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Cell-free therapy based on extracellular 
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Abstract 

Peripheral nerve injury (PNI) is one of the public health concerns that can result in a loss of sensory or motor function 
in the areas in which injured and non‑injured nerves come together. Up until now, there has been no optimized ther‑
apy for complete nerve regeneration after PNI. Exosome‑based therapies are an emerging and effective therapeutic 
strategy for promoting nerve regeneration and functional recovery. Exosomes, as natural extracellular vesicles, contain 
bioactive molecules for intracellular communications and nervous tissue function, which could overcome the chal‑
lenges of cell‑based therapies. Furthermore, the bioactivity and ability of exosomes to deliver various types of agents, 
such as proteins and microRNA, have made exosomes a potential approach for neurotherapeutics. However, the type 
of cell origin, dosage, and targeted delivery of exosomes still pose challenges for the clinical translation of exosome 
therapeutics. In this review, we have focused on Schwann cell and mesenchymal stem cell (MSC)‑derived exosomes 
in nerve tissue regeneration. Also, we expressed the current understanding of MSC‑derived exosomes related 
to nerve regeneration and provided insights for developing a cell‑free MSC therapeutic strategy for nerve injury.

Keywords Peripheral neve injury, Nerve regeneration, Cell‑free‑based treatment, Mesenchymal stromal cells, 
Extracellular vesicle, Exosomes

Introduction
Peripheral nerve injury (PNI) is a common neurologi-
cal disorder in the clinic that seriously influences human 
health [1]. In these cases, patients endure neuropathic 

pain, which can result in dysfunction of the sensory and 
motor systems and also cause disability [2, 3]. Hence, the 
development of novel treatment strategies to enhance 
peripheral nerve repair post-injury, especially those that 
can accelerate axonal nerve regeneration, is necessary [4].

Several factors are involved in axonal outgrowth in 
peripheral nerve regeneration, such as the transforma-
tion of the phenotype of Schwann cells (SCs), the infil-
tration of immune cells, neurovascular regeneration, and 
also neuronal soma formation, which plays a key role in 
the initiation and control of axonal regeneration [5, 6]. 
On the other hand, one of the main challenges in the 
regeneration of peripheral nerves is the low speed of axon 
growth (only 1 mm per day) [7]. Although the peripheral 
nerve has the potential for self-regeneration, in several 
cases, such as the long length of the nerve defect, the 
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long duration between injury and treatment limits its 
spontaneous self-regeneration [8]. Also, self-regeneration 
is often inadequate and might be prevented by scar for-
mation [8]. One of the strategies in PNI is direct neuror-
rhaphy, but it can be applied only in cases with short gaps 
[9]. Another strategy for the treatment of large nerve 
defects is autologous nerve grafting, which has served as 
the gold standard [10]. However, autologous nerve grafts 
via microsurgical procedure are limited due to insuffi-
cient nerve sources, potential donor site dysfunction, size 
mismatch between donor nerves and nerve grafts, and 
other complications [11, 12].

In the field of peripheral nerve injury (PNI), several 
studies have been done in the past few years to find a way 
to replace the autologous nerve graft method in clinics 
with a new way to speed up axonal regeneration with-
out harming other nerves [13]. One of the new thera-
peutic strategies in regenerative medicine is cell therapy. 
Although cell therapy has demonstrated beneficial effects 
on peripheral nerve tissue treatment and regeneration, it 
still has several drawbacks, such as a decreased survival 
rate of the engrafted cells, the low regenerative capac-
ity of cells, tumorigenesis, immune-mediated rejection, 
the risk of capillary blockade during infusion, and ethi-
cal concerns that hinder the wide use of cells in the clinic 
[14, 15]. One of the alternative therapeutic strategies is 
the design of various tissue-engineered nerve guide con-
duits (NGCs) to provide mechanical, biological, and bio-
chemical supports [16]. Although these synthetic NGCs 
with or without cells and growth factors (GFs) have been 
shown to be beneficial, the results of their use in the 
treatment of PNI remain far from ideal [17]. Exosome-
based therapy with or without NGCs is now used in PNI 
as an alternative to cell therapy and tissue-engineered 
NGC alone.

Exosomes as extracellular vesicles
Johnstone et  al. [18] showed in 1970 that exosomes are 
extracellular vesicles (EV) that carry different substrates. 
After that, several extracellular vehicles have been iden-
tified and can now be classified as apoptotic bodies, 
microvesicles (MVs), and exosomes (EXOs), depend-
ing on their biogenesis and size. According to this clas-
sification, EXOs are the smallest extracellular vesicles 
(30–100  nm) with a lipid bilayer membrane released 
by all types of cells, such as Schwann cells (SCs) and 
mesenchymal stromal cells (MSCs) [19]. Furthermore, 
EXOs are the key mediators of paracrine mechanisms, 
and the biogenesis of EXOs is the endocytic pathway. 
Recently, several studies have focused on EXOs, and 
they have demonstrated that different types of EXOs are 
released from certain types of cells that are associated 
with pathological and physiological conditions, such as 

neurodegenerative diseases, tumors, and tissue fibro-
sis [20]. On the other hand, EXOs have several cellular 
signaling molecules like DNA, proteins, lipids, mRNA, 
miRNA, lncRNA, and circRNA that mediate intercellular 
communication due to transferring these types of cargo 
[21–23].

The therapeutic effects of Schwann cells‑derived exosome 
on PNI
Schwan cells(SCs), the glial cells of the PNS, are a criti-
cal factor for maintaining homeostasis in the nerves and 
facilitating the regeneration process of the PNI [24]. SCs 
provide the nutrition to support axonal regeneration, and 
SCs are the basic cell type that organizes the formation of 
myelin sheaths along the axon [25]. A chain of molecular 
and cellular reactions known as Wallerian degeneration 
(WD) was initiated in PNI. In this case, the peripheral 
glia (the SCs) were dedifferentiated into a non-myeli-
nating cell type and proliferated to omit the endoneurial 
myelin and all debris [26–28]. Also, SCs secrete neuro-
trophic factors and specific cytokines [27]. Furthermore, 
miRNAs can be conveyed by EXOs from SCs to neurons 
to promote the regeneration of PNI. Indeed, the level 
of miRNA expression by SCs plays the main role in the 
nerve regeneration process [29, 30].

The results of several studies have demonstrated that 
miRNA can augment SC proliferation and axon myeli-
nation during development and injury [31]. SC-derived 
exosomes have been shown to be internalized by axons 
and enhance neurite outgrowth, and direct injection of 
SC-derived exosomes can improve axon growth follow-
ing in vivo PNI [32]. Moreover, SC-derived exosomes can 
change the growth cone phenotype to a pro-regeneration 
morphology and decrease the activity of the GTPase 
RhoA, which plays a role in axon retraction and collapse 
of the growth cone [32].

Altogether, these studies have demonstrated that SCs 
can release EXOs, and these SC-derived exosomes have 
been illustrated to play an essential role in neurodegen-
eration, neurodevelopment, and neuroprotection [33, 
34]. Also, a study illustrated that SC-derived exosomes 
can increase the axonal regeneration rate of dorsal root 
ganglion neurons in in  vitro and in  vivo investigations, 
indicating the role of SC-derived exosomes in axonal 
regeneration [32]. On the other hand, these promo-
tive effects are dependent on the type of SC-derived 
exosomes released from various phenotypic SCs [35].

Recently, Lopez-Leal et  al. [35] demonstrated that 
only the SC-derived exosomes secreted by repair SCs 
enhanced axonal regeneration after PNI, but they did 
not show these promotive effects in the differentiated 
SCs. Indeed, repair of SC-derived exosomes mediated 
the effect of promoting neurite growth from dorsal root 
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Fig. 1 Illustrating exosome contents that promote axon regeneration through the PI3/AKT signaling pathway. Schwann cell‑derived exosomes 
released from different phenotypic Schwann cells, like mature SCs and repair SCs, carry different cargoes that influence their functions. 
For example, repair SC‑derived exosomes exhibit axonal regeneration after nerve injury due to their containing miRNA‑21. miRNA‑21 can 
cause the downregulation of phosphatase and tensin homolog (PTEN) and consequently the activation of phosphoinositide 3‑kinase (PI3K) 
in the neurons. Also, SC‑derived exosomes can inhibit neuron apoptosis and increase cell viability. On the other hand, exosomes derived 
from mature myelinating SCs cannot promote axonal regeneration and also inhibit SC migration
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ganglia explants by downregulating PTEN, activating 
PI3K pathways, and also transferring exosomal miRNA-
21 (Fig. 1) [36].

According to the results of this study, it is obvious that 
the repair of SC-derived exosomes shuttled specific pro-
teins and miRNAs that enhanced axonal regeneration 
and the survival of neurons, while the EXOs from dif-
ferentiated SCs did not exhibit the promotive effect to 
enhance axonal regeneration due to the number of miR-
NAs that suppressed cell migration, such as miRNA-21 
and miRNA-92a-3p miRNAs, so they could focus on 
myelination (the main function of differentiated SCs) 
(Fig. 1) [37]. The positive effects of SC-derived exosomes 
in the nerve studies are summarized in Table 1.

Therefore, it can be concluded that various phenotypes 
of SCs can transfer different exosomal cargoes that are 
required for specific functions. On the other hand, sev-
eral studies have reported that SCs can promote can-
cer growth and dissemination in pancreatic cancer and 
melanoma. In these cases, tumor cells exploit SCs due to 
their exosomal cargo, which promotes higher prolifera-
tion and inhibits apoptosis [38–41]. As regards obtaining 
SC-derived exosomes, it is necessary to sacrifice normal 
nerve tissue to harvest SCs. This disadvantage is the main 
challenge for clinical translation [42]. Hence, we need 
further investigation to identify optimal EXO content 
and an efficient strategy to obtain SC-derived exosomes 
without the need to sacrifice normal nerve tissue or find 
an alternative cell type with similar efficiency to SCs [42].

The therapeutic effects of mesenchymal stromal 
cells‑derived exosome on PNI
MSCs are adult multipotent stem cells that can be iso-
lated from various human tissues (i.e., adipose, bone mar-
row, umbilical cord blood, dental pulp, etc.) [42]. MSCs 
have been identified as having multi-directional differen-
tiation potential, high self-renewal ability, and low immu-
nogenicity, so they are one of the most common potential 
off-the-shelf stem cells in cell therapy (Fig. 2) [47].

Several studies have shown that adult multipotent 
MSCs, which are similar to SCs, can help with functional 
recovery after PNI by encouraging the growth and sur-
vival of neurons. However, there are several drawbacks to 
MSC-based therapy, including its high cost, cellular phe-
notypic instability, and the risk of microinfarction caused 
by transported MSCs that become lodged in the pulmo-
nary microvasculature [48, 49]. As a result, a new cell-
free therapy with similar efficacy to that of MSCs must be 
developed for PNI.

Recent studies have demonstrated that the applied 
MSCs’ therapeutic activities are related to paracrine 
factors such as cytokines, proteins, and especially their 

EXOs [50]. Recently, EXOs have been identified as the 
main paracrine effectors of MSCs and can mediate cell-
to-cell communication and maintain homeostatic and 
dynamic microenvironments for tissue regeneration 
[51, 52]. MSC-derived EXOs have the potential to acti-
vate PI3k/Akt, ERK, and STAT3 signaling pathways to 
induce the expression of several growth factors (GFs) 
like NGF, insulin-like growth factor-1 (IGF-1), and 
stromal-derived growth factor-1 (SDF-1) [53]. EXOs 
derived from MSCs can also activate Wnt/b-catenin 
and Notch signaling pathways. The Wnt signaling path-
way is involved in the control of inflammation after 
being activated by injury [54–56]. Moreover, studies 
have demonstrated that exosomal miRNAs (miR-221, 
miR-218, miR-199b, miR-148a, and miR-135b) can pro-
mote neuronal differentiation, proliferation, and axonal 
outgrowth [57–59]. Also, a study has demonstrated that 
the miR-17-92 cluster can promote axonal outgrowth, 
neurogenesis, and functional recovery by activating the 
PI3K/protein kinase B/mechanistic target of the rapa-
mycin/glycogen synthase kinase 3-β signaling pathway 
[60, 61].

In another study, Zhang et al. [62] also demonstrated 
that MSC-derived EXOs carry an elevated level of 
the miR-17-92 cluster, which can activate the PTEN/
mTOR signaling pathway in recipient neuron cells. 
Several studies have demonstrated that MSCs with 
miRNA overexpression are better influenced by func-
tional recovery in PNI situations than naive MSCs [63]. 
Indeed, the function of MSC-derived EXOs depends 
on the condition of the original cell that releases 
EXOs (like SC-derived EXOs), which is related to the 
miRNA content of EXOs and influences their biological 
function.

Furthermore, recent studies have shown that MSC-
derived EXO can upregulate miRNA and promote 
angiogenesis [64]. MSC-derived EXOs are identified as 
the main immunomodulatory mediators due to their 
immunomodulatory proteins [65]. About this, several 
studies have demonstrated that MSC-derived EXOs 
have a positive immunomodulatory effect in various 
pathologic conditions due to their induction of high 
levels of anti-inflammatory cytokines like IL10 and 
TGF-β1 and their enhancement of the expression of 
IL1B, IL6, TNFA, and IL12P40 as proinflammatory fac-
tors [66]. Also, MSC-derived EXOs induce regulatory 
T cells (Tregs), which are recognized as immune toler-
ance agents [67]. The majority of these studies about 
the effects of MSC-derived exosomes on the nerve inju-
ries are summarized in Table  2. Altogether, these out-
comes show a superior potential role for MSC-derived 
EXOs and their miRNA in the regeneration of PNI 
(Fig. 2).
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MSC therapy versus MSC‑derived exosomes 
in clinical practice
So far, MSC therapies  have emerged as a powerful tool 
in clinical practice for the treatment of various diseases, 
such as neurodegenerative disease [68]. Although MSCs 
can differentiate into various cells like nerve cells and 
also regulate the microenvironment of the injured area 
to accelerate the regeneration of peripheral nerves [69], 
a few stem cell products derived from mesenchymal 
stromal cells and clinical trials have applied MSCs after 
nerve injury due to certain disadvantages of this applica-
tion [70]. The lack of clinical usage of MSCs in periph-
eral nerve therapies may be due to several unavoidable 
drawbacks with regards to MSC therapy. One of these 
drawbacks is that the large diameter of these cells may 
lead to their aggravation in the lung after intravenous 
injection and, thus, infusion toxicity [71]. Furthermore, 
MSC injections may result in oncological complica-
tions. In addition, aging is another limitation [72]. Thus, 
the clinical application of MSCs raises some ethical and 
safety concerns since they are limited to nerve regenera-
tion [69]. Therefore, the optimal approach for the use of 

derivatives of MSCs to take their advantages to repair 
PNI can be useful.

As mentioned, some of the observed beneficial effects 
of MSC therapies can be partly due to their paracrine 
action rather than the long-term engraftment of trans-
planted MSCs [73]. Also, studies have investigated 
whether MSC-derived extracellular vesicles like EXOs 
exert functions similar to those of MSCs by beneficially 
promoting  peripheral nerve  regeneration [74, 75]. So 
it can be concluded that MSC-derived  exosomes, as 
cellular paracrine products may play a major role in 
recovery post-nerve injury [74].  It is widely accepted 
that MSC-derived EXOs play an essential role in the 
amelioration of disease [76]. On the other hand, the 
advantages of EXO therapies are related to their safety 
profile [68]. The safety profile of MSC-derived EXOs 
therapy is a critical consideration in its clinical appli-
cation [77]. Current evidence suggests that EXOs have 
a proper safety profile, with low immunogenicity, per-
meability, easy storage (they can be lyophilized), and 
minimal adverse effects reported in clinical trials [78]. 
However, the manufacturing process of EXO-based 

Fig. 2 Novel strategies of MSC‑derived exosomes for curing nerve injury. MSCs can be isolated from bone marrow, adipose tissue, endometrium 
tissues, the umbilical cord, and the dental pulp. Their exosomes can regulate nerve‑related cellular functions. MSC‑derived exosomes are able 
to modulate neuroinflammation and immune cell reactions, neuroprotection, angiogenesis, and axonal regrowth and remyelination
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clinical products needs to be standardized to ensure 
consistency in quality, safety, and efficacy [79]. Conse-
quently, MSC-derived EXOs have been subject to much 
research interest in recent years.

Therapeutic and clinical application of exosomes 
in neurodegenerative disease
Angiogenesis and vascular regeneration
The vascular network plays a critical role in maintain-
ing the microenvironment homeostasis of the peripheral 
nervous system through the supply of oxygen and nutri-
ents, which are essential for the regeneration of the PNS 
[85]. Also, several studies have demonstrated that there 
is an interlinkage between nerve regeneration after injury 
and vascularization [86]. Furthermore, the vascular net-
works can provide tracks for SCs to migrate along, and 
endothelial cells (EC) secrete various bioactive agents 
that are conducive to neurite elongation [86, 87]. So, 
reconstruction of the vascular network following PNI is 
another purpose for the regeneration of the peripheral 
nerve. However, in current strategies of treatment such 
as nerve guide conduits and decellularized grafts, vascu-
lar regeneration is one of the main challenges [88, 89].

In tissue regeneration, reconstructing blood vessels and 
blood flow in injured and ischemic tissues is necessary 
[90–92]. Recently, several studies have illustrated that 
EXO can promote vascular regeneration as a key regula-
tor. The study of Nooshabadi et  al. [64] has shown that 
human endometrial MSC-derived EXOs have a positive 
effect on the angiogenesis process in a dose-dependent 
manner and can be applied in the treatment of vascular 
disease and wound healing. Zhang et al. [93] found that 
umbilical cord MSC-derived EXOs can promote vascu-
lar regeneration in ECs by activating the Wnt/β-catenin 
pathway. Also, Liu et al. [94] have shown that EXOs from 
induced pluripotent stem cell-derived mesenchymal stem 
cells enhance angiogenesis due to activating the PI3K/
AKT signaling pathway in EC cells. Moreover, Gong et al. 
[95] demonstrated that proangiogenic miRNAs can be 
transferred within ECs through generated exosomes to 
enhance angiogenesis. Thus, it is reasonable to hypothe-
size that exosomes promote angiogenesis by at least three 
distinct mechanisms, including:

1. EXOs can promote EC survival and proliferation by 
upregulating Cyclin-D1 and downregulating p53, 
p21, and p27.

2. EXOs promote angiogenesis in EC cells by activating 
signaling pathways such as Wnt/β-catenin and PI3K/
AKT.

3. EXOs contain proangiogenic miRNAs that are trans-
ferred between ECs.

On the other hand, studies have shown that EXOs 
control vascular regeneration after PNI to change how 
peripheral nerve regeneration happens. A study by 
Xin et  al. [96] showed that the MSC-derived EXOs can 
enhance functional recovery, neurogenesis, neurite 
remodeling, and angiogenesis. Similar effects were found 
in another study, which showed that MSC-derived EXOs 
can promote neurogenesis and angiogenesis and reduce 
inflammation in rat models [97, 98]. All of the mentioned 
studies about the angiogenesis effects of MSC-derived 
exosomes are summarized in Table 3. In summary, all of 
these studies demonstrated that vascular regeneration 
and angiogenesis that are intermediated by EXOs are 
conducive to peripheral nerve regeneration, which can be 
a superior therapeutic strategy for PNI repair by facilitat-
ing angiogenesis and vascular regeneration.

Axon outgrowth and regeneration
Recently, several studies have demonstrated that 
exosomes modulate axonal regeneration due to the trans-
fer of specific exosome contents, such as protein, and 
microRNAs, from SCs to axons [103]. Also, multiple 
studies discussed how axonal regeneration can be pro-
moted by EXOs, and most of these studies demonstrated 
that derived EXOs from various cell sources can pro-
mote axonal regeneration by impinging directly on the 
phosphatase and tensin homolog (PTEN), the mechanis-
tic target of rapamycin (mTOR) signaling pathway [104, 
105]. The PTEN-mTOR pathway is a key factor in axonal 
regeneration. Accordingly, EXOs have neurophysiologi-
cal activities that can promote neurite outgrowth [104].

A previous study has demonstrated that EXOs derived 
from SCs can be internalized by axons and also increase 
axonal regeneration in in  vitro and in  vivo studies [32]. 
Mechanically, EXOs have the potential to change growth 
cone morphology to a pro-regenerative phenotype and 
can also decrease the activity of the GTPase RhoA, which 
is involved in axon retraction and growth cone collapse 
[32, 106]. Another main factor in EXOs that facilitate 
axon regeneration is microRNAs like miR-21. A study 
showed that expression of miR-21 can promote dorsal 
root ganglion (DRG) axon regrowth [107]. Also, miRNA 
can facilitate axon regeneration in peripheral nerves due 
to the knockout of Dicer, a key activator of the RNA-
induced silencing complex (RISC) [75, 108].

The results of studies suggest that EXOs can be sent 
to recipient neurons as effective miRNAs to control 
the growth of axons. Furthermore, in another study, 
Buccan et  al. [83] demonstrated the effect of MSC-
derived EXOs on neurite outgrowth. Their results have 
shown that cultured dorsal root ganglia (DRG) neu-
rons with MSC-derived EXOs increased the neurite 
outgrowth of the DRG neurons after co-culturing with 
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EXOs due to the presence of growth factors like BDNF, 
FGF-1, GDNF, IGF-1, and NGF in the MSC-derived 
EXOs.

A recent study by Shariati et  al. [84] demonstrated 
that human adipose stem cell (human ADSC)-derived 
exosomes penetrate into the target cells and increase 
viability, cell growth, and induce neural differentia-
tion of PC12 cell lines due to the existence of growth 
factors, proteins, and miRNAs. Overall, evidence has 
demonstrated that MSC-derived EXOs have the poten-
tial to promote axonal regeneration through three 
main mechanisms (Fig. 3):

1. Transport of miRNAs to induce axonal outgrowth
2. Shuttle neurotrophic growth factors facilitate axon 

regeneration.
3. Impinging directly on the PTEN-mTOR pathway

Neuroinflammation
Neuroinflammation is one of the key factors in recovery 
from PNI. When PNI has occurred, myelinating SCs are 
dedifferentiated and activated in the distal stump of the 
nerve. Dedifferentiated SCs begin to clear cell debris and 
residual injured myelin in a Wallerian degeneration (WD) 
process. On the other hand, the differentiated SCs release 
several chemokines and proinflammatory cytokines that 
lead to a neuroinflammatory response [109, 110]. The 
neuroinflammatory response leads to the accumulation 
of peripheral immune cells, like circulating macrophages, 
at the injury site [111]. Circulating macrophages are 
essential for the regeneration of axons due to the clear-
ance of axonal and myelin debris because degenerated 
axon debris inhibits axonal growth in the later stages of 
WD [112, 113].

Despite the fact that neuroinflammation has a double-
edged sword effect, neuroinflammation has some posi-
tive effects in the process of regeneration from nerve 

Fig. 3 Diagram illustrates how MSC‑derived exosomes can regulate expression of miRNA and activate PI3K/Akt, which induce activation of the PI3/
AKT signaling pathway in neural cells, leading to promotion of nerve regeneration
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injury, but excessive inflammatory responses can not 
only be obstacles for nerve regeneration but also cause 
neuropathic pain. Hence, an appropriate level of neuroin-
flammation is the main target for PNI.

Multiple studies have reported that the main immu-
nosuppressive effects of MSCs are related to the immu-
noregulatory properties of their secretome, such as EV 
exosomes [114, 115]. MSC-derived EXOs demonstrate 
their immunomodulatory effect via miRNAs. For exam-
ple, a study demonstrated that miR‐21 in MSC-derived 
EXOs can modulate immunoreactions by diminish-
ing signal transducers and activators of transcription 3 
(STAT3) expression and inhibiting the nuclear factor 
kappa β (NF‐κβ) pathway [116]. Furthermore, miR‐181c, 
which is found in MSC-derived EXOs, plays a key role 
in reducing inflammation by reducing NF‐κβ activation 
and repressing the toll-like receptor 4 (TLR4) signaling 

pathway [117]. Another miRNA that exists in MSC-
derived EXOs is miR‐21‐5p. It has been demonstrated 
that miR‐21‐5p diminished proinflammatory cytokines 
and increased M1 to M2 polarization in alveolar mac-
rophages by inhibition of iNOS mRNA expression (Fig. 4) 
[118]. In the same way, miR‐326, miR‐182, miR‐17‐ 5p, 
miR‐140‐5p, miR‐9, and miR‐let7 that are found in MSC-
derived EXOs can also reduce inflammation by suppress-
ing proinflammatory cytokines [119].

Indeed, MSC-derived exosomes with specific miR-
NAs can induce the polarization of macrophages from 
the M1 to the M2 phenotype to promote nerve regen-
eration. In a nerve tissue injury situation, macrophages 
differentiate into M1 macrophages that can promote an 
inflammation response and also aggravate tissue dam-
age. But MSC-derived exosomes induce the polarization 
of macrophages from the M1 to the M2 phenotype to 

Fig. 4 MSC‑derived exosomes exhibit immunomodulatory and anti‑inflammatory effects, which decrease nerve tissue damage. MSC‑derived 
exosomes have an immunomodulatory effect due to the interaction of exosomal miRNAs. MSC‑derived exosomes are able to transform 
macrophages from the M0 and M1 phenotypes to the M2 phenotype. Also, they increase secretion of M2‑related cytokines such as TGF‑β and IL‑10 
and also decrease M1‑related cytokine levels (IL‑6, IL‑12, and TNF‑α)
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promote nerve regeneration due to their specific miR-
NAs (Fig.  4). Collectively, we can conclude that MSC-
derived EXOs modulate neuroinflammation to promote 
axonal outgrowth.

Exosomes ameliorate neuropathic pain
Neuropathic pain is a type of chronic pain that occurs 
as a result of a lesion or disease in the peripheral nerv-
ous system [120, 121]. Although the exact mechanisms 
of neuropathic pain as a chronic pain are poorly deter-
mined, studies have reported that neuropathic pain is 
mostly related to neuroinflammation [122]. Up until 
now, clinical treatment strategies for neuropathic pain 
have included physical, pharmacological, and interven-
tional approaches, but none of them appear to be effec-
tive in controlling the condition [123]. Therefore, an 
effective clinical strategy is necessary for the treatment 
of neuropathic pain. Nowadays, exosome therapies rep-
resent a potential candidate for clinical neuropathic 
pain treatment due to their anti-neuroinflammation 
effects [124]. Clinical studies have suggested that EXOs 
can modulate immune responses and promote the heal-
ing process, thereby potentially alleviating inflammation 
and pain [125]. Indeed, EXOs can suppress the produc-
tion of proinflammatory cytokines such as TNF-α,IL-1β, 
and PGE2 in tissue-injured areas and also stimulate the 
release of IL-10, leading to antinociceptive effects [126]. 
Exosomal miRNAs like miR-181c-5p, miR-216a-5p, and 
miR-126-3p have also been demonstrated to ameliorate 
neuropathic pain in sciatic nerve compression in in vivo 
studies [123, 127]. EXOs can ameliorate neuropathic pain 
by reducing proinflammatory cytokines and promoting 
neuronal proliferation and function [128].

Exosomes as nanocarriers
Exosomes are lipid bilayer-enclosed vesicles that origi-
nate from the internal budding of the late endoso-
mal membrane and are secreted by all types of cells. 
Exosomes are therefore a natural cargo for cell–cell 
communication. This property attracted the attention 
of researchers to exosome-based gene or drug delivery 
systems. Exosome-based delivery systems have several 
advantages over other delivery systems due to the follow-
ing reasons:

1. A variety of biological cargoes can be delivered by 
exosomes, like drugs, small RNAs, mRNAs, and pro-
teins.

2. Natural capacity of exosomes to cross biological bar-
riers, like the blood–brain barrier.

3. Exosomes can transfer into other tissues with no 
blood supply.

4. Exosomes can influence targeted tissue for a long 
period of time.

5. Exosomes are biocompatible and genetically engi-
neered.

6. To avoid systemic toxicity, exosomes can be engi-
neered as surface proteins to distinguish specific tar-
geted tissues and avoid unwanted accumulation in 
surrounding tissues [129].

Exosomes transport genes or drugs by fusing with the 
cell membrane of the receptor in acidic environments. 
Indeed, studies have demonstrated that exosomes have 
the tetraspanin protein CD9 on their surfaces [130, 131], 
which can fuse with the target cell membrane to trans-
port a specific gene or drug for therapy. Exosomes have 
thus been used as an effective carrier for in vivo drug or 
nucleic acid delivery by researchers. But several chal-
lenges have existed regarding the clinical use of exosomes 
as carriers, such as methods to transport drugs or nucleic 
acids into exosomes efficiently. Various methods have 
been applied to import proteins, drugs, and nucleic acids 
into exosomes, such as incubation, freeze–thaw cycles, 
sonication, extrusion, electroporation, thermal shock 
transfection, saponin-assisted loading, hypotonic dialy-
sis, and the pH gradient method [132].

Although many clinical trials are being conducted to 
examine the therapeutic effect of exosomes in a range of 
clinical settings such as SARS-CoV-2 pneumonia, acute 
ischemic stroke, macular holes, and cerebrovascular 
disorders [133], only a few preclinical studies in periph-
eral nerve regeneration have been conducted. Yang et al. 
[134] showed that the implementation of nerve guidance 
conduits containing NT-3 mRNA-loaded ADSC-derived 
exosomes significantly improved gastrocnemius muscle 
function in a rat sciatic nerve defect model. Neurotro-
phin-3 (NT-3) concentration, a prominent neurotrophic 
factor in peripheral nerve regeneration, is not sufficient 
in the early phase of nerve injury. Therefore, in this 
study, ADSCs were transduced by NT-3 mRNA, and 
exosomes extracted from these cells were embedded in 
alginate hydrogel to build a nerve guidance conduit. Sus-
tained release of NT-3 mRNA containing exosomes was 
detected at least after 2  weeks of NGC [134]. Notable 
nerve regeneration and functional recovery of the gas-
trocnemius in treated rats were observed.

Fan et  al. [135] found that miR-146a-loaded MSC-
derived exosomes helped improve diabetic peripheral 
neuropathy (DPN). Exosome injection increased both 
mechanical and thermal stimulus thresholds while 
decreasing nerve conduction velocity. miR-146a, an anti-
inflammatory factor whose expression mediates dor-
sal root ganglion survival in DPN, was transfected into 
mouse bone marrow-derived mesenchymal stem cells 
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(BMMSCs). Exosomes derived from transfected MSCs 
were injected once a week for four weeks to improve con-
duction velocity and thermal and mechanical stimulus 
threshold in treated groups of mice.

Singh et  al. [136] fused BMMSC-derived exosomes 
with polypyrrole NPs (PpyNPs)-loaded liposomes via a 
10-time freeze–thaw process. This hybrid could provide 
both chemical and electrical cues for nerve regeneration, 
as exosomes contain chemical ingredients and PpyNPs 
induce electrical conduction for nerve regeneration. 
Intramuscular injection of the hybrid notably normal-
ized the compound muscle action potential and the nerve 
conduction velocity in DPN rats. Surprisingly, hypergly-
cemia and weight loss have been controlled in the treated 
group as a result of the paracrine effect of the hybrid 
injection.

Liu et  al. [137] demonstrated the crosstalk between 
SCs and neurons in the peripheral nerve. The research-
ers discovered that miR-21 levels are lower in SC-derived 
exosomes from diabetic peripheral neuropathy rats, 
which may impair their ability to induce nerve regenera-
tion. Exosomes derived from transduced SCs with miR-
21-lentiviral vectors improved the cells’ ability for neurite 
growth induction in a high glucose condition compared 
with exosomes derived from glucose-exposed SCs. It 
has also been demonstrated that miR-21 exerts its effect 
partly through p-AKT signaling. The promising results 
encourage more investigation for exosome therapy to 
move forward.

Advantages of exosomes as nanocarriers 
in comparison to other synthetic vesicles
Since the 1990s, more than 50 man-made nanoparticles 
have been approved for use in clinical settings. All of 
these nanoparticles are simple two-layer lipids with a few 
extra ingredients [138]. Even though it seems unlikely 
that more complex nanocarriers with more of a natural 
biological structure and cargo could be made on a large 
scale, exosomes could be used to test the potential of 
these kinds of multifunctional drug carriers.

Besides, applying exosomes is likely to facilitate issues 
associated with drug loading and delivery, which sub-
stantially reduce the efficiency of nanoparticle produc-
tion. Both loading exosomes with the cargo of interest 
and surface modification can be obtained through natu-
ral cellular processes in exosome production as well as 
cargo delivery via endocytosis/membrane fusion [139]. 
Naturally loaded exosomes can be produced through 
genetically engineered cells of origin to produce the 
desired molecules inside and/or on the cell membrane, 
bypassing cargo degradation and receptor implantation 
during nanoparticle synthesis [138].

Although nanomedicines mostly evoke fewer side 
effects in comparison to free drugs due to their less fre-
quent encounter with non-targeted tissues, some poly-
ethylene glycol (PEG)-conjugated nanoparticles can 
trigger inflammatory and rarely life-threatening reac-
tions. Early-phase clinical trials have proven allogenic 
MSC-derived EVs safe [140, 141]. Similarly, there is a 
growing body of evidence on the safety of blood-derived 
EVs in blood transfusions that could be used to predict 
the safety profile of allogenic exosomes [138, 142]. How-
ever, due to the enormously heterogeneous cargo of 
exosomes, which may affect off-target results, caution 
should be exercised in generalizing this data [143].

The mechanical stiffness of exosomes is another advan-
tage, as shown in a study using extracellular matrix-simu-
lating hydrogels. EVs are superior to nanocarriers in both 
their tolerance of a stress-relaxing environment and their 
ability to cross biological barriers like the blood–brain 
barrier due to their surface proteins [133, 144]. Therefore, 
the immunocompatibility and organ-organelle tropism of 
exosomes may serve them as more efficient therapeutic 
agents.

Challenges of exosome therapy
Although the favorable results from exosome therapy 
in preclinical and clinical studies are encouraging, as an 
unprecedented therapeutic approach, there are some 
issues that need to be tackled before applying them in 
clinical settings. Firstly, the lack of GMP-compliant large-
scale production techniques has hindered the transition 
of exosome therapy from preclinical to clinical studies. 
A variety of methods to propagate cell sources, from 3-D 
cell culture to bioreactors, have been applied, yet they 
demand more improvements to efficiently meet the need 
for a clinical dose of exosomes [145].

Secondly, in the absence of effective isolation tech-
niques, exosomes are precipitated with other undesir-
able molecular contaminants, which impede the clinical 
translation of the therapeutic agents. Differential centrif-
ugation followed by ultracentrifugation has been more 
frequently applied in preclinical studies [146] than the 
other currently available methods, including size-exclu-
sion chromatography (SEC) density, gradient ultracen-
trifugation, precipitation, immunoaffinity-based capture 
[147], and microfluidics-based technologies. However, 
while the technique has proven effective, coprecipitation 
of non-exosome molecules, low efficiency, and impaired 
exosome structure remain issues to be settled [148].

Thirdly, by carrying a diverse range of molecules 
with synergic or additive effects, EVs may intensify the 
therapeutic effects, yet some concerns remain due to 
their potential oncogenic activity, particularly for those 
driven by stem cell proteins [149, 150]. In other words, 
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the inability to precisely both characterize and quantify 
exosomes’ cargo as well as the inability to target them for 
a specific receptor raises off-target concerns.

Fourthly, the lack of techniques for precise quantifi-
cation of exosomes poses pharmacokinetic challenges. 
Available methods of exosome measurement are highly 
sensitive and accurate and include nanoparticle track-
ing analysis, electron microscopy, surface plasmon reso-
nance, flow cytometry, dynamic light scattering, tunable 
resistive pulse sensing, and single-particle reflectance 
imaging sensors. However, these techniques are quite 
costly and laborious, particularly when it comes to large-
scale production.

Fifthly, optical imaging demonstrated exosomes’ rapid 
accumulation in the liver and spleen following intrave-
nous injection, which represents their undesirable bio-
distribution and short half-life. The considerably lower 
half-life of exosomes than nanocarriers (60 min vs. sev-
eral hours) is another shortcoming that needs to be 
overcome [149]. Therefore, a range of issues should be 
avoided, from the manufacturing of exosomes to accu-
rately characterizing and quantifying them, in order to 
guarantee a safe and effective therapy with known pos-
sible side effects. Hence, the International Society for 
extracellular vesicles (ISEV), established in 2014, updated 
isolation and characterization methods in 2018 to further 
accurate and reliable EV isolation [151]. Furthermore, 
the EV-TRACK platform, developed in 2017, encour-
ages authors to share their isolation and characterization 
techniques and receive advice on possible drawbacks to 
enhance more reproducible and concrete results [133].

Future perspectives and conclusions
When a peripheral nerve injury occurs, a series of com-
plex events occur in the neuron’s cell body and in sur-
rounding cells. Several factors are involved in the nerve 
regeneration process, such as inflammation, trophic fac-
tors, angiogenesis, and SCs. Due to the requirement to 
sacrifice a healthy tissue nerve, current Schwann cell-
based therapy to regenerate peripheral nerves is not an 
ideal approach. Furthermore, the use of autologous SC 
exosomes to treat PNI does not overcome the obstacle of 
needing to sacrifice a functioning nerve to gain the SC-
derived exosomes. On the other hand, MSCs have been 
shown to be efficacious in improving neurite outgrowth, 
and they are applied in PNI studies. MSC transplantation 
using nerve guide conduits has shown positive effects in 
animal models of nerve gap injuries but is still far from 
being widely accepted.

Recently, MSC-derived exosomes have been known 
as the main regulatory mediator that mediates tissue 
regeneration. MSC-derived exosomes have a therapeu-
tic effect similar to MSCs and, due to several advantages 

over MSCs, can be used as a cell-free therapy to treat 
peripheral nerve injury instead of MSCs. MSC-derived 
exosomes play a pivotal role in mediating intercellu-
lar communication in the peripheral nerve microen-
vironment. Indeed, MSC-derived exosomes transfer 
genetic substrates such as miRNAs, neurotrophic fac-
tors, and proteins to axons to regulate axonal regrowth, 
as described in this study. Moreover, MSC exosome-
based therapy can resolve the issues caused by stem cell 
transplantation. Hence, in the future, MSC exosome-
based therapy will be a cell-free approach for regener-
ating PNI. Although several studies have shown that 
injecting MSC-derived exosomes into nerve stumps 
or supplementing nerve conduits for the treatment of 
peripheral nerve injury is effective and safe, further 
research is needed to determine the potential of MSC-
derived exosomes for clinical application.
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