal cellular damage, 
reduce tissue rejection, and attain organ tolerance, MSCs 
are a promising cell therapy candidate for use in kidney 
transplantation [127]. The MSC infusion in kidney trans-
plant recipients is feasible, permits enlargement of Treg 
in the peripheral blood, and regulates memory CD8 + T 
cell function [128]. The pre-conditioning of MSCs also 
is believed to potentiate parental MSCs capability to 
support successful kidney transplantation by increasing 
the survival of MSCs and potentiating their migration 
and protecting them from natural killer (NK)-mediated 
cytotoxicity [129]. In this light, MSCs treatment with 
melatonin prior administration was shown to boost the 
survival of MSCs, enhance cell proliferation and angio-
genesis, and enable quicker recovery of the renal function 
[130].

A recent study in an animal model of gentamicin-
induced acute renal failure (ARF) showed that MSCs 
pre-conditioned with hypoxia could induce a more suit-
able therapeutic effect than naïve MSCs [131]. Hypoxia-
induced MSCs administration diminished blood urea 
nitrogen (BUN) and creatinine level, thus supporting 
renal function [131]. The histological analysis of renal 
tissue isolated from hypoxia-induced MSCs treated ani-
mals also verified these findings [131]. Additionally, 
miR-19a-3p and miR-20a-5p co-expressing human iPS-
MSCs protected kidney function in rat models of chronic 
kidney disease following acute ischemia [132]. Further, 
genetically modified iPS-MSCs were capable of decreas-
ing oxidative stress, inflammatory downstream signaling, 
and renal cell death in  vitro [132]. Likewise, Cao et  al. 
(2021) showed that miRNA-133b-overexpressing MSCs 
could attenuate renal fibrosis in an animal model of renal 
failure in part by inhibition of connective tissue growth 
factor (CTGF) expression in renal tissue [133]. Negative 
regulation of CTGF leads to the suppression of the TGF-
β1-induced EMT of HK2 cells, a proximal tubular cell 
(PTC) line derived from normal kidney, in  vitro [133]. 
Nonetheless, genetic modification of MSCs to overex-
press CXCR4 and CXCR7 did not increase their hom-
ing therapeutic capacities in acute kidney injury in vivo 
models [134]. Also, scientists found that administration 
of neither native nor engineered MSCs amended renal 
failure in vivo [134]. In contrast, Liu et al. (2013) demon-
strated that CXCR4 overexpression increased BM-MSCs 
migration to the kidney tissue in acute kidney injury 
[135]. The SDF-1/CXCR4 signaling plays a central role 
in this event by transducing the PI3K/AKT and MAPK 
in BM-MSCs [135]. Besides, it has been suggested that 
expanding MSCs in hollow fiber bioreactor-based 3D) 
culture systems could potentiate their ability to amelio-
rate renal function in vivo mainly by enhancing exosome 
secretion [136].

Pre‑conditioned MSCs in liver failure
The liver is a crucial organ that aids in digestion, elimina-
tion of toxins, and immune system function. The liver can 
renew itself because it contains particular cells, includ-
ing mature liver cells, intrahepatic stem cells, and extra 
stem cells [137]. Although endogenous regeneration is 
possible, it is not effective after severe damage. Infec-
tions, medicines, toxins, chemicals, autoimmune disease 
and metabolic diseases are the leading causes of acute 
liver failure (ALF), in which liver dysfunction produces 
severe damage and necrosis. Acute liver failure has a 
high fatality rate despite aggressive treatment [138]. Liver 
transplantation has become less effective as the primary 
treatment for liver illnesses due to a lack of organ donors, 
unfavorable effects of immunosuppressive medicines on 
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recipients, and procedural issues [139]. A shortage of 
oxygen and the presence of radical oxygen species (ROS) 
cause the vast majority of transplanted stem cells to die 
just a few days after administration. Investigations sug-
gest that MSCs have a higher capacity to restore damaged 
liver tissue due to their ability to develop into specialized 
cells when incubated with damaged liver cells. Recovery 
of liver enzymes and histological improvement due to 
central necrosis repair has been documented [140, 141].

Various clinical trials have evidenced the safety and 
feasibility of MSCs along with enhanced serum albumin, 
cholinesterase, and prothrombin activity in patients with 
liver failure [142–145].

Notwithstanding, because of the limited success of 
MSCs in liver diseases therapy, numerous studies have 
been done to address this issue [146–149].

IL-1 is a therapeutic option for sustaining MSCs to 
treat ALF by promoting the MSCs’ capacity to regener-
ate damaged liver [150]. Through the increasing CXCR4 
expression and ensuing enhancement in MSCs homing 

capacity, IL-1 pre-treatment can improve MSCs-medi-
ated impacts on ALF [151]. Also, direct modification of 
MSCs to overexpress CXCR4 potentiates their poten-
tial to increase liver regeneration [152]. Also, sodium 
butyrate (NaB) treatment was supposed to improve the 
hepatic differentiation of BM-MSCs post-transplanta-
tion in  vivo [153]. The NaB-MSCs transplantation also 
enhanced albumin (ALB), alpha 1-antitrypsin (AAT), 
and the serum total protein (TP), while reducing serum 
alanine transaminase (ALT) levels in vivo [153]. Further, 
umbilical cord blood (UCB)-MSCs engineered to overex-
press the VEGF 165 gene could facilitate ALF treatment. 
VEGF165 overexpression promoted the multipotency of 
UCB-MSCs and increased their homing and coloniza-
tion in the liver tissues of ALF rat [154]. VEGF165 –MSCs 
transplantation ameliorated liver damage and improved 
liver regeneration more evidently than native UCB-MSCs 
[154].

Interleukin-35 (IL-35) is an emerging cytokine criti-
cal for preventing autoimmune illnesses and responsible 

Table 2  Genetically modified MSCs in organ failure and related conditions (preclinical studies)

Mesenchymal stem/stromal cells (MSCs), Adipose tissue (AT), Bone marrow (BM), Umbilical cord (UC), Umbilical cord blood (UCB), induced pluripotent stem cells 
(iPSCs), Amniotic fluid (AF), Embryonic stem cells (ESCs), Vascular endothelial growth factor (VEGF), Hepatocyte growth factor (HGF), Indoleamine 2, 3-dioxygenase 
(IDO), Adrenomedullin (ADM), Heme oxygenase-1 (HO-1), Hepatocyte nuclear factor 4 alpha (HNF4A), Integrin-linked kinase (ILK), Growth arrest-specific gene 6 
(Gas6), C-X-C chemokine receptor type 4 (CXCR4), Insulin-like growth factor (IGF)-1, Transforming growth factor beta 1 (TGF-β1), Interleukin-1 receptor (IL-1R), Acute 
liver failure (ALF), Matrix metalloproteinases (MMPs), Left ventricular (LV)

Condition Cell Source Gene Study type Results (ref)

Liver failure UCB VEGF65 In vivo (rat) Stimulation of substantial therapeutic influences on ALF [154]

Heart failure BM ADM In vivo (rat) Enhanced heart function and decreased fibrotic area volume and MMPs levels in 
heart tissue [119]

Heart failure BM HGF In vivo (rat) Improved LV systolic and diastolic function [197]

Heart failure BM VEGF In vivo (swine) Enhanced neovascularization, reduced hypertrophy, potentiated myocardial bioener-
getic characteristics, and contractile function [198]

Renal failure BM IDO In vivo (mice) Regeneration of the renal tissue by adjusting the polarization of the macrophage 
[199]

Lung failure BM HO-1 In vitro Improved pro-survival, anti-apoptotic, and paracrine functions of MSCs-HO-1 [103]

In vivo (rat)

Liver failure UC HNF4α In vivo (mice) Eliciting the marked therapeutic influences on ALF [200]

Heart failure BM ILK In vivo (swine) Ameliorating the ventricular remodeling and cardiac activity [201]

Heart failure BM Gas6 In vivo (rat) Eliciting functional recovery [116]

Liver failure BM CXCR4 In vivo (mice) Enhanced migration and ameliorated tissue damage by stimulating hepatoprotective 
influences [152]

Heart failure AT Myocardin In vitro Enhanced myogenic marker expression, blood flow as well as arteriogenesis [202]

BM In vivo (mice)

Heart failure BM VEGF In vivo (rat) Reduced cardiomyocyte cell apoptosis in vitro and marked reduction of LV remod-
eling [118]

Renal failure iPS miR-19a miR-20a In vitro Improved renal function [132]

In vivo (rat)

Renal failure UC IGF-1 In vivo (rat) Ameliorated biochemical variables in serum or urine related to renal function [203]

Renal failure BM TGF-β1 In vivo (rat) Improved renal ischemic reperfusion injury (IRI) by targeting the CXCR4 expression on 
cell membranes [204]

Liver failure AF IL-1R antagonist In vivo (rat) Enhanced liver function and prolonged survival [205]

Ovarian failure BM miR-21 In vivo (rat) Restoring ovarian function by decreasing granulosa cell apoptosis [165]
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for the Treg’s ability to moderate and decrease immuno-
logical responses [155]. The IL-35 gene-modified MSCs 
could migrate to the damaged liver tissues, reduce hepat-
ocyte apoptosis, and down-regulate IFN-γ secretion by 
liver mononuclear cells mainly by negative regulation of 
JAK1-STAT1/STAT4 axis by IL-35 [156].

A summary of the studies investigating the therapeu-
tic effects of genetically modified MSCs in organ fail-
ure disease is provided in Table 2. Figure 3 also depicts 
the impact of the HIF-1ɑ-, ADM-, miR-133-, IL-35-, 
VEGF165-, and HO-1-overexpressing MSCs in vivo.

Pre‑conditioned MSCs in ovarian failure
One of the common disorders affecting women that 
contributes to 1% of female infertility is premature ovar-
ian failure (POF) [157]. Hypoestrogenism, or a lack of 
estrogen, an elevated gonadotropin level, and, most sig-
nificantly, amenorrhea are all clinical signs of POF. As 
the most popular hormone replacement therapy cannot 
successfully restore ovarian function [158], there is now 
a greater need for effective and novel POF therapeutics. 
Meanwhile, human MSCs therapy offers new opportu-
nities for POF as regenerative medicine advances [159, 
160]. In mice receiving chemotherapy, the MSCs therapy 
was discovered to diminish granulosa cell (GC) apoptosis 
and DNA damage [161] and can also promote the growth 

Fig. 3  The application of genetically modified mesenchymal stem/stromal cells (MSCs) in organ failure. Adrenomedullin (ADM), Heme oxygenase-1 
(HO-1), Vascular endothelial growth factor 165 (VEGF165), Hypoxia-inducible factor 1α (HIF-1α), MicroRNA133 (miR-133), Interleukin-35 (IL-35)
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of primordial follicles and raise FSH levels to levels that 
are close to normal [162]. MSCs also promote reactivate 
folliculogenesis [163] and increase insulin-like growth 
factor-1 (IGF-1) in ovaries [164].

Recent studies demonstrated that overexpressing 
miR-21 in BM-MSCs could restore ovarian function in 
rats with chemotherapy-induced POF. This was associ-
ated with the inhibition of granulosa cell apoptosis by 
targeting recombinant human programmed cell death 4 
(PDCD4) and phosphatase and tensin homolog deleted 
on chromosome 10 (PTEN) [165]. Numerous reports 
also have shown that heat shock (HS) pre-treatment can 
cause the production of heat shock transcription factor 
(HSF1), which activates particular signaling pathways (e. 
g., HSF1/miR-34a/HSP70) to create a number of HSPs 
[166]. HSPs play a role in the obstruction of various apop-
totic pathways. Apoptosome formation and the mito-
chondrial apoptotic pathway, for instance, are blocked 
when HSP27 and HSP90 bind to Apaf-1 [167]. In order 
to prevent the caspase-mediated apoptotic pathway from 
being activated, HSP70 interacts with apoptosis inducing 
factor (AIF) [168]. By inhibiting granulosa cell apoptosis 
more effectively than with naive MSC therapy in the rat 
model of chemotherapy-induced POF, the HS pre-treat-
ment of MSCs increased the repair effect of MSCs on 
chemotherapy-induced POF [169]. Additionally, in rats 
treated with HS-MSCs, levels of sex hormones tended to 
stabilize [169]. Additionally, low-intensity pulsed ultra-
sound (LIPUS) can stimulate the expression of a number 
of growth factors and anti-inflammatory molecules, both 
of which are important for maintaining follicle growth 
and preventing GCs apoptosis in the ovary [170, 171]. 
In a recent study, LIPUS-pretreated human MSCs were 
found to have additional benefits over naive MSC therapy 
in rats with chemotherapy-induced POI, including the 
ability to reduce inflammation, inhibiting granulosa cell 
apoptosis, repairing ovarian injury, and promoting ovar-
ian function [172].

Conclusion
In spite of the encouraging outcomes of MSCs therapy in 
a diversity of diseases, dysfunction of MSCs in host tissue 
may help explain how some animal studies and clinical 
trials yield different results. MSCs are vulnerable to the 
internal environment after infusion, which reduces their 
survival and grafting to the target tissues [173]. In light 
of this problem, scientists are exploring different strate-
gies to improve the therapeutic efficacy of MSCs. Recent 
reports have clarified that pre-conditioning, as a multi-
technique approach, could improve MSCs’ survival and 
migration to the target tissue and also could potentiate 
their immunoregulatory, differentiation, and pro-angio-
genic competencies post-transplantation. Nonetheless, 

there still exist several difficulties in defining the optimal 
approaches for pre-conditioning in MSC‐based treat-
ment. The compounds used may have negative effects on 
the cell. The optimal dose of these substances should be 
determined. It must be ensured that these cells do not 
undergo abnormal genetic changes. Further, it is also 
possible to increase the therapeutic effects of MSCs by 
using combined treatments. Lastly, detailed mechanisms 
are required to be studied as no simple regulative route 
protects MSCs from damage.
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