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Abstract 

Tendinopathy is a debilitating and crippling syndrome resulting from the degeneration of tendon tissue, lead-
ing to loss of mechanical properties and function, and eventual tendon rupture. Unfortunately, there is currently 
no treatment for tendinopathy that can prevent or delay its progression. Exosomes are small extracellular vesicles 
that transport bioactive substances produced by cells, such as proteins, lipids, mRNAs, non-coding RNAs, and DNA. 
They can generate by mesenchymal stem cells (MSCs) throughout the body and play a role in intercellular communi-
cation and regulation of homeostasis. Recent research suggests that MSCs-derived exosomes (MSCs-exos) may serve 
as useful therapeutic candidates for promoting tendon healing. This review focuses on the function and mechanisms 
of MSCs-exos in tendinopathy treatment and discusses their potential application for treating this condition.
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Introduction
Tendinopathy refers to a multifaceted disease with symp-
toms including discomfort, malfunction, and exercise 
resistance decrease and comprise 30% of referrals to mus-
culoskeletal physicians [1]. Specifically, the prevalence of 
tendinopathy is 15% among elite athletes [2] and 30–50% 
among people over sixty [3]. Tendinopathy is associated 
with high morbidity with complex etiologies; however, its 
pathogenesis remains unknown. There is consensus that 
exogenous factors, such as mechanical overload, and/
or endogenous factors, such as dysregulated apoptosis, 
disrupt the balance between matrix metalloproteinases 
(MMPs) and corresponding inhibitors and growth fac-
tors [4, 5], leading to inflammation and degeneration. 
Low-level chronic tendinitis may result from mechanical 
overburden, which is likely involved in the pathogenesis 
of tendinopathy [6]. These complex pathological changes 
present a challenge in developing effective treatments 
for tendon healing. While conservative, first-principles 
treatments for tendinopathy such as rest, physiotherapy, 
and medicine may relieve symptoms, they do not address 
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the underlying pathology because of the short duration 
of disease-modifying therapeutics [7]. Although surgical 
therapies are a final resort, outcomes from surgery are 
unsatisfactory due to high rates of complications such as 
adhesion and rupture [8]. Consequently, the development 
of new treatment strategies for tendinopathy is urgent.

Due to the unique differentiation potential and self-
renewal ability, MSCs have been widely used in the treat-
ment of wound, fibrosis, and other proinflammatory 
diseases. MSCs-based treatment for tendinopathy is a 
promising method that has been developing further in 
recent years. Preclinical trials have shown that the direct 
injection of MSCs derived from adipose tissue or bone 
marrow can protect the tendon from degeneration and 
delay the progression of tendinopathy [9, 10]. Addition-
ally, MSC-based therapies for tendinopathy have been 
shown to reduce inflammation and discomfort in sev-
eral clinical trials [11]. Nevertheless, some studies have 
announced the deficiency of MSCs implantation. The 
implantation of MSCs isolated from bone marrow, for 
example, can result in teratomas [12]. As such, research-
ers are endeavoring to investigate an effective approach 
for utilizing MSCs as safe and efficacious therapies.

Examples of these efforts include therapeutic amplifi-
cation, genomic modification, drug combination, and the 
use of exosomes. Exosomes are a type of vesicle in size 
range smaller than 200  nm [13]. As a subtype of extra-
cellular vesicles, exosomes are originated from the out-
ward budding of the plasma membrane and intracellular 
endocytic trafficking pathway [13]. One advantage of 
using exosomes for treatment is that these vesicles have 
been developed to avoid the side effects of cell therapy. 
Recent research has shown that MSCs influence recipi-
ent cells mainly by secreting large amounts of exosomes. 
Exosomes have the potential to improve collagen pro-
duction and angiogenesis by increasing mRNA expres-
sion and releasing proangiogenic stimuli factors and 
regulatory proteins. ADSCs-exosomes (ADSCs, adi-
pose-derived mesenchymal stem cells) had more ben-
eficial effects on tendon repair than ADSCs-ectosomes 
in Achilles tendinopathy, this partly attribute to mRNA 
expression difference [14].

This review attempts to summarize the current status 
of the use of exosomes for the treatment of tendinopa-
thy and introduce the detailed roles that exosomes play in 
each pathological process of tendinopathy. Additionally, 
we will prospect the potential of exosome-based thera-
peutics for tendinopathy patients in the future.

Origin and development of exosomes
The exosome was first discovered in 1983 by Harding 
in the maturing mammalian reticulocyte [15]. Its trans-
portation was later found to be through exocytosis and 

transferrin receptors [16]. Following that, Raposo et  al. 
found that exosomes strengthened antigen presenta-
tion and T-cell activation and thus enhanced immunity 
[17]. The primary function of exosomes in tumors was 
unveiled since exosomes were found to produce a spec-
trum of molecules involved in immune responses and 
signal transductions [18]. With the accumulation of 
further studies, the delicate balance in cell interactions 
driven by exosomes was revealed. Since Valadi et  al. 
reported that exosomes can facilitate intercellular con-
tact via nucleic acid (mRNA and microRNA) delivery in 
2007, numerous studies have verified the indispensable 
role of exosomes in mediating intercell connectivity [13, 
19, 20]. Further study revealed that exosomes contribute 
to yet more advantages, such as improved circulation sta-
bility and biocompatibility, without immunogenicity and 
toxicity [21]. Exosomes, as a signaling modality, generally 
bear the distinct contents of their parental cells and mod-
ulate gene expression in recipient cells by releasing their 
protein, RNA, and other molecules to the recipient cells, 
thereby producing a diverse range of biological effects. In 
addition, they are feasible to mass-produce and can be 
applied directly instead of via engrafting, which avoids a 
common obstacle in traditional cell-based therapy [22]. 
Given these advantages, exosomes may be an effective 
therapeutic alternatives for tendinopathy.

Biogenesis of exosomes
Exosomes, which originate from the endosomal system 
or are released by shedding from the plasma membrane, 
are membrane-bound structures that offer a unique 
mechanism of transcellular communication through 
their release and uptake. While the function of exosomes 
is determined by the properties of their parent cells, the 
biogenesis and release processes of exosomes are com-
mon to nearly all cells [23]. The biogenesis of exosomes 
requires several stages and takes various forms. Although 
much of their complex biogenesis remains unknown, 
the mechanisms underlying the formation of exosomes 
have been identified with the progressive study. In the 
beginning, endocytic vesicles arise from the plasma 
membrane through lipid raft domains through endocy-
tosis, contributing to early intracellular endosome for-
mation. The Golgi apparatus is involved in the transition 
of endosomes from early to late endosomes and collects 
intraluminal vesicles (ILVs) in the lumen at the same time 
[24]. Early endosomes can either return to the plasma-
lemma or be inserted into ILVs [25]. Endocytic sorting of 
complex-mediated cargo into ILVs requires endosomal 
sorting complex required for transport (ESCRT)-depend-
ent and ESCRT-independent pathways [26]. These ILVs 
accumulate in late endosomes through the inward bud-
ding and cytosol sequestration of the early endosomal 
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membrane [27]. This process transforms endosomes into 
multivesicular bodies (MVBs). Later, these MVBs fuse 
with lysosomes (resulting in the degrading of the ILV) or 
plasma membranes (resulting in the release of exosomes) 
[28]. Rab guanosine triphosphatase (GTPase) proteins 
regulate MVBs transportation and fusion, and cytoskel-
etal and molecular motor are also involved in this process 
[29, 30]. However, the mechanisms that control whether 
MVBs migrate to lysosomes or the plasma membrane 
and the hidden pathways that control exosome secre-
tion are still poorly understood. Current research sug-
gests that various subpopulations of MVBs may exist in 
cells at the same time, implying that some are destined 
for degradation, while others are destined for exocytosis 
[31] (Fig. 1A).

Molecular vehicles
The composition of exosome membranes is characterized 
by lipid rafts. In contrast to their parental cells, exosomes 
have higher levels of specific lipid species including 
sphingomyelin, phosphatidylcholine, cholesterol, cera-
mide, and diacylglycerol [32, 33] (Fig. 1B-C).

The molecular components within the exosomes vary 
and are affected by a variety of factors. It is evident that 
the function of exosomes is largely determined by its 
contents, which are closely related to the properties of 
their parent cells [23]. Pefanis et al. have discovered that 
exosomes contain several types of RNA, such as miRNAs, 
mRNAs, tRNAs, lncRNAs, and rRNAs [34]. Different 
types of RNA cargo can play a specific role in cell epige-
netic alteration and biological activity. Recent research 
has found that the mutational status of tumors could be 
determined by dsDNA found in tumor-derived exosomes 
[33, 35]. In addition to nucleic acids, bioactive proteins 
that originated in the cytoplasm have also been found in 

Fig. 1 Biogenesis, biomarkers, and cargos of exosomes. A Endocytosis and plasma membrane invagination enable extracellular constituents 
and cell surface proteins to invade cells. Early endosomes are formed when a plasmalemma buds and fuses with the endoplasmic reticulum, 
trans Golgi body, and mitochondrial constituents. Then, late endosomes are formed, which undergo a second invagination by cargo modification, 
resulting in the generation of various ILVs and the development of MVBs. The majority of MVBs will then be transferred to the plasmalemma 
and dock on the inner face, while others fuse with lysosomes via autophagosomes, causing their contents to be degraded. Finally, MVBs release 
ILVs to the outside of the cell through exocytosis and become exosomes. Exosomes originating from other cells may also be taken up by the cell 
in the meantime [28]. B Exosomes include a variety of nucleic acids, amino acids, proteins, and metabolites. Rab GTPases, ESCRT proteins (see text), 
and other proteins that are often recognized as exosome biomarkers are among the proteins implicated in exosome biogenesis (CD9, CD81, CD63, 
flotillin, TSG101, ceramide, and Alix). Proteins on the surface of exosomes include tetraspanins, integrins, and immunomodulatory proteins [26]. C 
Exosomes may also contain intracellular proteins, RNA, DNA, amino acids, and metabolites, among other things [34]. (Note: This figure was created 
by the authors and there is no confliction of copyright.)
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exosomes, including those involved in the biogenesis of 
exosomes [35]. Exosomes are also able to convey proteins 
involved in intracellular assemblage and trafficking, such 
as tetraspanins, heat shock proteins, and integrins [35]. 
The contents MSCs-exos have a wide range of potential 
applications due to their ability to promote cell prolifera-
tion, cell differentiation, anti-inflammatory responses, 
and anti-aging effects. These effects make them particu-
larly promising for the treatment of various conditions, 
including but not limited to cardiovascular diseases, neu-
rological disorders, and skeletal muscle diseases.

The function of MSCs‑exos in tendinopathy
Due to their varying contents, exosomes generated by dif-
ferent tissues affect a variety of cellular properties. There-
fore, decoding the tissue-specific contents of exosomes is 
pivotal in understanding how these vehicles may affect a 
target cell. MSCs-exos have been shown to regulate the 
phenotype and function of specific cells via the nucleic 
acids and proteins they contain [36].

Maintain a homeostasis of tendon under hypoxia
Hypoxia has been identified to be the priming signal to 
initiate the molecular pathology of rotator cuff tendinop-
athy [37]. Intense hypoxia affects the vascularity of the 
tendon, causing apoptosis and necrosis of tenocytes and 
thus aggravating tendinopathy [38]. The hypoxic envi-
ronment also initiates the MSC response and alleviates 
the tendon injury. It has shown that hypoxic conditions 
(94%  N2, 5%  CO2, and 1%  O2) can stimulate the migra-
tion and proliferation of MSCs and also promote the 
secretion of anti-inflammatory factors, which can con-
tribute to tendon repair [39]. As a vehicle, exosomes may 
be involved in the secretion and delivery of these factors, 
while MSCs regulate the tissue cell response to hypoxia 
through exosomes. This suggests that exosomes derived 
from hypoxic tissue cells, especially MSCs in the hypoxia 
niche, may play a positive role in the treatment of ten-
dinopathy [40]. MSCs regulate tissue cells’ response to 
hypoxic environments by the contents of exosomes. Ten-
don stem cells (TSCs) were first identified in humans and 
mice in 2007, and they are closely related to BMSCs but 
not identical [41]. As a type of MSCs, TSCs represent a 
more appropriate cell source for the regeneration of mus-
culoskeletal tissue, particularly tendon tissue [42]. Finosh 
et  al. investigated the factors and proteins delivered by 
exosomes derived from swine hypoxia TSCs. Mass spec-
trometry analysis showed that synthesis of COLA12, 
PDIA4, COLG, FN1, CTSK, and TN-C was downregu-
lated, while COL1A2, P4HA1, PRDX2, P3H1, COL6A1, 
PPIB, LCN1, and COL3A1 was upregulated. With net-
work analyst, these proteins were revealed to interact 
with different kinds of proteins and the most essentially, 

control several pathways associated with ECM homeo-
stasis and repair [37]. The contents of exosomes derived 
from TSCs and subcutaneous ADSCs cultured in hypoxia 
were also analyzed. MMP2, COL6A, CTSD, and TN-C 
were the primary proteins regulate ECM homeostasis in 
hypoxia ADSCs, while THSB1, NSEP1, ITIH4, and TN-C 
regulated tenocytes homeostasis in hypoxia [43]. While 
these proteins are active in a variety of ECM repair mech-
anisms, they are also active in regeneration signaling 
pathways, suggesting that downstream ECM regenerative 
mechanisms should be investigated next. Regardless, the 
regenerative mediators in exosomes derived from TSCs/
ADSCs in response to hypoxia provide fresh translational 
potential for tendinopathy treatment.

Regulation of the immune microenvironment 
in tendinopathy
The immune system, as a defense system of an organism, 
protects against the invasion of pathogens. Addition-
ally, the immune system can regulate tissue develop-
ment, homeostasis, and repair processes. Specifically, 
MSCs-exos have the potential to suppress the inflamma-
tion response in early injury and facilitate tissue repair 
[44]. By suppressing the early inflammatory response 
in tendon injury, MSC-exos can affect healing directly 
[10]. Shen et  al. investigated the effect of extracellular 
vehicles (EVs) generated by ADSCs on regulating tissue 
responses in early tendon healing and discovered that 
ADSC-EVs are able to regulate the macrophage inflam-
matory response by blocking NF‐κB activity, whose 
pathway has also confirmed to have protective effect in 
tendinopathy [10, 45]. The polarization of macrophages 
transforms macrophages into one of two phenotypes: the 
M1-like phenotype, which has a proinflammatory effect 
or the M2-like phenotype, which has an anti-inflamma-
tory effect, and is among the innate immune responses. 
The phenotype transformation of M1 to M2 would facili-
tate tissue repair (Fig. 2). ADSCs-derived exosomes have 
been shown to improve the histological characteristics as 
well as biomechanical strength by enhancing M2 polari-
zation in chronic rotator cuff (RC) tendinopathy [46]. As 
such, controlling inflammation following a tendon injury 
is critical for promoting high-quality healing. TSCs-
derived exosomes (TSCs-exos) can significantly decrease 
the number of  CCR7+M1 macrophages and significantly 
increase the number of  CD163+M2 macrophages. Simi-
larly, in another study, IL-10 (M2 promoting growth fac-
tor) expression was observed to be higher, while IL-6, 
an inflammatory cytokine, was down [47]. Macrophages 
were treated with exosomes isolated from MSCs to create 
exosome‐educated macrophages (EEMs). These exoge-
nous EEMs were found to strengthen tendon mechanical 
properties, facilitating angiogenesis and showing marked 
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suppressive effects on inflammation, improving healing 
[48]. However, the underlying mechanisms of the anti-
inflammatory effects have yet to be established. Hence, 
the immunomodulatory function of exosomes should be 
further considered.

Promote proliferation and migration of tenocytes
In tendons, the primary resident cells are tenocytes. 
The proliferation and migration of TSCs and tenocytes 
are important for the maintenance of tendon integrity, 
remodeling, and repair. TSCs-exos may facilitate the ten-
ocytes’ proliferation and migration, which functions in a 
dose-dependent manner via the PI3K/AKT and MAPK/
ERK1/2 signaling pathways and decreases tenocyte apop-
tosis [47]. Bone marrow mesenchymal stem cells-derived 
exosomes (BMSCs-exos) perform at similar levels to 
TSCs-exos and are able to enhance TSCs tenogenic dif-
ferentiation [49]. Enrichment of TSCs-exos by transform-
ing growth factor (TGF) effectively accelerates tenocyte 
proliferation and migration via activation of the TGF-
Smad2/3 and ERK1/2 signaling pathways in TSCs [50] 
(Fig. 3). These studies facilitate a deeper comprehension 
of the interaction between MSCs-exos and TSCs or teno-
cytes and provide a theoretical foundation for the regen-
eration and repair of tendon injuries.

Promote the synthesis of extracellular matrix
The extracellular matrix The extracellular matrix (ECM) 
of tendon/ligament is mostly composed of aligned colla-
gen I, which gives it its structure and mechanical prop-
erties, while type III collagen accounts for only 10% of 
the total collagen in the tendons [51]. Several studies 
have established a connection between ECM disorders 
and the pathogenesis of tendinopathy. Collagen degra-
dation occurs at a faster rate than collagen synthesis in 
tendinopathy. MMPs and tissue inhibitors of metallo-
proteinases (TIMP) play a crucial role in ECM turno-
ver and remodeling, and an imbalance between the two 
may result in the destruction of tendon microstructure 
and composition [52]. In tendon healing, collagen fibers 
with a larger diameter are mechanically stronger than 
fibers with smaller diameters; therefore, collagen fiber 
size contributes to the mechanics of tendon repair [53]. 
Additionally, the ratio of type I/III collagen is critical to 
effective tendon healing [47]. TSCs-exos and ADSCs-
exos have been shown to balance ECM components and 
increase the ratio of large-diameter to small-diameter 
fibrils. This improved biomechanical properties of the 
tendon by improving the type I/III collagen ratio [14, 47]. 
The exosomes derived from tendon stem cells demon-
strated a significant reduction in MMP-3 and an increase 
in the expression of regulatory proteins such as Col-1a1 
and TIMP-3 in vitro. In vivo injection of these exosomes 

Fig. 2 Macrophages can be induced to an activated inflammatory phenotype by exosomes secreted by MSCs/TSCs. Exosomes regulate 
the inflammation process after tendon injury to facilitate proper healing through M1 down-regulation and M2 up-regulation, which alleviate 
inflammation and determine whether repair or degeneration will occur [46–48]. (Note: This figure was created by the authors and there 
is no confliction of copyright.)
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led to a marked decrease in the expression of MMP-3 
and an elevation in the expression of TIMP-3 and Col-
1a1, which increased the biomechanical properties of the 
ultimate stress and maximum load of healing tendon on 
a tendinopathy model. This provides evidence that the 
exosomes derived from tendon stem cells help balance 
the extracellular matrix of the tendon [54].

Therapeutic potential of exosomes in tendinopathy
MSCs-exos are involved in a variety of biological 
phases of tendinopathy and have become a hot topic in 
the field of tendon healing (Table  1). In addition, sev-
eral researches have focused on the exosomes-bearing 
scaffold, including collagen, gelatin, and hydrogel, for 
enhanced healing. A recent study examined how fibrin 
gel containing BMSCs-exos could boost exosome reten-
tion and stability in tendons, as well as mediate a dynamic 
remodeling process to speed tendon repair [49]. Hydro-
gel system is also a suitable carrier to deliver exosomes. 
BMSCs-exos-loaded hydrogel, for example, promote 
tendon-bone junction injury healing [55]. Although there 
is no current evidence on how this approach works in a 
model with clinical potential, success in larger mammal 
models may support clinical trials. Moreover, this raises 
the question of whether exosomes should directly con-
tact the site of injury or be used in combination with 
other approaches to facilitate healing.

Until the underlying mechanisms of biological behav-
iors of exosomes are better understood, it will not be pos-
sible to design exosomes with specific functions, such as 
exosomes that can act as messengers to regulate the char-
acteristics of different cells or function as a diagnostic 
biomarker to reveal the progression of various diseases 
[63]. Several studies have examine how exosomes can 
serve as both natural and engineered nanocarriers for 
delivering drug molecules, nucleic acids, and proteins for 
therapeutic purposes.

Exosomes could serve as a delivery systems to deliver 
inflammatory factor antagonists or miRNA for the treat-
ment of tendon diseases. Their inherent biochemical 
properties give exosomes great potential as a reliable 
drug delivery system for targeted therapy [64, 65].

Adhesive proteins within the lipid bilayer and cytosol 
enable exosomes to pair with ligands on recipient cell 
surfaces for targeted therapy and effective protein dis-
tribution [66]. Exosome-based therapeutics based on 
advanced nanotechnology has shown promise for the 
treatment of tendinopathy. In a recent study, Yao et  al. 
applied antagonists targeting human miR-21a-3p (fibrosis 
stimulate factor) to human umbilical cord mesenchymal 
stem cells (HUMSCs) and obtained functional exosomes 
with enhanced inhibition of tendon adhesion [62]. Given 
this result, it is convinced that the sustained explora-
tion of advanced design methodologies, traditional 

Fig. 3 Proliferation and migration of tenocytes can be promoted by exosomes in a dose-dependent manner via PI3K/AKT and MAPK/ERK1/2 
signaling pathways. Exosomes also decrease the apoptosis of tenocytes. MMP and TIMP released by exosomes are the most important factors 
in aiding the healing process. TSCs-exos reduce MMP-3 and MMP-9 expression while increasing expression of metalloproteinase inhibitors (TIMP-1, 
TIMP-3) and improve tendons’ mechanical properties. (Note: This figure was created by the authors and there is no confliction of copyright.)
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nanomedicine, or novel gene therapy with exosomes will 
improve treatment prospects for tendon healing.

Conclusion
Exosomes never fail to fascinate researchers. They are 
indispensable to physiological and pathophysiological 
processes, yet much about them is unknown and remains 
to be investigated. This review has taken insight from 
the biogenesis and function of MSC-exos to present the 
chance for use of exosomes in the treatment of tendi-
nopathy. Specifically, the potential functions for MSCs-
exos in the diagnosis and treatment of tendinopathy were 
reported. Although insufficient investigation has been 
done into the possible mechanisms of MSC-exos for tis-
sue regeneration, the information that has been revealed 
suggests the possibility of MSC-exos being helpful in the 
treatment and diagnosis of tendinopathy.
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