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Abstract 

Aims  Dissecting complex interactions among transcription factors (TFs), microRNAs (miRNAs) and long noncoding 
RNAs (lncRNAs) are central for understanding heart development and function. Although computational approaches 
and platforms have been described to infer relationships among regulatory factors and genes, current approaches 
do not adequately account for how highly diverse, interacting regulators that include noncoding RNAs (ncRNAs) 
control cardiac gene expression dynamics over time.

Methods  To overcome this limitation, we devised an integrated framework, cardiac gene regulatory modeling 
(CGRM) that integrates LogicTRN and regulatory component analysis bioinformatics modeling platforms to infer com‑
plex regulatory mechanisms. We then used CGRM to identify and compare the TF-ncRNA gene regulatory networks 
that govern early- and late-stage cardiomyocytes (CMs) generated by in vitro differentiation of human pluripotent 
stem cells (hPSC) and ventricular and atrial CMs isolated during in vivo human cardiac development.

Results  Comparisons of in vitro versus in vivo derived CMs revealed conserved regulatory networks among TFs 
and ncRNAs in early cells that significantly diverged in late staged cells. We report that cardiac genes (“heart targets”) 
expressed in early-stage hPSC-CMs are primarily regulated by MESP1, miR-1, miR-23, lncRNAs NEAT1 and MALAT1, 
while GATA6, HAND2, miR-200c, NEAT1 and MALAT1 are critical for late hPSC-CMs. The inferred TF-miRNA-lncRNA 
networks regulating heart development and contraction were similar among early-stage CMs, among individual 
hPSC-CM datasets and between in vitro and in vivo samples. However, genes related to apoptosis, cell cycle and pro‑
liferation, and transmembrane transport showed a high degree of divergence between in vitro and in vivo derived 
late-stage CMs. Overall, late-, but not early-stage CMs diverged greatly in the expression of “heart target” transcripts 
and their regulatory mechanisms.
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Conclusions  In conclusion, we find that hPSC-CMs are regulated in a cell autonomous manner during early develop‑
ment that diverges significantly as a function of time when compared to in vivo derived CMs. These findings demon‑
strate the feasibility of using CGRM to reveal dynamic and complex transcriptional and posttranscriptional regulatory 
interactions that underlie cell directed versus environment-dependent CM development. These results with in vitro 
versus in vivo derived CMs thus establish this approach for detailed analyses of heart disease and for the analysis 
of cell regulatory systems in other biomedical fields.

Keywords  Data integration, Cardiac development and function, Transcription factors, miRNAs, lncRNAs, Gene 
regulatory network

Introduction
Cardiogenesis is a dynamic developmental process that 
leads to the formation of a functional, contracting heart. 
The main force generating cells in mammalian heart, car-
diomyocytes (CMs), arise from progenitor cells, origi-
nating in the primary and secondary heart fields. These 
progenitor cells express cardiac-restricted transcription 
factors (TFs) that regulate downstream gene programs [1, 
2]. Among these are MESP1, which acts as a master regu-
lator of cardiac lineage commitment [3, 4]. The cardiac 
TFs GATA4, GATA6, NKX2-5, MEF2A/C, SRF, ISL1, 
TBX5, HAND1 and HAND2 subsequently play critical 
roles in regulation of early embryonic cardiogenesis [5, 
6]. The TFs HEY2 or NR2F2 and TBX5 direct ventricular 
or atrial identity [7, 8]. Any abnormalities in cardiogen-
esis associated with the dysregulation of these TFs can 
lead to congenital heart defects and dysfunctional CMs, 
which can contribute to heart failure, a leading cause of 
morbidity and mortality worldwide.

In addition to TFs, microRNAs (miRNAs) and long 
noncoding RNAs (lncRNAs) have important, but less 
well-characterized roles, particularly in human heart 
development. These noncoding RNAs (ncRNAs) modu-
late transcriptional and posttranscriptional activities 
necessary for cardiac commitment, differentiation and 
maturation [9–12] Developmentally, miRNAs such as 
miR-1, -133a, -199a, -208, let-7, -499 and -590 promote 
CM development and heart function, while miR-133a 
and -200c inhibit or repress CM development [13–16]. 
Some miRNAs facilitate reprogramming into CMs while 
others contribute to heart disease [13, 14, 16–18]. Simi-
larly, lncRNAs like H19, CARMEN, MALAT1, NEG3, 
NEAT1, TUG1, GAS5 and MIAT have been implicated 
in the regulation of heart development, cardiac function 
and disease, but their roles and regulatory functions are 
still incompletely understood [9, 19, 20]. Ultimately, the 
interplay of TFs with ncRNAs control gene expression, 
the molecular foundation upon which cardiogenesis, CM 
development and heart maturation are regulated.

Human embryonic stem cells (hESC) or induced pluri-
potent stem cell (hiPSC)-derived CMs have served as 
an in vitro surrogate model of human development and 

maturation; however, recent publications suggest that 
in  vitro derived hPSC-CMs undergo a developmental 
block which prevents them from recapitulating adult 
cardiac physiology. While this developmental block has 
been postulated to be regulated through transcriptional 
means [21, 22], the contribution of ncRNAs to CM devel-
opment and a potential developmental block in vivo and 
in  vitro are still poorly understood. A more complete 
understanding of the complex interactions among TFs 
and modulators of transcriptional and posttranscrip-
tional control of gene expression as a function of time is 
essential to unraveling developmental processes of heart 
and for identifying regulators that may prevent the faith-
ful recapitulation of development in vitro.

Computational methods and algorithms have been 
designed to infer gene regulatory networks (GRNs) 
through the integrated analysis of different types of bio-
logical omics data, such as ordinary differential equa-
tions, graphical Gaussians, Bayesian networks and 
matrix decomposition [23–25]. Web-based platforms 
and software with some of these functions have been 
developed, such as FFLTool [26], miRNACancerMAP 
[27] and PTHGRN [28], which are capable of identifying 
regulatory interactions among TFs, miRNAs or lncRNAs. 
These methods do not fully account for the dynamic and 
temporal nature of gene regulation. As an alternative, 
dynamic modeling and network approaches have been 
developed for the computational analysis of time-course 
omics data to dissect biomedical and biomedicine com-
plex systems [29, 30], for example, TIMEOR (Trajectory 
Inference and Mechanism Exploration with Omics data 
in R) that builds transcriptional target networks by cou-
pling predicted and observed TF-binding data [31]. These 
computational approaches, however, do not significantly 
improve upon existing predictions of GRNs over time. 
Consequently, it has proven extremely difficult to capture 
the dynamics of gene regulation by TFs and ncRNAs dur-
ing developmental processes.

In this study, we developed an integrated web-based 
framework, cardiac gene regulatory modeling (CGRM), 
whose aim is to identify cross-interactions among TFs, 
miRNAs and lncRNAs to better understand how these 
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factors control developmental progression of heart cells. 
CGRM incorporates two bioinformatics modeling based 
on LogicTRN [32] and regulatory component analysis 
(RCA) [33]. As a proof-of-principle, we used this mod-
eling system first to analyze different stages of CMs dif-
ferentiated in vitro from hPSC-CMs. We then extended 
these analyses to explore the regulatory landscapes of 
fetal embryo-derived atrial and ventricular CMs. The 
results from this study demonstrate that CGRM can 
reveal multi-level regulatory structures applicable to CM 
developmental dynamics that differ between in vivo and 
in  vitro models. Specifically, we have identified regula-
tory networks present in hPSC-CMs that are conserved 
in early stages, but which diverge from networks identi-
fied in late stages of development. These findings have 
implications for basic and applied research applications 
requiring hPSC-CMs and for any potential future thera-
peutic application of hPSC-CMs, which may require 
more mature CMs.

Methods
Time series genome‑wide expression data of mRNAs
The processed or raw count data of time series genome-
wide microarrays and RNA-seq expression data of 
human CMs were extracted from GEO/NCBI (Table 1). 
Based on the accessible datasets for in  vitro differenti-
ated CMs, we divided the data into groups corresponding 
to differentiation and to maturation stages. From time 
points of in vitro hPSC-CMs, we defined the early CMs 
from differentiation days (D) 0–14 or 15. From D0-D7, 
hPSCs differentiate to mesoderm and early cardiac pro-
genitors that give rise to very immature hPSC-CMs by 
D6–D8. Between D7 and D15, the cells are committed to 
the cardiac lineage but retain proliferative potential and 
are commonly considered to be immature and embry-
onic-like. We defined late CMs after D15. During this 
phase, the cells stop dividing and undergo some degree 
of maturation.

The in  vivo embryo-CM data (accession number 
GSE106118) utilized in this study were extracted from 
13 time-point single cell RNA-sequencing experiments 

from 5 to 25  weeks (W) of gestation [34]. Among the 
cardiac cells, atrial and ventricular samples are two main 
types, which have been designated as early (E) and late 
(L) stages of atrial (A) and ventricular (V) CMs. Two time 
periods, 5W–10W and 13W–25W, were used to repre-
sent the early and late stages, respectively. The mRNA 
expression data from the four subgroups, atrial (CM-AE, 
CM-AL) and ventricular (CM-VE and CM-VL) CMs, 
were separately analyzed further.

Data processing of mRNA expression in human CMs
Differentially expressed genes/mRNAs (DEGs) were ana-
lyzed using the downloaded raw counts, TPM or FPKM 
for RNA-seq and the normalized microarray datasets 
described in Table 1. We performed a statistical analysis 
to identify DEGs between different time points at early 
and late stages of each dataset. For data with raw counts, 
we used Edge-R, and other data formats were analyzed 
using the limma R package. Fold changes of mRNA 
expression at different time points were calculated. DEGs 
were set at a cutoff of fold change at least 2.0 and p value 
below 0.05.

Identification of TF logics and target genes 
through LogicTRN modeling
The LogicTRN model quantitatively infers logic rela-
tions between TFs by combining cis-regulatory logics 
and transcriptional kinetics in a single-model framework. 
This model integrates a time series gene expression pro-
file and TF-DNA binding information to decipher TF 
regulatory logics in gene transcription [32]. In brief, the 
logicTRN model treats the dynamic gene expression pro-
file as a process controlled by TF-binding occupancies 
and kinetic parameters (Eq.  1). To dissect the relation-
ships of activation/inhibition among TF-TF pairs, Log-
icTRN integrates TF Boolean logic into the framework 
and infers the most likely TF cooperation on the target 
genes. The confident TF logics were predicted by fitting a 
regression on the groups of model equations of all possi-
ble TF regulatory logics. In this study, TF logics with con-
fidence ≥ 0.9 were selected.

Table 1  Datasets of time series genome-wide expression of mRNAs during in vitro CM differentiation and in vivo CM development

GEO accession 
number

Proposed stages Materials

GSE76523 Early (0, 1, 2, 3, 4, 5, 6, 8, 10, 15 days) H7 human embryonic stem cell-CM differentiation

GSE239918 Late (15, 30, 45, 60 days)

GSE81585 Early (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 14 days) and Late (14, 30, 90 days) Human-induced pluripotent stem cell-CM differentiation

GSE35671 Early (0,3,7,10,14 days) and Late (14, 28, 45, 60, 90, 120 days)

GSE106118 Early (5, 6, 7, 9, 10 weeks) and Late (13, 15, 17, 20, 22, 23, 24, 25 weeks) Human fetal embryos-atrium and ventricle development
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where Imax denotes the initial transcription rate, Tm 
means the time delay of the TF regulation effect on the 
transcription, and Tm was set as 1 in this study. kb is the 
TF activation strength, and Y indicates the TF-binding 
strength to the target gene, which is calculated from TF-
binding signals. Note that in the algorithm, kb and Y can 
be calculated and substituted based on different TF log-
ics and the binding site identities or enrichment scores 
ChIP-seq or TF-gene binding data.

The confidence of TF logics can be inferred by follow-
ing two steps, 1) estimating the matching probability 
between TF logics and TF combinations, and 2) inferring 
the confidence score of a TF logic based on the matching 
probabilities with all the TF combinations. Therefore, we 
can obtain the most likely TF logics based on the confi-
dence score.

To run LogicTRN on the framework, two inputs, time 
series gene expression and TF-DNA binding data, are 
required. Default settings are provided, but some param-
eters can be changed, such as the TF regulation effect 
time delay and logic confidence threshold. Three types of 
regulatory logics, AND, OR and NOT are used to repre-
sent the interaction of TFs, respectively, in concurrent, 
independent and inhibitive operations. In the outputs, 
we use &, | and > to represent AND, OR and NOT logic, 
respectively. For example, “TF1 & TF2” refers to common 
action by the two TFs, “TF1|TF2” to either TF1 or TF2 
action, and “TF1 > TF2” to TF1 prior to TF2.

Identification of regulator–target interactions through RCA 
modeling
To infer interactions between regulators and targets, 
the RCA model performs regulator module identifica-
tion based on a matrix decomposition approach through 
matrix factorization [33]. This method can profile the 
regulatory interactions of each regulator with all targeted 
mRNAs or ncRNAs, without the value ranging from 0 
(i.e., non-interaction) to above. In brief, the overall pro-
cess of RCA minimizes the loss function (shown in Eq. 2) 
for obtaining the regulator-gene activity strength matrix.

where X is the gene expression matrix and Z is the reg-
ulator–target activity profile, which is built from input 
regulator–target data and X, based on the median (or 
other parameters) expression values of the regulator tar-
gets. Y is the output indicating the predicted regulator-
gene interactive strength. Through 1000 permutation 
tests, we estimated how likely true the regulator–target 

(1)

Is(t) = Imax

∞

n=1

(−1)n+1
kb

Imax

n

Y
n(t − Tm)/n!

(2)L = ||X − YZ||

interactions were by comparing the random results with 
Y. Note that input expression data (i.e., the X matrix) are 
recommended to separate up-regulated and down-regu-
lated groups when running RCA. In this study, we per-
formed RCA to identify interactions between miRNAs or 
lncRNAs and the targeted mRNAs. Users can also adjust 
the parameters. We also provide multiple methods to 
construct the regulator–target activity profile with the 
median value as the default option.

Evaluation of the interaction and association among gene 
sets
CGRM is equipped with software and statistical tools to 
quantify the interactive similarity among gene sets. By 
calculating the multiple association indexes, the frame-
work evaluates whether the resulting interactions are sig-
nificantly enriched between the target genes of different 
regulators, heart disease and functional gene sets. These 
methods include a connection specificity index [35], a 
Jaccard index, a Simpson index and a hypergeometric 
p value of over-representation test. The p values of the 
enrichments are used to evaluate whether target gene 
sets of TFs, miRNAs, lncRNAs or combinations of these 
regulators are significantly associated with functional or 
disease gene sets. The input data can be the target genes 
of different regulators (TFs, miRNAs and lncRNAs) or 
various gene sets extracted from our “Resource” (see 
the website http://​www.​bio8.​cs.​hku.​hk/​CGRM/) or from 
user-defined.

Results
Cardiac gene regulatory modeling (CGRM) framework
In this study, we postulated that complex gene regulatory 
mechanisms are driven by interplays of TFs, miRNAs and 
lncRNAs that involve both transcriptional and posttran-
scriptional activities. To uncover these mechanisms, we 
have incorporated two computational models LogicTRN 
and RCA into CGRM. The time series expression data 
of mRNAs are used as input, coupled with input regula-
tory factor-gene/mRNA interaction data extracted from 
published datasets, and experimental or computational 
analyses (see Additional file 1). LogicTRN identifies regu-
latory logics formed by the fourteen cardiac TFs and the 
target genes that represent TF-TF cooperative regula-
tion on target genes and the underlying transcriptional 
regulatory networks across time. RCA identifies the most 
likely interaction modules between miRNA/lncRNA and 
target gene/mRNA through matrix decomposition and 
factorization. The outputs obtained from the two mod-
els provide a basis to define regulatory interrelationships 
over time among TFs, miRNAs, lncRNAs and their tar-
gets from which temporal GRNs in different time periods 
can be constructed.

http://www.bio8.cs.hku.hk/CGRM/
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CGRM also incorporates software and statistical tools 
into “Interactions and Associations” that can calculate 
the enrichment of interactions among the target gene 
sets. The detailed procedure for using CGRM, selecting 
input data and the modeling parameters, can be found on 
the tutorial page of the website (http://​www.​bio8.​cs.​hku.​
hk/​CGRM/). Figure 1 displays a schematic and an over-
view of CGRM in graphic form.

Co‑regulation of TFs with ncRNAs on hESC/hiPSC‑CM 
differentiation
To conduct proof-of-principle studies with this frame-
work, we applied CGRM to analyze input datasets both 
from in vitro differentiated CMs derived from hESC/hiP-
SCs and in vivo derived CMs from atrium and ventricle. 
By studying both cell origins, the goal was to identify reg-
ulatory associations and biological functions that were 
conserved among TFs and ncRNAs during dynamic pro-
cesses of in vitro differentiation and in vivo development.

TF‑TF
To investigate the transcriptional control of cardiac 
developmental dynamics, we first focused on hESC-CMs 
generated with the H7 cell line across ten early-stage and 
four late-stage time points. Data from two other hiPSC 

lines were analyzed to exclude interline variability of reg-
ulatory networks among lines. The fourteen cardiac TFs 
used in LogicTRN are believed to play critical roles in 
modulating cardiac differentiation and specification, and 
heart development (Addition file 1). Dynamic changes in 
mRNA expression of these TFs during differentiation of 
hESC/hiPSC-CMs were observed (Additional file  3: Fig. 
S1). Particularly in early stages, significantly increased 
levels of MESP1, GATA4, GATA6, HAND1, NKX2-5, 
TBX5, etc., were detected in all lines examined. Addi-
tional file 2: Tables S1–S3 provide the predicted TF logics 
and the DEG targets using the three datasets of in vitro 
differentiated CMs. We then identified “conserved tar-
gets,” which we defined as target genes that are regu-
lated by at least one common TF and are detected both 
in the hESC dataset and at least one of two hiPSC data-
sets. By intersection of TF-target genes generated from 
the three datasets, we obtained a total of 1084 and 795 
conserved targets in corresponding early and late CMs. 
Subsequent functional annotations showed that the tar-
gets were significantly associated with critical cardiac 
biological processes and pathways. In early CMs, these 
functions included heart development, K+ and Ca2+ sign-
aling, muscle contraction and some cardiac diseases like 
dilated and hypertrophic cardiomyopathy. In late CMs, 

Dynamics of TF-lncRNA-miRNA gene regulation underlying 
cardiac development and function

CGRM

TF-target

lncRNA-target

miRNA-target

Time series 
expression data 
of mRNAs from 

hPSC-
differentiated 
CMs and from 
fetal embryo-

developed CMs

Interaction and 
Association

Cardiac TFs, miRNAs 
and lncRNAs

RCA modeling for 
TF/miRNA/lncRNA-target

LogicTRN modeling for
TFs-gene/mRNA

Function and 
disease gene sets

Data Resource

miRNAs

TFs

lncRNAs

Fig. 1  Overview of the web-based framework CGRM. CGRM establishes the cooperative regulation of TFs, lncRNAs and miRNAs on cardiac 
developmental dynamics. The main components of CGRM include computational modeling, interaction and association, and data resources

http://www.bio8.cs.hku.hk/CGRM/
http://www.bio8.cs.hku.hk/CGRM/
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additional functions involving PPAR, ECM and PI3K-
AKT signaling, and the response to hypoxia were prev-
alent (Fig.  2A, B). As these latter results are consistent 
with a more mature phenotype, these data support our 
use of “early” versus “late” CMs to define temporal regu-
latory logics.

Among the top 50 predicted logics of the cardiac TFs, 
MESP1 logics had the largest number of target genes dur-
ing the early stages of H7-CM differentiation (Additional 
file 2: Table S4). We proceeded to examine target genes 

involved in heart-related biological processes, pathways 
and disease, defined as “heart targets.” MESP1 was found 
to contribute to the largest number of either total or con-
served heart targets in early CMs (Table  2). However, 
its contribution to the regulation of heart targets in late 
CMs is reduced.

Next, we constructed temporal cardiac transcriptional 
GRNs corresponding to the early and late stages of CMs 
(Fig. 2C, D). The early GRN exhibits a dominant role of 
MESP1 that was predicted to cooperate with several 

H7-ESC-CM
3101

hiPSC-CM 
(GSE81585)

2843

hiPSC-CM 
(GSE35671)

1012

211154

H7-ESC-CM
2698

hiPSC-CM 
(GSE81585)

1142

hiPSC-CM 
(GSE35671)

1339
350 85

719

360
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B                                                                                   D

0 5 10

dilated cardiomyopathy
cell adhesion

hypertrophic cardiomyopathy
heart development

skeletal system development
cardiac muscle contrac	on

TGF-beta signaling pathway
Signaling regula	ng PSCs

cardiac muscle contrac	on
arrhythmogenic V_cardiomyopathy

K+ transmembrane transport
BMP signaling pathway

Ca2+ transport

-log10(p-value)

0 5 10 15

cell adhesion
arrhythmogenic V_cardiomyopathy

ECM-receptor interac	on
dilated cardiomyopathy

hypertrophic cardiomyopathy
response to hypoxia

angiogenesis
PPAR signaling pathway

PI3K-Akt signaling pathway
muscle contrac	on

regula	on of heart contrac	on
heart development

cardiac muscle contrac	on

-log10(p-value)

Fig. 2  Transcriptional gene regulation of hPSC-CM differentiation and maturation. A and B Comparison of the differentially expressed gene targets 
of cardiac TFs which were predicted by using three datasets of hESC/hiPSC-CMs and the significantly associated functions at the early stage (A) 
and late stage (B). C and D Cardiac TF-gene regulatory networks at the early (C) and late stages (D). Oval nodes represent the target genes of TF 
logics and are involved in heart development and function (in light red), contraction (in orange), ion transport and handling (in yellow) and stem 
cell pluripotency regulators (in light blue). Oval nodes with red and green borders indicate up- and down-regulated genes, respectively. The 
arrow edges indicate regulatory relationships of TF logics and target genes, and the thick edges indicate that the regulatory relations between TFs 
and target genes are conserved in both hESC-CMs and hiPSC-CMs
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other cardiac TFs to drive the up-regulation of heart tar-
gets related to development (IRF1, RYR2 and SLN), mus-
cle contraction (MYL4, TNNT2 and TNNC1) and ion 
transport and handling (KCNQ1 CACNA1C and SCN3B), 
and to down-regulate stem cell pluripotency regulators 
(POU5F1 and SOX2). In late CMs, cardiac TFs HAND2, 
GATA6, SRF, NR2F2 and TBX5 are predicted to regulate 
a large set of downstream heart targets (Table 2). These 
TFs appear to co-activate target genes important for car-
diac function (Fig.  2D). For example, the predicted up-
regulation of PPARGC1A in late stages is validated by the 
previous report that in vitro dysregulation of PPARGC1A 
contributes to a developmental block that impedes CM 
maturation [36]. Our findings support the known role of 
MESP1 in early cardiac development and lineage speci-
fication and the roles of the other cardiac TFs to control 
later stages of cardiac development and function. The 
comparative data between hESC-CM and hiPSC-CM are 
also in accord with the identification of conserved car-
diac transcriptional regulatory programs.

TF‑miRNA
To identify interactions between TFs and miRNAs in 
regulation of CM differentiation processes, we utilized 
the RCA model to identify putative target genes of seven 
selected miRNAs (miR-1, -133a, -199a, -208, -23, -499a 
and -590) important for promoting cardiac development 
and function (Additional file  1). According to the pre-
dicted DEG targets of these miRNAs from the same three 
hESC/hiPSC-CMs (Additional file  2: Tables S1–S3), we 

identified cardiac TF-miRNA co-regulated targets and 
determined that ~ 30 to 40% of them are heart targets.

Like TFs, we defined “conserved miRNA targets” to be 
genes regulated by at least one common miRNA both in 
hESC-CMs and in hiPSC-CMs. Of these, 56.7% or 31.5% 
of the heart targets are likely co-regulated by cardiac TFs 
and by at least one or two common miRNAs in early 
hESC-CMs (Fig. 3A), especially miR-1 and -23 that have 
more conserved targets (Table  3). We determined that 
miR-1, -23 and -133a or -590 likely interact frequently 
with cardiac TFs to regulate heart targets in early CMs. 
Among the analyzed cardiac TFs, MESP1, HEY2, GATA6 
and HAND1 cooperate with the miRNAs at the highest 
frequency (Additional file 2: Table S5). Their interactions 
are significantly enriched in early differentiation (Addi-
tional file 3: Fig. S2).

In late-stage CMs, we focus on ten miRNAs (let-
7i, miR-1, -133a, -15, -199a, -200c, -29a, -31, -34a and 
-499a) predicted to be important for cardiac develop-
ment and maturation (Additional file  1). The subsets of 
heart targets co-regulated by the selected TFs and miR-
NAs differ among the three CM datasets (Table 3). The 
conserved heart targets of the ten miRNAs in H7-CMs 
are decreased to 39.2% or 14.6% for at least one or two 
common miRNAs (Fig.  3A) and also for every miRNA 
(Table 3). GATA6, HEY2, MESP1, HAND1 and HAND2 
were predicted to be the main TFs that interact with let-
7i, miR-15, -200c and -499a (Additional file 2: Table S5, 
Additional file 3: Fig. S2). By contrast, in hiPSC-CM data-
sets, the main TFs are SRF, GATA6, NR2F2, HAND2 and 

Table 2  Heart target genes of cardiac TFs during hESC/hiPSC-CM differentiation

The “conserved target” is the target genes that are regulated by at least one common TF, and are detected by H7-ESC dataset and at least one of two hiPSC datasets 
(GSE81585 and GSE35671)

TF Number of TF-target genes at early stage Number of TF-target genes at late stage

H7-ESC-CM hiPSC-CM 
(GSE81585)

hiPSC-CM 
(GSE35671)

Conserved 
target

H7-ESC-CM hiPSC-CM 
(GSE81585)

hiPSC-CM 
(GSE35671)

Conserved 
target

GATA4 51 52 33 28 54 38 14 31

GATA6 120 120 114 71 198 99 30 90

HAND1 91 75 40 46 110 54 9 53

HAND2 101 77 31 59 138 62 51 58

HEY2 130 120 78 85 111 55 26 51

IRX4 20 9 5 11 35 4 6 8

ISL1 25 22 12 16 19 12 12 10

MEF2A 67 67 63 42 89 61 39 51

MEF2C 39 40 4 26 29 37 13 12

MESP1 188 176 100 103 162 82 45 86

NKX2-5 83 50 25 39 56 62 24 34

NR2F2 94 89 47 58 27 124 44 16

SRF 85 94 78 36 121 74 66 66

TBX5 95 61 43 54 111 84 44 64
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MEF2A that jointly work with miR-200c, -34a, -133a or 
-15, suggesting potential interline variability in the con-
trol of late CM development. The number of total and 
conserved targets of the TF-miRNA decrease from early 
to late stages, consistent with divergent TF-miRNA 
gene regulatory programs during the process of cardiac 
maturation.

TF‑lncRNA
We then employed the RCA method to predict DEG 
targets of nine pre-defined lncRNAs known to be 

important for heart development and function (Addi-
tional file 1). The predicted target genes of these lncR-
NAs (Additional file  2: Tables S1–S3) were used to 
unravel co-regulation of cardiac TFs and the lncRNAs 
(Additional file  2: Table  S6). Among these, lncRNAs, 
NEAT1, MALAT1, MEG3 or GAS5 were predicted to 
have the largest number of heart targets in common 
with cardiac TFs in the early-CMs (Table  3). The pro-
portion of the conserved heart targets regulated by 
cardiac TF and at least one or two common lncRNAs 
was 55.4% or 35.7% (Fig. 3B), in particular NEAT1 and 

Fig. 3  Target genes co-regulated by cardiac TFs, miRNAs and lncRNAs during hPSC-CM differentiation and maturation. A and B The percentage 
of the conserved targets of miRNA-TF or lncRNA-TF among all heart targets of hESC-CMs at the early (A) and late (B) stages. The “conserved targets” 
refer to those that are commonly regulated by at least one (n ≥ 1) or two (n ≥ 2) shared miRNAs or lncRNAs in both hESC-CMs and hiPSC-CMs. 
C and D The cardiac gene regulatory networks (GRNs) of TF-miRNA-lncRNA at the early (C) and late (D) stages. Oval nodes represent the target 
genes of TFs and miRNAs or lncRNAs, and are involved in heart development and function (in light red), contraction (in orange), ion transport 
and handling (in yellow), apoptosis (in gray) and stem cell pluripotency regulators (in light blue). Oval nodes with red and green borders indicate 
up- and down-regulated genes, respectively. The arrow edges indicate regulatory relationships of TFs and miRNAs or lncRNAs on target genes, 
and the thick edges indicate conserved regulatory relations detected in both hESC-CMs and hiPSC-CMs
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MALAT1 (Table  3). But in late stage, such proportion 
decrease to only 36.4% or 14.7% (Fig. 3B).

In the late-stage CMs, the number of heart targets of 
TF-lncRNA displays a divergent trend, with an increase 
in hESC-CMs and decrease in hiPSC-CMs (Table 3). The 
enrichment analysis shows significant overlap between 
the target genes of lncRNAs NEAT1, MALAT1, MEG3 
and MIAT with cardiac TFs (Additional file  3: Fig. S3). 
Overall, a large divergent interplay between the heart tar-
gets of TF-lncRNAs was observed in the late-stage hESC-
CMs and hiPSC-CMs (Additional file 3: Fig. S3).

TF‑lncRNA‑miRNA
By identifying the interplays among TFs, lncRNAs and 
miRNAs predicted to regulate heart targets, we have 
been able to construct early- and late-stage cardiac GRNs 
(Fig.  3C, D). From the early GRN, we observed a strik-
ing role of MESP1 in linking miRNAs and lncRNAs to 
promote CM differentiation (Fig.  3C). Overall, coop-
eration among the three types of factors is predicted to 
contribute to the up-regulation of heart targets, such 
as CDKN1A, CKM, COL1A1, MYL7, HRC, TGFBR3, 
HES1 and down-regulation of pluripotent TFs SOX2 and 
POU5F1. The cardiac TFs also work with miRNAs to reg-
ulate CACNA1C, KCNA5, KCNQ1 and KCNJ2, GJA1 and 

HCN4, and with the lncRNAs to regulate TNNT2, BMP2, 
NANOG and JARID2, which are important for cardiac 
development and function. In the late GRNs (Fig.  3D), 
we also identified the heart targets co-regulated by TF-
miRNA-lncRNA, including those associated with ion 
transport, metabolism and contraction such as MYL2, 
TBX3, CKM, KCNJ2, SCN4B, SERPINE1 and CASQ2. 
However, some targets (e.g., CD36, CDKN1A, CKM, 
KCNJ2, KCNA5 and TNNT2) were up-regulated by dif-
ferent combinations of TFs and ncRNAs in early and late 
CMs. This analysis thus reveals previously unrecognized, 
complex regulatory mechanisms driven by interplays 
of TF-lncRNA-miRNA to control transcript levels that 
likely contribute to dynamics of CM differentiation and 
maturation.

Application of CGRM to in vivo human embryonic cardiac 
development
We extended the application of CGRM to in vivo human 
embryonic cardiac development, ultimately to identify 
complex TF-miRNA-lncRNA target genes conserved in 
differentiated CMs. Our analysis of input mRNA expres-
sion data from in vivo CMs identified DEG targets in four 
subgroups, early (CM-AE and CM-VE) and late (CM-AL 
and CM-VL) stages that were strongly associated either 

Table 3  Heart target genes co-regulated by ncRNAs (miRNAs and lncRNAs) and cardiac TFs during hESC/hiPSC-CM differentiation

The “conserved target” is the target genes that are regulated by at least one common miRNA or lncRNA, and are detected by H7-ESC dataset and at least one of two 
hiPSC datasets (GSE81585 and GSE35671)

ncRNAs Number of heart target genes (early stage) ncRNAs Number of heart target genes (late stage)

H7-CMs hiPSC-CMs 
(GSE81585)

hiPSC-CMs 
(GSE35671)

Conserved 
targets

H7-CMs hiPSC-CMs 
(GSE81585)

hiPSC-CMs 
(GSE35671)

Conserved 
targets

miR-1 57 56 59 27 let-7i 74 22 15 12

miR-133a 39 67 51 20 miR-1 55 29 28 14

miR-199a 41 57 30 17 miR-133a 51 34 24 10

miR-208 40 39 49 15 miR-15 95 33 33 14

miR-23 81 75 50 29 miR-199a 61 21 23 10

miR-499a 39 56 46 17 miR-200c 90 43 26 17

miR-590 60 57 34 17 miR-29a 46 26 29 15

miR-31 42 35 23 11

miR-34a 61 39 35 19

miR-499a 76 39 17 12

GAS5 43 55 64 18 GAS5 67 57 17 9

H19 42 47 63 16 H19 47 63 8 12

MALAT1 60 107 38 24 MALAT1 83 32 38 26

MEG3 30 123 40 14 MEG3 94 19 8 9

MIAT 19 48 20 2 MIAT 69 43 18 5

NEAT1 82 94 85 40 NEAT1 101 39 63 40

PVT1 49 62 23 17 PVT1 52 14 11 6

TUG1 40 60 30 14 TUG1 69 68 10 8

XIST 27 50 17 8 XIST 51 26 3 2
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with heart development or with heart disease (Additional 
file 2: Tables S7–S8). These regulatory associations were 
significant when analyzed using CGRM’s statistical tools 
(Fig.  4A). These results are consistent with an interplay 
of TFs and ncRNAs in the regulation of embryonic dif-
ferentiation and heart formation during the early in vivo 
cardiac development.

A high proportion of heart targets were found to be 
regulated mainly by logics of GATA6, HEY2, NR2F2, 
HAND2 or TBX5 in early atrial and ventricular CMs 
(Additional file  2: Table  S9). Cardiac TFs during late 
stages regulate far fewer heart targets in CM-AL and 
CM-VL relative to the early stages (Additional file  2: 
Tables S9 and S10). Comparisons of the ventricular and 
atrial samples show that HEY2, a TF known to con-
trol ventricular identity, was predicted to regulate large 
numbers of DEGs in CM-VE, while atrial-prevalent TFs 
such as NR2F2 regulate big number of DEGs in CM-
AEs (Additional file 2: Table S10). Both ventricular- and 
atrial-prevalent TFs regulate many more DEGs during 
early stages when compared to late stages.

We used CGRM to identify those heart targets that are 
similarly regulated during in  vitro CM differentiation 
and in  vivo CM development. Our goal was to identify 
those regulatory programs that are conserved between 
the two different CM sources, which may be reflective 
cell autonomous mediated regulatory mechanisms. Fig-
ure 4B, and C show the heart targets that are predicted 
to be regulated jointly by cardiac TFs, miRNAs and lncR-
NAs. Approximately 80% of the intersected targets are 
predicted to be regulated by at least one common fac-
tor among TFs and ncRNAs in the four CM subgroups. 
During early stages, 259 and 171 heart targets in atrial 
and ventricular CMs, respectively, were also present in 
the hPSC-CM datasets, with 119 targets shared by both 
(Fig.  4B). A majority of the conserved targets involves 
contraction, heart development and diseases. By compar-
ison, CM-AL and CM-VL shared far fewer conserved tar-
get genes (74 and 122, respectively) with in vitro derived 
hPSC-CMs in late stages (Fig. 4C). Unlike the early stages, 
most genes involved in contraction and cardiac diseases 
are specific to in  vivo samples and are not conserved 
relative to hPSC-CMs during late stages (Fig. 4B, C). The 
most divergent targets correspond to genes related to 
apoptosis, cell cycle & proliferation and transmembrane 
transport. This divergence is notable among both early- 
and late-stage CMs, indicating that these processes are 
poorly conserved between CMs in vitro and in vivo. We 
also compared the conservation among different types 
of regulators. Among TF-miRNA targets, a high degree 
of conservation was observed among in vitro and in vivo 
derived CMs, especially those from early stages [CM-
AE (46.1%) and CM-VE (33.3%)] compared to late stages 

[CM-AL (25.0%), vs. CM-VL (18.4%)] (Fig.  4D). In con-
trast, the number of the conserved targets of TF-lncRNA 
is lower than that of TF-miRNA (Fig.  4E), indicating 
more divergent target genes of TF-lncRNA.

Next, we compared the heart targets from in vivo CMs 
to in  vitro CMs. We identified target genes consistently 
up-regulated among CM-AE, CM-VE and the hPSC-
CMs at early stages (Fig.  5A), including CASO2, CAV2, 
COL1A1, HRC, MYL9, RYR2, TGFBR3 and TNNI3. Atrial 
genes MYL7, TBX5, KCNA5 and other cardiac genes 
like TNNT2, CD36, NPPA, TTN and TRDN were up-
regulated in both CM-AE and hPSC-CMs. Conservation 
between CM-VE and hPSC-CMs are also evident, with 
ventricular-prevalent genes such as MYH7 up-regulated 
in both. However, some divergence was noted between 
in  vitro and in  vivo samples, with ventricular-prevalent 
K+ channel gene KCNQ1 [37] being up-regulated in 
CM-VE, but differentially regulated in the various hPSC-
CMs. HEY2, known to promote ventricular and repress 
atrial identities, was reduced in CM-AEs as would be 
expected, but its expression was divergently regulated in 
different hPSC-CM datasets. These differences may rep-
resent dysfunctional regulatory mechanisms that impede 
hPSC-CM development or maturation. Significant diver-
gence was found between in  vitro and in  vivo samples 
during late stages (Fig. 5B). Most of the heart targets are 
elevated in late relative to early-stage hPSC-CMs but 
are suppressed or largely unchanged in late-stage atrial 
and ventricular CMs. Examples include CKM, TNNC1 
and TNNI3. Some are specifically reduced in CM-VL 
(KCNQ1, MYL3 and MYL4) or CM-VL (DES, MYL7, 
MYL2, NPPA, TNNT2 and PLN).

While it is possible that our direct comparisons of 
early and late hPSC-CMs vs atrial or ventricular CMs 
may not be developmentally equivalent, the differences 
we identified between hPSC and embryo-derived sam-
ples may be critical for better understanding why hPSC-
CMs fail to adequately mature in vitro relative to in vivo 
derived CMs. Noticeably, most target genes involved in 
apoptosis, cell cycle & proliferation and transmembrane 
transports are not conserved. They are co-regulated dur-
ing the early stages, likely through interactions of TFs 
(GATA6, NR2F2, HAND1 and HEY2), miRNAs (miR-
133a, -199a, -590 and -499a) or lncRNA (GAS5 and 
MALAT1) (Table 4). During the late stages, however, the 
principal regulators include different sets of TFs (SRF, 
NR2F2, TBX5 and HEY2), miRNAs (miR-1, -133a, -199a 
and -200c) and lncRNAs (PVT1, MALAT1 and XIST) 
(Table 4). Moreover, CD36, which we have described as a 
marker for maturation in hPSC-CMs and which is known 
to be important for heart function [38], is up-regulated in 
both CM-AL or CM-VL (Fig. 5B). Interestingly, most of 
the cardiac targets identified through these analyses are 
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Fig. 4  Gene co-regulation of TFs, miRNAs and lncRNAs on the early and late stages of in vivo CM development. A Enrichment analysis 
of the co-regulated genes of TF-miRNA and TF-lncRNA related to heart development, function and disease during in vivo fetal embryo-derived 
atrial and ventricular CM development. The p values represent significance of the enrichment analysis based on hypergeometric distribution. 
B and C Comparison of the differentially expressed heart genes regulated by the cardiac TFs, miRNAs or lncRNAs. The datasets of hPSC-CMs 
and fetal embryo-derived atrial and ventricular CMs at the early stages (B) and late stages (C) were used. The number in the Venn diagram shows 
the number of heart targets shared by the different datasets. The numbers of “conserved heart targets” shown in the parentheses indicate how many 
target genes are regulated by at least one common TF, miRNA or lncRNA between hPSC-CMs and embryo-derived CMs, i.e., CM-AE, CM-AL, 
CM-VE and CM-VL. The associated pathways, processes and heart diseases with the conserved and specific target gene programs are shown 
correspondingly. The black bars correspond to conserved targets, and the open bars are those that are specific to either CM-AE, CM-AL, CM-VE 
and CM-VL (i.e., not conserved relative to hPSC-CMs). D and E The percentage of the conserved targets of miRNA-TF (D) and lncRNA-TFs (E) in total 
heart genes of hESC-CMs at the early and late stages
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associated with heart disease, particularly heart failure, 
arrhythmia and cardiomyopathy (Fig. 5A, B), underscor-
ing the potential involvement of our chosen regulators in 
regulating cardiac pathogenesis.

To explore a more comprehensive transcriptional and 
posttranscriptional regulatory landscape of cardiac dif-
ferentiation and maturation, we combined all the heart 
targets of the TFs, lncRNAs and miRNAs in human 
embryo-CMs and hPSC-CMs, and propose a dynamic 
picture of hierarchical regulatory mechanisms underly-
ing the cross talk among the TFs, ncRNAs and targets 
and the associated signaling pathways and biological 
processes (Fig. 5C). These results are based on the highly 
conserved co-regulatory networks of TF-ncRNA iden-
tified to account for the control of transcription during 
in  vitro hPSC differentiation and in  vivo cardiac devel-
opment. We propose that this integrated data analysis 
using CGRM readily assembles information of ncRNAs 
with cardiac TFs to infer conserved transcriptional and 
posttranscriptional regulatory modules that are likely 
cell autonomous as well as predict how and when dif-
ferences between in vitro and in vivo development over 
time occur in human CMs that may explore developmen-
tal blocks in vitro.

Discussion
To unravel highly complex or divergent regulatory mech-
anisms underlying in vitro versus in vivo heart develop-
ment and function, we introduce the CGRM framework 
that performs sophisticated integration and computa-
tional modeling of time series biological data. In this 
study, we focused on in vitro differentiated hPSC-CMs at 
two temporal stages, and then we compared these data 
with published datasets obtained from in  vivo derived 
cardiac samples. To accomplish this, CGRM incorpo-
rates two gene regulatory models, LogicTRN and RCA. 
LogicTRN reliably and robustly captures the most likely 
TF-TF regulation of transcriptional dynamics [32]. RCA 
modeling captures the sparse structure in expression pro-
files and infers gene regulatory programs through matrix 
factorization [33]. As a partial validation of our approach, 
LogicTRN and RCA have been used to identify gene 
regulatory programs underlying progression of different 
cancer in human [32, 33]. CGRM, which utilizes time 

series expression profile data from mRNAs and various 
regulator–target data, is capable of decoding potential 
complex relationships over time among multiple regula-
tory factors and targets from complex biological systems.

Currently, the web server TIMEOR displays cause-
and-effect modeling to integrate time series and multi-
omics data for inferring temporal dynamics between TFs 
[31]. This approach identifies potential TFs that directly 
interact to form a TF-target network by analyzing DEGs 
and coupling predicted and observed TF-binding data. 
Although TIMEOR is used to determine how key regu-
latory targets interact with each other over time, it does 
not efficiently integrate different types of data, especially 
gene expression and regulator–target relationships. An 
ordinary differential equations-based modeling couples 
changed levels of mRNA expression with time points 
during the differentiation of multipotential hematopoi-
etic progenitors [39]. This method infers the type and 
strength of regulatory interconnections and dynamics of 
GRNs including key TFs and cytokine receptors; how-
ever, it or TIMEOR does not construct multi-layered 
regulatory networks. CGRM addresses these limitations 
and considers the complex interactions among TFs, 
miRNAs and lncRNAs to cooperatively regulate heart 
development and function. To ensure optimal efficiency 
of CGRM in prediction of the putative targets generated 
from the modeling, LogicTRN can identify and prioritize 
unique TF regulatory logics, which refer to high poten-
tial and regulated targets. RCA identifies the most likely 
targets of regulators using the permutation test to evalu-
ate the significance of results from output matrices. Thus, 
CGRM allows users to identify or confirm transcriptional 
controls of gene regulation during cardiac development.

Our results are consistent with a strong and conserved 
regulatory role of MESP1 in initiating transcriptional 
regulation of CM differentiation at an early stage, as well 
as their related pathways or functional processes, sup-
porting conclusions drawn from previous biological 
experiments [3, 4]. Comparatively, unlike TFs, the roles 
of ncRNAs are less well characterized. Each ncRNA can 
potentially regulate a certain number of targets with 
redundancies, which makes co-regulation even more 
critical to control transcript levels. Here, we constructed 
the GRN linking the cardiac TFs and selected miRNAs in 

Fig. 5  Cardiac gene regulatory programs of TFs, miRNAs and lncRNAs in fetal embryo-developed atrial and ventricular CMs. A and B comparison 
of heart target genes generated from in vivo atrial and ventricular CMs with in vitro hPSC-CM data during the early (A) and late stages (B). The 
listed differentially expressed gene targets show the conserved regulatory programs between both in vivo and in vitro and the association 
with heart development and disease. Underlined TFs, miRNAs and lncRNAs indicate consistency of the target genes up- or down-regulated 
by these common factors between the in vivo atrial or ventricular CMs and hPSC-CMs. Among heart disease, HF = heart failure, arr = arrhythmia 
and cmp = cardiomyopathy. The boxes in red and green indicate up- and down-regulated target genes, respectively. C A proposed model 
of dynamic development of in vitro hPSC-CMs and in vivo embryo-CMs. Rectangle boxes show the associated biological processes and pathways 
of the target genes. Those in red indicate processes and pathways whose targets are up-regulated ↑, those in green are down-regulated ↓, 
and those in gray are both up- and down-regulated genes

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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early hPSC-CMs. Our results show cooperation among 
miR-1, -133, -208 and -499 to contribute to early differ-
entiation of CMs [40, 41]. At late stages, our modeling 
identified miR-200c to be one of the main regulators, 
and this is supported by our previous study regarding 
the inhibition of miR-200c on Ca2+, K+ and Na+ trans-
port and handling, contraction and heart function [42]. 
Consistently miR-1, which is widely reported to activate 
cardiac differentiation, has been shown experimentally to 
regulate KCNJ2 and GJA1 [43], and cardiac TF MEF2A, 
MEF2C, MEIS1, GATA4 and HAND2 [44–47]. LncRNAs 
are the most diverse and heterogeneous class of ncRNAs. 
There have been many reports demonstrating involve-
ment of lncRNAs in CM differentiation and maturation, 
and disease [9, 11, 19, 20, 48]. Our results indicate the 
importance of NEAT1 and MALAT1 in hESC/hiPSC-
CM differentiation, and of GAS5, H19, MALAT1 and 
MEG3 in fetal heart development. In particular, NEAT1, 
H19 and MEG3 regulate many cardiac miRNAs in the 
early hPSC-CMs. Noticeably, these lncRNAs could work 
with cardiac TFs to co-regulate heart target genes con-
sistently in both in vitro and in vivo CMs. Although our 
computational prediction highlights important regula-
tory roles of lncRNA in both cardiac differentiation and 
development, the overall picture of lncRNA regulatory 
function is divergent. Nevertheless, the lncRNAs and the 
target gene programs identified in this study may provide 
a guide for experimental examination and verification.

As potential limitations, in  vitro studies had differ-
ent cultivation conditions among three datasets, with 
one involving lactate selection to eliminate non-CMs. 
Despite these differences, CGRM identified conserved 
transcriptional regulatory program underlying cardiac 

differentiation during early stages of differentiation. Con-
versely, late-stage regulatory activity is less conserved 
among the three hPSC-CM datasets, particularly for the 
lncRNAs and miRNAs. Thus, these culture differences 
might be reflected in the transcriptome of these cells; 
however, it is also possible that these divergent factors 
may contribute to the “developmental” block observed in 
hPSC-derive CMs. It is therefore noteworthy that most 
of the functional studies involving hPSC-CMs are per-
formed using CMs at late stages when heterogeneity is 
known to be a crucial problem in the use of hPSC-CMs 
[49, 50]. Our study thus also highlights factors that might 
be inconsistently regulated among different protocols/
studies, including ncRNAs, which may shed light on the 
issue of culture heterogeneity.

We compared our in vitro differentiation in hPSC-CM 
samples with publicly available data using CMs isolated 
from human fetal embryos. When compared, the great-
est degree of conservation was detected from com-
parisons of early staged human cells. However, some 
differences were observed. Unlike in hPSC-CMs, MESP1 
does not appear to be a driver TF during the “early stage” 
CMs obtained during fetal cardiac development, i.e., in 
CM-AE and CM-VE, suggesting that the “early stages” 
are not equivalent between the in vitro and in vivo data-
sets. Our early-stage in  vitro data involve days 0–15 of 
differentiation and cover mesodermal and cardiac com-
mitment, when MESP1 is known to be a critical regula-
tor. Conversely, our earliest time-point in vivo is the 5th 
week, when CMs are already committed, and MESP1 
may be dispensable. Instead, we find that TFs known to 
control ventricular and atrial specification such as HEY2, 
NR2F2 and TBX5 can regulate more DEGs during the 

Table 4  Specific pathways and biological processes co-regulated by TF-lncRNA-miRNA during development of embryo-derived arial 
and ventricular cardiomyocytes

Processes/pathway Embryo-CMs Main regulatory factors

TF miRNA lncRNA

Apoptosis CM-AE GATA6, HEY2 miR-199a, -590 GAS5, PVT1, MEG3

CM-VE HEY2, NR2F2, TBX5, HAND1 miR-499a, -133a GAS5, MALAT1

CM-AL SRF, TBX5, NR2F2 miR-200c MALAT1, PVT1, XIST, MEG3

CM-VL SRF, NR2F2, HEY2 miR-499a, -133a MALAT1

Cell cycle CM-AE HEY2, GATA6 miR-499a, -133a, -590 PVT1, GAS5

CM-VE NR2F2, MESP1 miR-199a, -499a, -590 GAS5, H19

CM-AL HEY2, HAND1, SRF, NKX2-5, TBX5, NR2F2 miR-200c, -199a

CM-VL MESP1, SRF, NR2F2 miR-199a, -499a, -133a MIAT, MALAT1

Cell proliferation CM-AE GATA6, SRF miR-590, -23, -199a MALAT1

CM-VE NR2F2, HAND1 miR-590, -133a GAS5, MALAT1

CM-AL TBX5, GATA6 miR-200c, -1 PVT1, MALAT1

Transmembrane transport CM-VL GATA6, NR2F2 miR-1 MALAT1
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“early” in  vivo derived samples (CM-VE and CM-AE) 
than in late staged samples (CM-VL and CM-AL), indi-
cating their importance for commitment to the ventricu-
lar/atrial fate during the early stages.

A significant finding from this study is the pronounced 
regulatory dichotomy observed between the regulatory 
programs from in  vitro and in  vivo CM samples during 
later stages. Our data show that the two sample sets share 
relatively few common heart targets. Of note were genes 
involved in apoptosis, cell cycle and proliferation and 
transmembrane transport, which are particularly diver-
gent. Our analysis further indicates that the regulation of 
cardiac miRNAs and lncRNAs on in vivo specific targets 
in these processes and pathways is highly divergent [9]. 
However, some transcripts like CD36, which is important 
for cardiac fatty acid metabolism, is consistently up-reg-
ulated on both in vitro and in vivo CMs. CD36 in hPSC-
CMs and independent of differentiation protocol acts 
as a marker of cardiac maturation [49]. Current analysis 
again confirms CD36 as a target of regulatory programs 
that govern both in  vitro and in  vivo development [38]. 
This finding is in agreement with results from our labora-
tory and others that in  vitro derived hPSC-CMs do not 
fully mature nor do they fully recapitulate the in  vivo 
phenotype [38].

Conclusions
Our findings indicate that CGRM represents an inno-
vative tool for studying the dynamic gene regulation 
underlying heart development. It is particularly well 
suited to identify distinct regulatory programs of car-
diac TFs, miRNAs and lncRNAs that are predicted to 
modulate cardiac differentiation and development. 
By identifying those complex regulatory networks 
that diverge between in  vitro systems and in  vivo 
derived cells, the insights gained from this framework 
are potentially important for basic and applied stud-
ies of hPSC-CMs. By identifying divergent pathways, 
approaches can be used to drive in  vitro maturation, 
which will be of benefit to pharmacological testing and 
potential therapeutic applications. Specifically, use of 
this framework should prove valuable to the develop-
ment of testable hypotheses designed to identify con-
served and divergent pathways that may account for 
differences among hPSC-CMs that fail to mature as 
their in vivo counterparts. The web interface also pro-
vides users the cardiac data resources so that they have 
the option of submitting the existing data or providing 
self-defined data. The workflow of CGRM produces 
output tables, which can be downloaded for further 
analyses of regulator interaction, heart function, dis-
ease genes and so forth. In conclusion, this is the first 

web-based framework that can search for cardiac 
gene regulatory modeling to uncover dynamic tran-
scriptional gene regulation in a high-throughput man-
ner. Although this proof-of-principle study focused 
on the heart, CGRM can acts as a general framework 
that allows the integrated analysis of diverse biological 
systems.
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