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Abstract 

Background Natural killer (NK) cells hold great promise in treating diverse hematopoietic and solid tumors. Despite 
their availability from peripheral blood and cord blood, stem cell‑derived NK cells offer an ’off‑the‑shelf’ solution. 
Hematopoietic stem and progenitor cells (HSPCs) derived from cord blood pose no risk to the newborn or mother 
and are virtually ideal sources for NK cell differentiation.

Methods We developed a modified protocol to differentiate HSPCs to NK cells under serum‑free conditions using 
defined factors. The HSPC‑derived NK (HSC‑NK) cells could be expanded in a K562 feeder cell‑dependent manner. 
Furthermore, using lentivirus transduction, chimeric antigen receptor (CAR)‑modified HSPCs could be differentiated 
into NK cells, leading to the establishment of CAR‑NK cells.

Results The efficiency of NK cell differentiation from HSPCs was increased through the simple modulation of osmotic 
pressure by the addition of sodium chloride or glucose. Furthermore, the hyperosmosis‑primed HSC‑NK cells exhib‑
ited enhanced proliferation capacity and maintained normal functional characteristics, including transcriptome 
and antitumor efficacy. The optimized protocol yielded approximately 1.8 million NK cells from a single CD34‑positive 
cell within a 28‑day cycle, which signifies more than a ten‑fold increase in efficiency relative to the conventional 
methods. This optimized protocol was also suitable for generating CAR‑NK cells with high yields compared to stand‑
ard conditions.

Conclusions The results of this study establish high osmotic pressure as a simple yet powerful adjustment that sig‑
nificantly enhances the efficiency and functionality of HSC‑NK cells, including CAR‑NK cells. This optimized protocol 
could lead to cost‑effective, high‑yield NK cell therapies, potentially revolutionizing cancer immunotherapy strategies.
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Background
Natural killer (NK) cells are cytotoxic innate lymphoid 
cells that offer significant potential for immunother-
apy [1, 2]. They directly annihilate cancerous or virally 
infected cells that suppress HLA class I molecules and 
communicate through cytokine and chemokine produc-
tion [3]. Remarkably, unlike T cells, NK cells from allo-
geneic sources, including peripheral blood (PB) and 
umbilical cord blood (CB), can be safely utilized with-
out the necessity for full HLA matching [4]. Clinical 
trials have confirmed the safety of allogeneic PB- and CB-
derived NK cells, with no incidence of graft-versus-host 
disease (GVHD) [5], establishing NK cells as promising 
candidates for ’off-the-shelf ’ cell therapy products [6].

Chimeric antigen receptor-modified T (CAR-T) cell 
therapy has emerged as an innovative immunothera-
peutic strategy for treating cancers, notably refractory 
acute lymphoblastic leukemia [7, 8]. However, treat-
ment with autologous CAR-T cells has been linked to 
significant toxic effects, such as cytokine release syn-
drome and neurotoxicity [9–11]. Consequently, an 
effective allogeneic product with a superior safety pro-
file could circumvent these limitations. In this regard, 
NK cells engineered to express a CAR offer an alterna-
tive and potentially safer immunotherapeutic approach 
for cancer treatment [12].

PB-derived NK cells have a limitation in terms of 
expansion potential and can expand by hundreds or 
thousands of times, thus limiting their clinical utility. 
Stem cell-derived NK cells, specifically induced pluri-
potent stem cell (iPSC)-derived NK cells, could be a 
solution to this drawback [13, 14]. These cells can be 
differentiated from a standardized clone, yielding a uni-
form NK cell population. Despite this potential, the dif-
ferentiation and expansion process typically surpass five 
weeks, with potential accumulated mutations over cell 
culture and iPSC passage posing a challenge [15, 16]. 
Nonetheless, this risk could be mitigated using a kill 
switch, such as inducible CASP9, truncated EGFR or 
CD20 [17, 18].

An alternative is hematopoietic stem and progeni-
tor cells (HSPCs) derived from cord blood. These are 
sourced earlier in life with fewer mutations [19] and can 
be freshly isolated or immediately sourced from readily 
available off-the-shelf frozen products, posing no risk 
to the newborn or mother. They can be differentiated 
into a significant number of highly functional NK cells 
(HSC-NK) ex vivo within a shorter period of just under 
four weeks. Given the virtually unlimited supply of cord 
blood, this source could enable the production of large, 
quality-controlled batches of NK cells suitable for use in 
multiple patients.

However, even with their potential to serve as an ’off-
the-shelf ’ source for NK cell production, cord blood 
HSPCs still pose challenges due to their low differentia-
tion efficiency, making it difficult to generate a sufficient 
number of homogeneous NK cells for patient treatment 
from a single batch. Our research aims to overcome this 
limitation by hypothesizing that a high osmotic pres-
sure environment can enhance both the differentiation 
efficiency into NK cells and their production yield. By 
adopting an innovative yet straightforward approach of 
increasing the osmotic pressure in the culture medium 
with the addition of substances like sodium chloride or 
glucose, we have amplified the differentiation efficiency 
of HSPCs into NK cells and their proliferation rate.

Here, we present an efficient method for generating 
HSC-NK cells that maintain high proliferation ability 
and standard tumor-killing activity. Remarkably, over 
1.8 ×  106 functional HSC-NK cells can be obtained from 
a single  CD34+ cell in four weeks. Considering at least 
1 ×  106  CD34+ HSPCs in one CB unit, thousands of doses 
(1 ×  107/kg for 50-kg patients) of NK cells can be obtained 
from one CB unit.

Moreover, our optimized methodology for HSC-NK 
cell production holds significant promise for CAR-NK 
therapy applications. By employing lentivirus-based CAR 
transduction, we successfully achieved efficient differ-
entiation of HSPCs into HSC-NK cells, with no loss of 
CAR expression. This validates the feasibility of generat-
ing CAR-expressing HSC-NK cells using our optimized 
method. Notably, our innovative strategy offers the 
potential to substantially boost NK cell yield, paving the 
way for broader clinical applications, all without impos-
ing significant additional production costs. Furthermore, 
this breakthrough also opens the door for the potential 
application of CAR-NK therapy, harnessing the enhanced 
functionality and targeting capabilities of CAR-NK cells 
in treating a range of diseases, particularly cancer.

Methods
Primary cell culture
Peripheral blood mononuclear cells (PBMCs), procured 
from the peripheral blood of healthy donors, were seg-
regated using density gradient centrifugation facilitated 
by Ficoll-Hypaque (1.077 g/mL). To facilitate PB-NK cell 
expansion, thawed PBMCs were combined with 2 ×  105 
K562-mbIL21-feeder cells at a proportion of 1 ×  105 cells 
per ml in StemSpan™ SFEM II medium (Stemcell Tech-
nologies). The medium was enriched with 1% L-glu-
tamine (Invitrogen), 100 ng/ml hIL-2 (Peprotech), 20 ng/
ml hIL-7 (Peprotech), 20 ng/ml hIL-15 (Peprotech), and 
50 μg/ml ascorbic acid (Sigma) [20]. Both the cytokines 
and ascorbic acid were freshly added prior to use.
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Cord blood  CD34+ HSPCs were isolated using the 
CD34 MicroBead Kit (Miltenyi Biotec) [21]. The enriched 
HSPC population comprised over 90%  CD34+ cells. 
These HSPCs were introduced at 5 ×  105 cells per ml 
into serum-free StemSpan™ SFEM II medium (Stemcell 
Technologies). The medium was enriched with 1% L-glu-
tamine (Invitrogen), 100  ng/ml hSCF (Peprotech), 100 
ng/ml hFlt3-L (Peprotech), 100 ng/ml hTPO (Peprotech), 
50 ng/ml hIL-6 (Peprotech), 750 nM SR1 (Sigma), and 50 
nM UM171 (Sigma). To maintain optimal cell density, 
fresh medium was administered every two days before 
initiating NK cell differentiation, thus ensuring a cell den-
sity range of 5 ×  105 to 1 ×  106 cells per ml.

Cancer cell culture
We established green fluorescent protein (GFP)-express-
ing cell lines (K562, ATCC, CCL-243; Raji, ATCC, CCL-
86; HepG2, ATCC, HB-8065; MOLM-13, AddexBio, 
C0003003/60 and SKOV-3, ATCC, HTB-77) through 
transduction using a lentiviral vector that encodes the 
EF1-Puro-2A-GFP cassette. Post-transduction, the cells 
underwent a puromycin selection phase. We achieved 
successful establishment of cell lines expressing high GFP 
levels (> 99%) following this process.

We generated K562-mbIL21 cells through the trans-
duction of a lentiviral vector that expresses mbIL21, 
CD86 (B7-2), and CD137L (4-1BBL) [22]. High-copy 
K562-mbIL21 cells were selected based on their mem-
brane-bound IL21 protein expression levels. Using flu-
orescence-activated cell sorting (FACS), we sorted and 
selected the top 5% of cells with the highest expression 
levels, kept them at a low passage, and stored them in 
a cell bank. Prior to their usage in NK cell stimulation, 
these cells were inactivated by a 3-h treatment with 10 
μg/ml mitomycin C (MMC).

The cell lines K562, Raji, and MOLM-13 were cultured 
in RPMI-1640 medium, HepG2 cells in MEM medium, 
and SKOV-3 cells in M5A medium. All culture media 
were supplemented with 10% fetal bovine serum (FBS) 
(Gibco) and 1% L-glutamine (Invitrogen).

We transduced mouse OP9 stromal cells (a kind of 
gift from Tao Cheng’s lab) with lentivirus to express the 
Notch ligands DLL1 and DLL4 [23]. The establishment 
of DLL1-2A-Puro-expressing OP9 cells was achieved 
through lentiviral transduction and subsequent puromy-
cin selection. We then introduced a lentivirus carrying 
DLL4 and selected the top 5% of cells with the highest 
expression levels based on DLL4 antibody staining [24]. 
These transduced OP9 cells were cultivated in MEM sup-
plemented with 20% FBS (Gibco) and 1% L-glutamine 
(Invitrogen). Prior to utilization, the cells were treated 
with 10 μg/ml MMC for 3 h in preparation for subse-
quent experiments.

Differentiation of hematopoietic stem cells
After the four-day expansion phase of HSPCs, the cells 
were reseeded at a density of 15,000 cells/ml onto OP9 
feeder cells for differentiation [25]. The medium used for 
differentiation was StemSpan™ SFEM II (Stemcell Tech-
nologies), enhanced with 1% L-glutamine (Invitrogen), 
20 ng/ml each of hSCF, hFlt3-L, hTPO, hIL-7 (all sourced 
from Peprotech), and 50 μg/ml ascorbic acid (Sigma) 
[26]. Cytokines and ascorbic acid were freshly supple-
mented prior to usage. Generally, the central wells of a 
TC-24-well plate were employed for differentiation, while 
the corner and side wells were filled with water. Half of 
the medium volume was refreshed every three days. After 
14 days of expansion and differentiation, both suspension 
and adherent cells treated with Accutase from Innovative 
Cell Technologies were combined and analyzed.

To manipulate osmotic pressure, we used either a 9% 
(w/v) NaCl solution or 10 × PBS. For each 30 mM incre-
ment in osmotic pressure, we added 22.4 μl of a 1.5  M 
NaCl solution to 1  ml of medium. To decrease osmotic 
pressure, such as to 270 mM, we added 110 μl of water 
to 1  ml of medium. For non-Na + salt solutions such as 
KCl, we added 22.4 μl of a 1.5 M KCl solution to 1 ml of 
medium to achieve an osmotic pressure of 330 mM. For 
nonionic osmotic regulators such as glucose and sucrose, 
we added 44.8 μl of a 1.5-M solution to 1 ml of medium 
to reach 330 mM osmotic pressure.

Expansion of HSC‑NK cells
The medium used for PB-NK cell expansion was similarly 
employed for the expansion of HSC-NK cells. After 14 
days of differentiation and expansion, the NK cell ratio 
was determined using flow cytometry. Instead of under-
going NK cell purification, the differentiated bulk cells 
were used directly for HSC-NK cell expansion. These 
bulk cells, comprising a total of 1 ×  105 NK cells, were 
cocultured with 2 ×  105 K562-mbIL21-feeder cells in 1 ml 
of medium. Twice the volume of the medium was added 
every three days, taking care not to disrupt the cell aggre-
gates. After 7 days of expansion, the cells were counted 
and analyzed. For another round of expansion, 1 ×  105 
cells were cocultured with 2 ×  105 K562-mbIL21-feeder 
cells in 1 ml of medium. Once again, twice the volume of 
the medium was added every three days, avoiding disrup-
tion of the cell aggregates until 7 days of expansion had 
passed. After a combined total of 14 days of expansion, a 
functional analysis was conducted.

Flow cytometry analysis
For flow cytometry, cells were initially washed with PBS 
before being subjected to staining in PBE buffer (PBS 
supplemented with 2% FBS and 2 mM EDTA) containing 
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fluorescence-conjugated antibodies. This staining process 
was carried out at room temperature for 30 min. Follow-
ing staining, cells were washed twice with PBE buffer 
and resuspended in PBE for subsequent flow cytometry 
analysis using a BD FACSCanto II instrument. The data 
collected were later analyzed using either BD or FlowJo 
software.

The antibodies used for staining encompassed: CD3 
(eBioscience, clone OKT3), CD14 (eBioscience, clone 
61D3), CD16 (eBioscience, clone CB16), CD19 (eBiosci-
ence, clone HIB19), CD34 (eBioscience, clone 4H11), 
CD45 (Biolegend, clone HI30), CD56 (eBioscience, clone 
CMSSB), CD69 (eBioscience, clone FN50), CD94 (eBio-
science, clone HP-3D9), CD159a (NKG2A) (Miltenyi 
Biotec, clone REA110), CD226 (DNAM-1) (eBioscience, 
clone 11A8.7.4), CD314 (NKG2D) (eBioscience, clone 
1D11), CD335 (NKp46) (eBioscience, clone 9 E2), CD336 
(NKp44) (eBioscience, clone 44.189), CD337 (NKp30) 
(eBioscience, clone AF29-4D12), IL21 (eBioscience, clone 
3A3-N2), DLL1 (BD, 744833), DLL4 (BD, 564412), HLA-
ABC (eBioscience, clone W6/32), along with several iso-
type control antibodies including Mouse IgG1 κ Isotype 
Control Antibody (Biolegend, clone MOPC-21), Mouse 
IgG3 isotype (eBioscience, clone B10), and Rat IgM iso-
type (eBioscience, clone eBRM).

Lentivirus transduction in primary cells
The plasmids utilized in this research were assembled 
using the NEBuilder HiFi DNA Assembly Kit (New 
England Biolabs) according to previously established 
methodologies [27]. Production of lentiviral vectors was 
conducted following a conventional calcium phosphate 
precipitation protocol. To concentrate the lentiviral vec-
tors, a centrifugation step was performed at 6000 × g for 
24 h at 4 °C. This process yielded biological titers ranging 
between 2 and 10 ×  107/ml.

Before the initiation of lentiviral transduction, cord 
blood HSPCs were cultured for a period of 2 days. The 
transduction procedure involved the addition of lentivi-
rus at a multiplicity of infection (MOI) of 10 to 1 ×  105 
cells in 0.5 ml of the culture medium. The medium was 
supplemented with 8 μg/ml protamine sulfate and 0.1% 
Poloxamer Synperonic F108. Following transduction, the 
medium was replaced the next day. The cells were then 
either immediately used for NK cell differentiation using 
a standard protocol or maintained in fresh medium until 
subsequent flow cytometry analysis.

The PB-NK cells were expanded over a period of 6 
days using a standard protocol before initiating lentivi-
ral transduction. Here, 1 ×  105 cells were transduced with 
lentivirus at an MOI of 10 in 0.5 ml of culture medium, 

which was further supplemented with 8 μg/ml prota-
mine sulfate and 0.1% Poloxamer Synperonic F108. After 
transduction, the medium was replaced with 1  ml of 
fresh medium, and the cells were cocultured with 2 ×  105 
K562-mbIL21 feeder cells. Functional analysis of the cells 
was undertaken after a 7-day expansion cycle or at speci-
fied time points during the culture.

In vitro tumor cytotoxicity assay
Post expansion, NK cells (acting as effector cells) and 
GFP-positive tumor cells (serving as target cells) were 
cocultured at a designated effector-to-target (E:T) ratio 
[28]. After 24  h of coculture, the cell population was 
quantified, and the proportion of GFP-positive tumor 
cells was assessed via flow cytometry. The degree of cell 
cytotoxicity was computed using the formula [100 − (GFP 
cell counts × 100)/Tumor control count]%, where the 
’Tumor control count’ refers to the number of tumor cells 
present when not exposed to NK cells.

RNA‑seq analysis
NK cells were enriched utilizing the Human CD56-
Positive Selection Kit II (Stemcell Technologies), and 
the purity of these enriched NK cells was verified via 
flow cytometry. We extracted total cellular RNA from 
the enriched NK cells with the aid of the RNeasy Kit 
(Qiagen).

For RNA sequencing (RNA-seq), we dispatched the 
samples to Novogene. Sequencing was performed on the 
Illumina HiSeq 2000 platform, adhering to standard pro-
tocols. The DESeq2 package [29] was employed to iden-
tify differentially expressed genes (DEGs), with criteria 
set at a false discovery rate (FDR) less than 0.05 and a fold 
change (FC) greater than 2. We used the EnhancedVol-
cano package (version 1.4) to generate volcano plots.

To discern the biological implications of the DEGs, 
Gene Ontology (GO) analysis was carried out. This anal-
ysis was conducted with the help of the goenrich pack-
age (1.0.3), which determined significantly enriched GO 
terms associated with the gene set obtained from the 
DEG analysis.

Statistical analysis
The statistical evaluation of the data was executed using 
either a paired Student’s t test or two-way ANOVA, con-
tingent on the data’s characteristics (paired/matched or 
unmatched). P value calculations were performed with 
GraphPad Prism 7.04 software. Adjusted P values were 
specified when applicable. Each figure legend provides 
a description of the specific statistical methods utilized 
for their respective experiments. All statistical analyses 
reported in the study are based on a minimum of three 
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independent experiments. In the context of primary cells, 
our experiments incorporated samples from at least two 
distinct donors, bolstering the robustness and generaliz-
ability of our findings.

Results
Enhancing NK cell differentiation from cord blood HSPCs via 
osmotic pressure modulation
To improve the differentiation of NK cells from HSPCs, 
we devised a culture system using  CD34+ HSPCs 
enriched from cord blood. By employing a combination 
of cytokines and small molecules, we initiated the differ-
entiation process [21]. We utilized Notch ligand trans-
duced OP9 feeder cells [23] as a supportive environment, 
promoting the differentiation of HSPCs toward the NK 
cell lineage (Fig. 1A). By day 14, we observed that approx-
imately 17% of the cells manifested the NK cell pheno-
type, denoted by  CD3− and  CD56+ expression, while the 
proportion of CD34-positive cells declined due to differ-
entiation (Fig. 1B, C).

In our 48-well plate-based chemical screening system 
designed for HSC-NK differentiation, we discerned that 
the differentiation efficiency in the corner and side wells 
outpaced that in the center wells. Based on this observa-
tion, we conjectured that the increased differentiation 
efficiency could be attributed to a higher osmotic pres-
sure caused by escalated water evaporation [30]. This led 
us to hypothesize that increased osmotic pressure could 
stimulate NK cell differentiation. When we introduced 
NaCl to the culture medium, thereby inducing 330 mM 
osmotic pressure, we noted a significant enhancement in 
NK cell differentiation efficiency (Fig. 1B, C).

Further investigations into the influence of diverse 
osmotic pressures on differentiation efficiency revealed 
that the proportion of NK cells escalated with osmotic 
pressures ranging from 270 to 360 mM before decreas-
ing at 375 mM and 390 mM (Fig. 1D). We also recorded 
a rise in NK cell output per HSPC from 270 to 330 mM 
osmotic pressure, which subsequently declined from 
345 to 390 mM (Fig.  1E). Other ionic osmotic pressure 
regulators, such as phosphate-buffered saline (PBS), were 
found to be similarly effective in controlling NK cell dif-
ferentiation efficiency (Additional file 1: Fig. S1A–E).

Notably, non-Na+ salt solutions, for example, KCl, 
and nonionic osmotic regulators, such as glucose and 
sucrose, also significantly elevated the proportion of 
 CD3−  CD56+ NK cells (Fig. 1F). High osmotic pressure 
regulated by glucose resulted in a 3.3-fold increase in NK 
cell output, signifying its potential as a potent inducer 
of NK cell differentiation (Fig.  1G). Sucrose, while not 
significantly altering overall NK cell output, led to a 
noticeable increase in the proportion of NK cells within 

differentiated cell populations. Taken together, these 
findings underscore osmotic pressure modulation as a 
promising and effective approach to enhance NK cell dif-
ferentiation from HSPCs.

High osmotic pressure‑primed HSC‑NK cells show 
enhanced proliferation activity
As we sought to evaluate the proliferation capability 
of HSC-NK cells, they were cultured alongside modi-
fied K562-mbIL21 feeder cells [22] (Fig.  2A). After the 
observation that there was no significant variance in the 
expansion efficiency between FACS-sorted and unsorted 
HSC-NK cells (data not shown), we streamlined the 
process by directly culturing differentiated blood cells 
without isolating  CD56+ NK cells. For comparison, we 
adopted peripheral blood-derived NK cells (PB-NK), 
which are prevalently employed in both preclinical 
research and clinical therapy [31, 32] (Additional file  1: 
Fig. S2A). Although HSC-NK cell expansion after 14 days 
was moderately inferior to that of PB-NK cells (Addi-
tional file  1: Fig. S2B), HSC-NK cultures demonstrated 
superior purity of  CD3−  CD56+ NK cells and fewer  CD3+ 
T cells (Additional file 1: Fig. S2C–E).

Our primary examination aimed to determine the 
effect of osmotic pressure on NK cell purity and phe-
notype. Both standard osmotic pressure (300 mM) and 
elevated osmotic pressure (330 mM) conditions facili-
tated substantial expansion of HSC-NK cells, yield-
ing over 90% purity following a 14-day culture period 
(Additional file 1: Fig. S2C, E). A noteworthy advantage 
of HSC-NK cells was their diminished residual pres-
ence of CD3-positive cells compared to PB-NK cell cul-
tures (Additional file 1: Fig. S2D, E). We assessed several 
surface markers linked to NK cells, incorporating both 
activating and inhibitory receptors [3], such as CD94, 
NKG2A, CD69, DNAM1, NKG2D, NKp30, NKp44, and 
NKp46 (Fig.  2B, C). In HSC-NK-300  mM and HSC-
NK-330 mM cells, inhibitory receptors such as CD94 and 
NKG2A were significantly diminished. Conversely, some 
activating receptors, namely, CD69, NKp30, and NKp44, 
displayed significant elevations in HSC-NK-300 mM or 
HSC-NK-330 mM cells. Among the analyzed markers, 
only NKG2D exhibited a significant decline in both HSC-
NK-300 mM and HSC-NK-330 mM cells compared to 
the PB-NK reference.

Our ensuing investigation was focused on determin-
ing the impact of osmotic pressure on NK cell yield. 
Throughout the culture period, HSC-NK-330 mM cells 
subjected to hyperosmotic conditions consistently dis-
played superior proliferation rates compared to their 
normal osmotic pressure counterparts (HSC-NK-300 
mM) (Fig.  2D, E). Considering the entire process from 
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independent experimental replicates). E The number of  CD56+  CD3− NK cells generated from a single HSC, as demonstrated in (D) (mean ± SEM, 
n = 4 independent experimental replicates). F Frequency of  CD56+  CD3− NK cells following a 14‑day period of HSC expansion and differentiation. 
The experiments were conducted utilizing HSPCs from two distinct donors, with each experiment replicated technically twice. To achieve a final 
osmotic pressure of 330 mM, we introduced 22.4 μl of 1.5 M KCl, 44.8 μl of 1.5 M glucose, or 44.8 μl of 1.5 M sucrose into 1 ml of medium. G The 
quantity of  CD56+  CD3− NK cells generated from a single HSC, as indicated in (F), with corresponding fold changes noted. The P‑values obtained 
from the paired Student’s t‑test are indicated in panels (C), (D), and (E), while panels (F) and (G) underwent a two‑way ANOVA analysis
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HSPCs to HSC-NK cells, hyperosmosis resulted in an 
impressive total expansion of 1.8 ×  106-fold, which trans-
lates to an 11-fold escalation in NK cell output compared 
to the standard osmotic pressure control (Fig. 2F). There-
fore, our observations strongly suggest that hyperosmosis 
significantly augments the yield of NK cells derived from 
cord blood sourced HSPCs.

Transcriptomic profiling reveals activation of HSC‑NK cells 
in response to K562‑mbIL21 feeder stimulation
To comprehend the traits of HSC-NK cells proliferated 
under hyperosmotic conditions, we carried out RNA 
sequencing analysis on HSC-NK-300 mM cells and 
HSC-NK-330 mM cells (Fig. 3A). The criteria for defin-
ing differentially expressed genes were set at an adjusted 
P value (padj) < 0.05. Intriguingly, fewer than 100 dif-
ferentially expressed genes emerged when HSPCs were 
subjected to 14 days of differentiation under 330 mM 
osmotic pressure (Fig.  3B). Analogously, only 14 genes 
demonstrated differential expression following 14 days 
of K562-aided expansion of HSC-NK cells (Fig.  3C). 
These observations imply that high osmotic pressure 
facilitates more effective differentiation and proliferation 
of HSC-NK cells without causing considerable alteration 
to the transcriptome.

Nevertheless, in line with earlier findings, the expanded 
NK cells displayed distinct gene expression profiles in 
contrast to their uncultured counterparts, with differen-
tial expression seen in more than 3000 genes (Fig.  3D). 
This indicates an activated transcriptomic profile in 
the expanded NK cells. The enrichment analysis using 
Gene Ontology (GO) revealed that the most substan-
tially upregulated signaling pathways in the expanded 
NK cells were affiliated with natural killer cell activation, 
immune response, and cytokine responses, which include 
interferon (IFN)-gamma, interleukin (IL)-1, and tumor 
necrosis factor (TNF) (Fig. 3E). In sum, these transcrip-
tomic revelations underscore that hyperosmosis does not 
modify the essential characteristics of highly prolifer-
ated HSC-NK cells. Moreover, they suggest the success-
ful activation of HSC-NK cells during K562-modulated 
expansion, as evidenced by the observed gene expression 
alterations.

Hyperosmosis‑induced HSC‑NK cells exhibit antitumor 
efficacy comparable to that of PB‑NK cells
Having established the congruency in the phenotype 
of NK cells expanded under hyperosmotic pressure, we 
proceeded to evaluate their functionality. In vitro assess-
ments of the antitumor activity of HSC-NK cells were 
conducted using HepG2 hepatocellular carcinoma cells, 
MOLM-13 acute myeloid leukemia cells, and SKOV-3 
ovarian cancer cells as targets (Fig.  4A). Predominantly, 
both HSC-NK-300 mM cells and HSC-NK-330 mM cells 
exhibited antitumor activity comparable to that of PB-NK 
cells (Fig. 4B–D). Nevertheless, under specific conditions, 
such as a 1:8 effector-to-target (E:T) ratio for HepG2 
cells, 1:4 and 1:8 E:T ratios for MOLM-13 cells, and 1:1 
and 1:2 E:T ratios for SKOV-3 cells, HSC-NK-300 mM 
and/or HSC-NK-330 mM cells demonstrated noteworthy 
enhancements in antitumor efficacy compared to PB-NK 
cells (Additional file  1: Fig. S3). This heightened antitu-
mor activity of HSC-NK cells could be ascribed to their 
increased expression of certain activating receptors in 
comparison to PB-NK cells (Fig. 2B, C). Nevertheless, no 
considerable disparity in cytotoxic activity was discerned 
between HSC-NK-300 mM and HSC-NK-330 mM cells 
(Additional file 1: Fig. S3). Thus, these functional obser-
vations provide compelling substantiation that HSC-NK 
cells exhibit antitumor capabilities commensurate with 
the benchmark established by PB-NK cells.

Hyperosmosis facilitates the efficient generation 
of functional HSC‑CAR‑NK cells
NK cells, which have been genetically engineered to 
express a CAR, show promising clinical responses in can-
cer patients when utilized in adoptive cellular immuno-
therapy. We centered our attention on an anti-CD19 CAR 
(CAR19), comprising an anti-CD19 extracellular single-
chain variable fragment and a CD3z signaling domain. 
We successfully developed an efficacious method for gen-
erating functional CAR19-NK cells through hyperosmo-
sis from HSPC differentiation (Fig. 5A).

To enable the detection of transduced CAR-NK cells, 
we designed a lentivirus expressing a CAR19-2A-BFP 
construct. Consequently, CAR19-expressing cells were 

Fig. 2 Enhanced proliferation activity in high osmotic pressure‑primed HSC‑NK cells. A A schematic representation of the HSC‑NK expansion 
protocol using K562‑mbIL21‑feeder cell stimulation. B Example data from flow cytometry analysis of surface markers on NK cells after a 7‑day NK 
cell expansion period. C Proportions of NK cell marker expression, as illustrated in (B). D and E Fold expansion of  CD56+  CD3− NK cells after a 7‑day 
(D) and 14‑day (E) expansion period. F A growth curve of HSC‑NK cells, originated from a single HSC, at the mentioned time points. Hyperosmosis 
was adjusted by NaCl addition. Data from C, D, E, and F are represented as mean ± SEM from 3 independent experimental replicates. P values 
calculated by a paired Student’s t‑test are provided in (D) and (E), whereas P values computed by a two‑way ANOVA test are indicated in (C) and (F)

(See figure on next page.)
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also positive for blue fluorescent protein (BFP), thereby 
enabling their identification through flow cytometry. As a 
control, we utilized BFP expression without CAR19. Dur-
ing the HSPC expansion phase, the lentivirus successfully 
transduced HSPCs (Fig.  5B and Additional file  1: Fig. 
S4B), displaying notably higher efficiency than peripheral 
blood-derived NK (PB-NK) cells (Fig. 5C and Additional 
file  1: Fig. S4A). Upon differentiation into HSC-CAR-
NK cells, the proportion of CAR19-transduced cells 
remained consistent with that of undifferentiated HSPCs 
(Fig. 5B, C).

Remarkably, hyperosmosis significantly amplified both 
the percentage and total count of  CD3−  CD56+ cells 
after 14 days of HSPC expansion and differentiation, 
irrespective of lentivirus transduction (Additional file 1: 
Fig. S4C, D). Additionally, these findings lend support 
to the assertion that lentivirus-mediated CAR transduc-
tion and differentiation of HSC-CAR-NK cells do not 
appreciably impact the output cell numbers of NK cells 
(Additional file  1: Fig. S4D). This advantage of HSC-
CAR-NK cells is particularly valuable because it poten-
tially circumvents the challenges tied to relatively lower 
cell viabilities observed in PB-NK cells after lentivirus 

transduction, especially at a high multiplicity of infec-
tion (MOI). Hence, HSC-CAR-NK cells hold promise for 
surmounting these limitations and ensuring robust cell 
expansion and viability for successful CAR-NK therapy 
applications.

CAR19-NK cells are designed to amplify their cyto-
toxic activity against  CD19+ tumor cells. In our study, we 
explored the targeting capability of HSC-CAR-NK cells 
against Raji cells, which are CD19 positive and exhibit high 
levels of HLA class I molecules. Conversely, K562 cells are 
CD19 negative and display low levels of HLA class I mol-
ecules (Additional file 1: Fig.  S4E). Raji cells, owing to their 
elevated expression of HLA class I molecules, demonstrate 
resistance to NK cells lacking CAR19 modification.

To evaluate the targeting activity of HSC-CAR-NK cells 
against Raji cells, we expanded HSC-NK cells transduced 
with either BFP or CAR-2A-BFP and initiated coculture 
with GFP-positive Raji cells (Fig.  5D). Upon quantifica-
tion of the percentages of BFP-positive and GFP-positive 
cells, we observed a significant surge in BFP-positive cells 
in HSC-CAR-NK cells relative to the control HSC-BFP-
NK cells on the first day of coculture with  CD19+ Raji 
cells (Fig. 5E and Additional file 1: Fig. S4F). Additionally, 
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under 1:1, 1:2, and 1:4 E:T ratios conditions, HSC-
CAR19-NK cells demonstrated significant enhance-
ment in cell lysis efficacy of  CD19+ Raji cells compared 

to HSC-BFP-NK cells (Fig. 5F). In summary, these results 
suggest that CAR19-expressing HSC-NK cells exhibit 
specific targeting activity against CD19-positive cells.
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Discussion
This study demonstrated how a simple optimization 
strategy involving an increase in culture medium osmotic 
pressure significantly enhanced the differentiation effi-
ciency and yield of NK cells derived from human cord 
blood stem cells. Importantly, these hyperosmosis-
induced HSC-NK cells retained their phenotype and 
maintained their ability to kill tumor cells.

Environmental stress, such as hyperosmosis, can influ-
ence cell fate through intracellular signaling and epige-
netic modulation [33]. Although the precise mechanisms 
driving hematopoietic cell differentiation remain elusive, 
it is hypothesized that a global epigenetic shift underpins 
this process. Our strategy of enhancing osmotic pres-
sure in the culture medium using NaCl or PBS seems to 
facilitate NK cell differentiation, thereby enriching the 
standard NK cell differentiation protocol [34]. While the 
intricate details of this mechanism are yet to be unveiled, 
we anticipate that our optimized method will expedite 
the development of an ’off-the-shelf ’ source for clinical 
use [35].

Drawing from our accumulated expertise, we con-
ducted our experiments within the central eight wells of 
a 24-well tissue culture (TC) plate. We filled the corner 
and side wells with water to curtail evaporation in the 
central wells. Recognizing the importance of control-
ling baseline evaporation when using diverse culture 
wells or bioreactors is paramount. While the intricate 
mechanisms involved are yet to be fully explicated, we 
posit the involvement of stress-related signaling path-
ways, notably the p38 pathway. This pathway has been 
reported to respond to augmented osmotic pressure dur-
ing somatic cell reprogramming [30]. The critical role of 
cytokine profiles in influencing NK cell differentiation 
has been previously reported [36]. Alterations in these 
profiles could reciprocally impact NK cell differentia-
tion, a notion that is in alignment with our own findings, 
thereby strengthening the idea that environmental modi-
fications, such as encapsulation or osmotic pressure, can 
markedly affect cell fate decisions. This raises an intrigu-
ing question as to whether a synergistic combination of 
these strategies, such as encapsulation and hyperosmotic 
pressure, could potentially enhance NK cell differentia-
tion and yield.

The use of allogenic sources such as cord blood for NK 
cells has shown its safety in the context of immunother-
apy [12]. However, the clinical translation potential of 
these sources is significantly restricted due to the limited 
number of NK or CAR-NK cell doses they can produce. 
Specifically, NK cells from a single CB unit or PB donor 
can typically produce approximately 100 doses. In stark 
contrast, our optimized protocol allows generation of 
over 2000 doses of HSC-NK cells within a 28-day period, 

presuming an administration of 1 ×  107/kg for a 50-kg 
patient.

NK cells, serving as innate immune defenders against 
viral infections, exhibit resistance to viral vector trans-
duction, even when subjected to an exceptionally high 
multiplicity of infection (MOI). In a clinical trial involv-
ing CB-derived NK cells engineered to express a CAR 
cassette, the final transduction efficiency was observed 
to be 49%, varying from 22.7 to 66.5% [12]. When we 
employed peripheral blood-derived NK (PB-NK) cells, 
the lentiviral transduction efficiency was between 15 and 
20%.

In contrast, hematopoietic stem cells are considerably 
more amenable to transduction by lentiviruses or retro-
viruses [37, 38]. This facet has significant implications 
for the HSC-NK cell platform. Following viral transduc-
tion, hematopoietic stem cells (HSCs) can proliferate 
and differentiate into hundreds of NK cells, considerably 
reducing the quantity of virus required for a clinical trial. 
This crucial efficiency would substantially streamline 
the product development process, decrease cell therapy 
costs, and expedite the clinical adoption of NK therapies.

These collective benefits position HSC-CAR-NK cells 
as a compelling alternative for immunotherapy, directly 
competing with the currently popular iPSC-CAR-NK 
strategy. Given their higher transduction efficiency 
and cost-effectiveness, the use of HSC-CAR-NK cells 
in immunotherapy appears to be a highly promising 
approach.

Admittedly, our current protocol has limitations. For 
instance, we relied on mouse OP9 stromal cells to sup-
port HSPC proliferation and NK cell differentiation 
[23]. Future studies should explore other optimization 
avenues, such as feeder-free or humanized feeder cell-
dependent 3D differentiation systems. Furthermore, 
while hyperosmosis significantly improved NK cell 
yield on a small scale, its effectiveness on a larger scale 
in bioreactors for clinical development warrants further 
investigation.

An ’off-the-shelf ’ source can also be differentiated 
from human iPSCs [13, 14, 34, 35]. This strategy allows 
precise genetic modifications at the clonal level in iPSCs 
using both viral [13, 14] and nonviral [34] methods. We 
conjecture that high osmotic pressure could enhance 
the differentiation efficiency from pluripotent stem cells 
to NK cells. Additionally, the potential of hyperosmosis 
to improve targeted differentiation of iPSCs to HSPCs is 
worth exploring.

Conclusions
Our study reveals that high osmotic pressure dramati-
cally improves the differentiation and proliferation of 
NK cells from hematopoietic stem cells such as cord 
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blood HSPCs. This opens avenues for the mass pro-
duction of NK cells for clinical use. Combining this 
technique with innovations such as CAR for tumor tar-
geting and using ’off-the-shelf ’ iPSCs or HSPCs, we aim 
to develop potent NK cell therapies for next-generation 
immunotherapy. Our findings underscore the potential 
of hyperosmotic regulation in crafting effective, high-
yield NK cell treatments for cancers.
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