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Abstract 

In the last decade, human-induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM)-based cell therapy 
has drawn broad attention as a potential therapy for treating injured hearts. However, mass production of hiPSC-
CMs remains challenging, limiting their translational potential in regenerative medicine. Therefore, multiple strate-
gies including cell cycle regulators, small molecules, co-culture systems, and epigenetic modifiers have been used 
to improve the proliferation of hiPSC-CMs. On the other hand, the immaturity of these proliferative hiPSC-CMs could 
lead to lethal arrhythmias due to their limited ability to functionally couple with resident cardiomyocytes. To achieve 
functional maturity, numerous methods such as prolonged culture, biochemical or biophysical stimulation, in vivo 
transplantation, and 3D culture approaches have been employed. In this review, we summarize recent approaches 
used to promote hiPSC-CM proliferation, and thoroughly review recent advances in promoting hiPSC-CM maturation, 
which will serve as the foundation for large-scale production of mature hiPSC-CMs for future clinical applications.
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Introduction
The ability of human-induced pluripotent stem cells (hiP-
SCs) to differentiate into nearly all cell types in the heart 
has revolutionized the field of cardiovascular regen-
erative medicine [1, 2]. To date, multiple protocols have 
been developed to differentiate hiPSCs into cardiomyo-
cytes (hiPSC-CMs) with high purity [3–6]. However, gen-
erating adequate quantities of autologous hiPSC-CMs for 
high-throughput drug screening and cell therapy remains 

a challenge as the differentiation process is labor-inten-
sive, time-consuming, and costly. Meanwhile, hiPSC-
CMs will lose their proliferative capacity with long-term 
culture, restricting further expansion [7, 8]. Moreover, 
the low survival rate of transplanted hiPSC-CMs in the 
host heart suggests that it should be beneficial to preserve 
a certain degree of proliferative capacity of hiPSC-CMs 
to enhance engraftment [9]. Thus, developing effective 
strategies to promote hiPSC-CM proliferation is of great 
importance to mitigate the unmet research and clinical 
needs. On the other hand, current methods to differen-
tiate hiPSC-CMs from hiPSCs mainly mimic the process 
of embryonic development, leading to the generation of 
fetal-like immature CMs in terms of their morphology, 
structure, metabolism, and electrophysiology when com-
pared with adult CMs (Fig.  1). These immature hiPSC-
CMs could be the source of lethal cardiac arrhythmias 
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when transplanted into large animal hearts such as non-
human primates, which largely precludes their applica-
tions in human myocardial injury therapies [10]. Finally, 
immature hiPSC-CMs cannot fully recapitulate the dis-
ease phenotypes and pharmacological responses of adult 
primary CMs, further limiting their use in pre-clinical 
applications [11, 12]. Therefore, efforts to develop novel 
methods to promote the proliferation capacity of hiPSC-
CMs at an early stage and improve their maturation 
before use are crucial to circumventing the current limi-
tations in the regenerative medicine research field.

In this review, we systematically detail the current 
progress in developing methods to promote hiPSC-CM 
proliferation, summarize recent advances in improving 
hiPSC-CM maturation, and conclude by outlining future 
prospects for the field.

Regulators of hiPSC‑CM proliferation 
and maturation
Cell cycle regulators
In mammals, embryonic, fetal, and early postnatal CMs 
are proliferative; however, they quickly lose their prolif-
erative potential over a short period of time after birth 
by exiting the cell cycle and shifting into the matura-
tion program to adapt to the challenging environment 
and increasing workload [13]. Therefore, CMs start to 
lose their proliferative capacity when they become more 

mature. hiPSC-CMs cultured in vitro mirror the in vivo 
maturation process of their primary counterparts. The 
expression levels of cyclins and cyclin-dependent kinases 
(CDKs) decrease during hiPSC-CM differentiation, and 
the proliferation rate of hiPSC-CMs gradually decreases 
over prolonged periods in culture [7, 8, 14]. Ji and col-
leagues found that the compound CY116, which inhibits 
the activity of Aurora kinase which controls cell division, 
can promote the maturation of hiPSC-CMs [15]. A recent 
study also showed that the sarcomere assembly inhibited 
mitosis and promoted polyploidization by p53 activa-
tion and cyclin B1 (CCNB1) repression, indicating that 
cell cycle maintenance conflicts with myofibril forma-
tion [16]. Therefore, re-introducing hiPSC-CMs into the 
cell cycle might be a feasible strategy to enhance prolif-
eration. Landmark studies by Zhang’s group showed that 
cyclin D2 (CCND2) overexpression activated cell cycle 
progression in hiPSC-CMs and that transplanting these 
CCND2-overexpressing hiPSC-CMs into mouse or swine 
hearts with myocardial infarction significantly enhanced 
myocardial repair [17, 18]. More importantly, although all 
swine hearts showed severe arrhythmias and ST segment 
elevations attributable to the acute ischemia/reperfusion 
injury, no spontaneous arrhythmia was observed during 
the four-week follow-up period by continuous electro-
cardiogram (ECG) recordings [17]. A possible explana-
tion is that a smaller number of CCND2-overexpressing 
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hiPSC-CMs  (107 vs  108 compared to other studies) are 
sufficient for the cell therapy, demonstrating the advan-
tage of preserving a certain degree of proliferative capac-
ity of hiPSC-CMs in cardiac repair [17, 19, 20]. Further 
pre-clinical studies are needed to confirm the therapeutic 
effect of CCND2-overexpressing hiPSC-CMs, especially 
long-term assessment of tumorigenicity and arrhythmo-
genic potential of proliferating hiPSC-CMs, which are 
essential for the application of cardiac cell therapy in 
human. In addition, despite being well studied in adult 
CMs, the functions of other cell cycle regulators, such 
as cyclin A2 (CCNA2), cyclin G1 (CCNG1), cyclin-
dependent kinase 1, and 4 (CDK1 and CDK4) in regulat-
ing hiPSC-CM proliferation remain unknown [21–23]. 
Recent work by Bergmann’s group provided an opti-
mal tool for enabling further validation of the cell cycle 
regulators of hiPSC-CM proliferation [24]. Briefly, they 
generated a dual reporter (mCherry-hCdt1 and mVe-
nus-hGem) driven by the cardiac troponin T2 (TNNT2) 
promotor to dynamically monitor the cell cycle in hiPSC-
CMs and found that G2 arrest might be responsible for 
the cell cycle arrest [24]. Further validation of the plat-
form showed that the alpha-adrenergic agonist clonidine 
can promote hiPSC-CM proliferation [24]. Interestingly, 
although clonidine can also induce cell cycle activity in 
both in vivo and in vitro neonatal mouse cardiomyocytes, 
no increase in cytokinesis was observed, indicating that 
clonidine is not able to promote the proliferation of CMs 
undergoing maturation [24]. Therefore, additional com-
pounds aimed at promoting hiPSC-CM proliferation 
need to be screened and validated.

Small molecules
Decades of intensive studies have revealed that CM 
proliferation in  vivo is regulated by multiple signal-
ing pathways, which provide several clues for fur-
ther screening pro-proliferative compounds to induce 
the proliferation of hiPSC-CMs (reviewed previously 
[25]). Due to the advances in high-throughput screen-
ing techniques, an increasing number of molecules/
factors that induce hiPSC-CM proliferation have been 
identified. Using a high-density micro-bioreactor array, 
Titmarsh et al. screened agonists targeting Wnt, Hedge-
hog, IGF, and FGF pathways and found that a Wnt acti-
vator, CHIR99021 (CHIR), had the greatest influence 
on promoting hiPSC-CM proliferation, which was also 
confirmed in engineered cardiac micro-tissues [26, 27]. 
However, one of the disadvantages of CHIR-treated 
hiPSC-CMs is the reduced contractile force indicated 
by the lower expression of mature or contractile-related 
genes such as ryanodine receptor 2 (RYR2), myosin light 
chain 2 (MYL2), and troponin I3 (TNNI3) [28]. Intrigu-
ingly, the authors also found that engineered heart tissues 

(EHTs, which can promote hiPSC-CM maturation) from 
CHIR-treated hiPSC-CMs had slightly enhanced func-
tional properties compared with EHTs from hiPSC-
CMs without treatment, highlighting the feasibility of 
expanding and subsequently stimulating the maturation 
of hiPSC-CMs [28]. Furthermore, Mills and colleagues 
employed a 3D cardiac organoid platform for compound 
screening and identified three compound hits targeting 
p38α/β, purinergic receptor P2RX7, and the transform-
ing growth factor β receptor (TGF-βR)/bone morpho-
genetic protein receptor (BMPR) signaling pathway, 
respectively, which can promote hiPSC-CM proliferation 
without compromising the contractile force [29]. Deeper 
investigation elucidated that the mevalonate pathway was 
the core component of the proliferation signature under 
these pro-proliferative stimuli, suggesting that control-
ling metabolism has great potential for promoting hiPSC-
CM proliferation [29]. In the future, more investigations 
are needed to determine how intermediate metabolites 
regulate hiPSC-CM proliferation.

The Hippo signaling pathway, another key pathway 
regulating CM proliferation, is highly conserved in mam-
mals and modulates embryonic heart development and 
organ size [30]. Studies have shown that genetic deletion 
or knockdown of key components in the pathway, such as 
mammalian ste20-like kinases (MST), large tumor sup-
pressor homolog (LATS), and Salvador, resulted in cell 
cycle re-entry of mammalian CMs, as did the activation 
of YAP [31, 32]. Similarly, several small molecules such as 
TT-10 stimulated hiPSC-CM proliferation by activating 
YAP [29, 33]. However, it is important to note that not all 
drugs targeting the Hippo signaling pathway can promote 
proliferation. For instance, MST inhibitors such as com-
pound 51 and XMU-XP-1 failed to activate hiPSC-CM 
proliferation due to off-target effects on many pivotal cell 
cycle genes [29]. Recently, Kastan and colleagues have 
chemically modified a LATS inhibitor, TRULI [34]. Its 
derivative, TDI-011536, showed improved potency and 
physical-chemical properties and initiated the prolifera-
tion of CMs in adult mice following cardiac cryolesions, 
suggesting that drug modification might provide more 
possibilities for improving the effects of pro-proliferative 
compounds [34]. Taken together, despite the discovery 
of an increasing number of pro-proliferative compounds 
[35, 36], our understanding of the mechanisms behind 
their pro-proliferative effects is still in its infancy. In 
addition, it is crucial to investigate the function of these 
treated hiPSC-CMs to validate their potential use in dis-
ease modeling and drug screening by confirming their 
ability to recapitulate the disease phenotype or drug 
response.

While embryonic and fetal heart development stud-
ies provide the basis for developing methods to promote 
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hiPSC-CM proliferation, studies of postnatal heart devel-
opment shed light on hiPSC-CM maturation. Thyroid 
hormone (THs) levels increase rapidly after birth and 
are essential for heart developmental processes such as 
the regulation of titin isoform switching from the fetal 
N2BA isoform to the adult N2B isoform [37]. Treat-
ment of hiPSC-CMs with triiodothyronine (T3) signifi-
cantly increased cell size, sarcomere length, contractile 
force, and improved calcium handling [38, 39]. Gluco-
corticoids, which rise before birth and remain elevated 
postnatally, have also been reported to promote heart 
maturation [40]. A combination of T3 and glucocorti-
coids significantly promoted T-tubule formation, which 
further contributed to the enhanced excitation–contrac-
tion coupling and synchronized intracellular calcium 
release in hiPSC-CMs, highlighting the importance of 
these hormones for improving hiPSC-CM maturation 
[41]. Other hormones such as insulin-like growth fac-
tor 1 (IGF1) can promote physiological CM hypertrophy 
and in combination with neuregulin 1β (NRG1) could 
further boost the size and contractility of human embry-
onic stem cell (hESC)-derived cardiac tissue, suggesting a 
potential role of IGF1 in regulating cardiac tissue matu-
ration [42, 43]. Moreover, other studies found that IGF1 
can also promote hESC-CM proliferation by activating 
the PI3K/AKT pathway, whilst blocking this pathway can 
reduce the effect of IGF1 and promote maturation [44, 
45]. These studies indicate the multifaceted roles of IGF 
in regulating CM maturation and proliferation.

In addition to hormones, many small molecules have 
also been used to promote hiPSC-CM maturation. For 
example, an estrogen-related receptor gamma (ERRγ) 
agonist enhanced hiPSC-CM maturation, as indicated by 
a switch of the sarcomeric protein troponin I (TNNI) iso-
form from TNNI1 to TNNI3 and the alteration of main 
metabolic substrates [46]. Sakamoto and colleagues then 
showed that ERRγ can interact with cardiogenic fac-
tor GATA4 to orchestrate hiPSC-CM maturation [47]. 
A recent study further showed that in  vivo both ERR α 
and γ are not only important for cardiac maturation 
but also for ventricular identity, demonstrating the key 
role of ERR in cardiac development [48]. Furthermore, 
torin1, an inhibitor of mTOR signaling, was also shown 
to increase TNNI3 expression, contraction, and the max-
imum oxygen consumption rate of hiPSC-CMs, all of 
which are indicators of CM maturation [49].

One of the hallmarks of CM maturation is the meta-
bolic transition from glycolysis to fatty acid oxidation 
[50]. Hu and colleagues demonstrated that in a stand-
ard culture medium containing glucose, the hypoxia 
inducible factor 1 subunit alpha (HIF1α)-lactate dehy-
drogenase A axis prevented the metabolic maturation 
of hiPSC-CMs, while a fatty acid-rich medium without 

glucose promoted metabolic and functional maturation 
of hiPSC-CMs by shifting energy production from aero-
bic glycolysis to oxidative phosphorylation [51]. Subse-
quent studies optimized the fatty acid component of the 
maturation medium and found that these metabolically 
matured hiPSC-CMs showed improved phenotypic man-
ifestation of several diseases such as long QT syndrome 
and dilated cardiomyopathy [52–54]. In addition, the per-
oxisome proliferator activated receptor (PPAR) signaling 
pathway was shown to activate fatty acid oxidation and 
improve in vivo CM maturation [50]. Xu and colleagues 
confirmed that HIF1α inhibition in combination with 
PPARα activation improved mitochondrial maturation 
and increased  Ca2+ transient kinetics, contraction, and 
relaxation velocities in hiPSC-CMs [55]. Interestingly, a 
recent study compared the effects of different PPAR iso-
forms on hiPSC-CMs and found that neither PPARα or 
PPARβ alone promoted hiPSC-CM maturation, whereas 
PPARδ activation per se enhanced oxidative metabo-
lism, contractile force, and calcium handling, although 
no change in conduction velocity by multielectrode array 
was observed. Taken together, these findings suggest that 
PPAR has isoform-specific effects on hiPSC-CM matura-
tion [56].

In summary, an increasing number of small molecules 
have been identified which significantly augment hiPSC-
CM proliferation or maturation. Future studies need to 
establish how cells sense these drugs, hormones, and 
metabolites and which cytoplasmic and nuclear targets 
regulate the maturation state of hiPSC-CMs.

Long‑term culture
In humans, it takes years for CMs to become fully 
mature, suggesting that prolonged culture could stimu-
late hiPSC-CM maturation [57]. In early studies, when 
CMs derived from embryoid bodies were cultured for 
60  days, cardiomyocytes with a larger cell size, well-
organized sarcomeres, and reduced cell cycle activities 
were noted [58]. Further prolonged culture showed addi-
tional improvements such as enhanced calcium handling 
properties, action potential amplitudes, and upstroke 
velocity [7, 8]. While hiPSC-CMs cultured for 180  days 
displayed mature sarcomere Z-lines, H-zone, A- and 
I-bands, M-lines could only be detected in a minority 
of hiPSC-CMs after 1 year of culture [8]. However, even 
after long-term culture, T-tubules, invaginations of the 
plasma membrane which facilitate excitation–contrac-
tion coupling, were still not observed in hiPSC-CMs 
[59]. To understand how long-term culture could pro-
mote hiPSC-CM maturation, Wu and colleagues built a 
transcriptomic landscape of hiPSC-CMs at different time 
points and found that hiPSC-CMs displayed higher rates 
of oxidative phosphorylation and β-oxidation at Day 200 
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compared to Day 30 of differentiation [60]. In-depth 
pathway analysis revealed that protein kinase A (PKA)-
proteasome and heat shock protein 90 (HSP90)-depend-
ent signaling pathways were responsible for improving 
mitochondrial function [60]. In summary, long-term 
culture can lead to a certain degree of hiPSC-CM matu-
ration, but it is time-consuming and not all hiPSC-CMs 
that have been cultured long-term reach the mature state 
[61].

Epigenetic regulation
Epigenetic regulation such as DNA methylation, histone 
modification, chromatin remodeling, and non-coding 
RNAs plays a critical role in the development and regen-
eration of the heart [62, 63]. In particular, robust progress 
has been made in the past few years to show the power-
ful influence of microRNAs (miRNAs) on hiPSC-CM 
proliferation or maturation [64–66]. Using thymidine 
5-ethynyl-20-deoxyuridine (EdU) staining in combina-
tion with cytoplasmic carboxyfluorescein succinimidyl 
ester (CFSE) fluorescence to assess DNA synthesis and 
cytokinesis, respectively, 96 miRNAs which increase the 
proliferation of hiPSC-CMs were identified [65]. Fur-
ther studies showed that overexpression of miR-199a or 
miR-302d activated cell cycle re-entry and increased the 
number of Ki67-positive hiPSC-CMs [64, 66]. It is worth 
noting that miR-199a and miR-302a enhanced hiPSC-CM 
proliferation by targeting different genes in the Hippo 
pathway, demonstrating the redundancy of miRNA-
mediated regulation of Hippo signaling in the context of 
hiPSC-CM proliferation. By contrast, a study found that 
23 miRNAs were highly expressed in human embryonic 
stem cell-derived cardiomyocytes (hESC-CMs), fetal and 
adult CMs, but not in hESCs [67]. Among these miRNAs, 
further studies identified that overexpression of miR-1, 
let 7i, and miR-452 or knockout of miR-122 and miR-
200a increased cell size, elevated fatty acid usage, and 
enhanced contractile force in hiPSC-CMs or hESC-CMs 
[67–69]. Further work is required to decipher how differ-
ent miRNAs affect the different states of hiPSC-CMs and 
thereby strengthen our understanding of the regulation 
of proliferation and maturation.

In addition, we are still in the early days of knowing 
how other epigenetic regulators contribute to hiPSC-CM 
proliferation and maturation. Through in-depth profil-
ing of the heart at different developmental stages, Olson’s 
and Hein’s groups demonstrated that DNA methylation 
and histone modification regulated gene expression dur-
ing heart regeneration and development [70, 71]. Treat-
ment of hESC-CMs with valproic acid, which induces 
trimethylation of lysine 4 on histone H3 (H3K4me3), led 
to a significant increase in CM size and stimulated the 
expression of ion channel and calcium handling genes 

such as sodium voltage-gated channel alpha subunit 5 
(SCN5A), potassium inwardly rectifying channel sub-
family J member 2 (KCNJ2), and ryanodine receptor 2 
(RYR2) [72], demonstrating the role of histone modifica-
tion in hESC-CM maturation. Moreover, in recent years, 
epi-transcriptomic modification has garnered significant 
attention due to the discovery of reversible RNA methyl-
ation [48, 73, 74]. Of particular interest is RNA N6-meth-
yladenosine (m6A) modification, which is the most 
abundant modification in eukaryotic mRNA and involves 
writers, erasers, and readers, which add, remove, and 
recognize m6A modifications,  respectively [73]. Its con-
tinuous and dynamic regulation has a profound impact 
on various biological processes by governing mRNA 
stability, maturation, splicing, transport, and translation 
[75, 76]. Recent research by Yang and colleagues profiled 
the m6A modification of neonatal hearts and found that 
m6A levels dramatically decreased in Day 7 hearts com-
pared to Day 0 hearts [77]. Further studies revealed that 
Abraxas 2 (ABRO1) was upstream of METTL3 (writer), 
which restricts METTL3 activity in postnatal CMs, 
whilst the METTL3—miR-17-3p axis promoted prolifer-
ation [78, 79]. However, several studies also showed that 
METTL3 inhibited the proliferation capacity of CMs and 
that blocking METTL3 promoted heart regeneration [80, 
81]. Therefore, further research is needed to fully under-
stand the effect of METTL3 on the proliferation of CMs. 
Nevertheless, these studies confirmed that m6A modifi-
cation plays a vital role in CM proliferation and matura-
tion in vivo. In terms of hiPSC-CMs, Cai’s group recently 
identified that ALKBH5 (eraser) played a vital role not 
only in cardiac lineage commitment of hESCs but also 
in the proliferation of hiPSC-CMs [82, 83]. A more com-
prehensive characterization of targets and mechanisms is 
needed to provide more avenues to promote hiPSC-CM 
maturation or proliferation.

Co‑culture
The heart is composed of multiple cell types in addi-
tion to CMs. Non-myocytes such as cardiac fibroblasts 
(CFs), epicardial cells (EPIs), smooth muscle cells 
(SMCs), and endothelial cells (ECs) play a pivotal role 
in heart development [84, 85]. Among them, EPIs are 
one of the first cell types to emerge in the vertebrate 
heart during embryonic development and give rise to 
epicardial-derived cells such as SMCs and CFs during 
cardiogenesis [86]. To identify the potential effects of 
non-myocytes on hiPSC-CMs, Floy and colleagues co-
cultured hiPSC-derived cardiac progenitor cells (CPCs) 
with EPIs for two weeks and this direct cellular cross-
talk promoted CM proliferation [87]. In contrast, indi-
rect co-culture or epicardial conditioned medium did 
not induce hiPSC-CM proliferation, suggesting that 
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direct cell–cell contact and interaction is essential for 
EPI-mediated pro-proliferative effects on hiPSC-CMs 
[87]. However, Tan et al. suggested that IGF2 secreted 
by pre-EPIs might exert a pro-proliferative effect on 
hiPSC-CMs in the co-culture system [88]. The discrep-
ancies between the two studies might be explained by 
the different developmental stages of cardiac cells used 
in the co-culture system (Floy et  al. used EPI + CPC, 
whereas Tan et al. cultured pre-EPIs + CM) and the het-
erogeneity of EPIs derived from different differentiation 
protocols [87, 88]. Beyond that, some recent in  vivo 
studies highlighted the significant role of cytokines 
derived from EPIs in heart regeneration, suggesting 
that  the EPI-mediated paracrine effects might be a 
main driving force to activate CM proliferation [89, 90].

Cardiac fibroblasts are another major cell type in the 
heart. Ieda and colleagues deciphered that CFs have a 
stage-specific function in mice: embryonic CFs promote 
CM proliferation by secreting extracellular matrix fac-
tors, while in adult hearts, CFs induce CM hypertro-
phy and sarcomere organization by secreting growth 
cytokines, demonstrating the paracrine effects of CFs on 
CM structure and morphology [91]. Therefore, in-depth 
investigations to reveal physiological differences between 
embryonic and adult CFs may provide more avenues to 
scale up hiPSC-CM production or enhance their matu-
rity. A recent study showed that follistatin like 1 (FSTL1), 
a key glycoprotein maintaining cardiac growth and devel-
opment, was secreted by CFs under hypoxic conditions 
and promoted the proliferation of hiPSC-CMs co-cul-
tured with CFs [92]. Apart from CFs, ECs are also draw-
ing researchers’ attention. Co-culturing CPCs with ECs 
for two weeks promoted hiPSC-CM maturation proper-
ties, including cell size, gene expression, and T-tubule like 
structure; however, the underlying mechanisms remain 
unknown [93]. Several in vivo studies have suggested that 
paracrine signals from ECs, such as nitric oxide, prosta-
glandin (PG) E2, and parathyroid hormone-related pep-
tide, are essential for the post-natal development of the 
heart, suggesting that paracrine factors might be the 
main driving force for regulating CM function in the co-
culture system [94].

Taken together, these studies indicate that paracrine 
factors secreted by non-myocytes in co-culture systems 
play a key role in promoting hiPSC-CM proliferation 
or maturation. Further studies are required to identify 
which signals from non-myocytes are involved in driv-
ing hiPSC-CM maturation or proliferation, which in turn 
would benefit the maturation or scaling up of hiPSC-CMs 
by directly using these paracrine factors to exclude the 
contamination of other cells. Whether other cell types 
such as immune cells also regulate CM function remains 
unclear and warrants further studies.

Substrate stiffness, physiological pattern, and conductivity
Extracellular matrices mediate tissue stiffness in the 
heart, leading to an elastic modulus of 10 ~ 25  kPa, 
while the plastic plates used for cell culture in  vitro are 
much stiffer (~ 100  MPa) [95]. Ribeiro and colleagues 
cultured single hiPSC-CMs on a polyacrylamide hydro-
gel with a physiological stiffness (10  kPa) and observed 
improved sarcomere assembly, enhanced contractility 
and calcium handling, and well-organized mitochon-
dria in single hiPSC-CMs [96]. Using a similar strat-
egy, Strimaityte and colleagues recently developed an 
improved method in which they engineered hiPSC-CMs 
into cardiac microfibers to enable end-to-end connec-
tion, thereby further improving the maturation of the 
cardiac microfibers indicated by T-tubule and gap junc-
tion formation [97]. To better mimic the in vivo micro-
environment, Afzal and colleagues re-analyzed several 
adult human heart transcriptomic datasets and identified 
several candidate genes which were highly expressed in 
adult CMs compared to hiPSC-CMs [98]. Based on that, 
they then generated a substrate called “cardiac mimetic 
matrix (CMM)” by conjugating arginylglycylaspartic acid 
(RGD), GFPGER (a commercial collagen mimetic), and 
nephronectin in equal amounts with hydrogel patterns 
into nano-architecture arrays [98]. Further maturation 
of hiPSC-CMs on CMM for two weeks resulted in meta-
bolic and functional maturation, indicated by systemic 
transcriptomic maturation, higher oxidative phosphoryl-
ation and fatty acid oxidation, enhanced redox handling 
capability, and improved calcium handling [98]. Polydi-
methylsiloxane (PDMS) is another material used to gen-
erate soft cell substrate conditions and has been shown 
to trigger structural and electrophysiological maturation 
[99, 100]. Dhahri and colleagues recently modified this 
method to manufacture mature hiPSC-CMs at a large 
scale [101]. The authors further explored the ability of the 
matured hiPSC-CMs to promote cardiac repair in  vivo 
and observed improved sarcomeric structure and align-
ment, enhanced host-graft electromechanical integration 
and electrophysiological function, and a larger incre-
ment in contractile recovery [101]. A limitation of this 
study is that guinea pigs are not the ideal model to assess 
arrhythmogenicity because of their fast heart rate. Fur-
ther evaluations using non-human primates are needed. 
Taken together, these studies indicate that manipulating 
the substrate stiffness can improve hiPSC-CM matura-
tion. More mechanistic studies will provide insights into 
how substrate stiffness affects CM function.

In vivo, adult CMs are elongated and rod-shaped 
(length: width aspect ratio of 7:1), which facilitates myofi-
bril alignment and contractility, whereas in vitro hiPSC-
CMs are circular or triangular and require physical cues 
to adopt a rod shape [102]. Patterning hiPSC-CMs on 
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rectangular micro-patterns or uniaxially aligned ridges 
and grooves improves sarcomere organization and con-
tractile and electrophysiological functions compared 
to CMs cultured in a 2D format [103–105]. Ribeiro 
and colleagues then cultured single hiPSC-CMs with 
aspect ratios (length: width) of 3:1–7:1 and found that 
hiPSC-CMs with a 7:1 aspect ratio displayed the high-
est sarcomere activity and improved myofibril alignment, 
demonstrating that physiological pattern formation leads 
to mature myofibril organization and cell function [96].

In addition to stiffness and pattern regulation, hiPSC-
CM maturation is also affected by the electrical proper-
ties of the cell culture chamber/cell substrate. Dvir and 
colleagues incorporated gold nanowires within alginate 
scaffolds to improve electrical communication between 
adjacent cardiac cells and found that the expression lev-
els of genes involved in muscle contraction and electri-
cal coupling in hiPSC-CMs were upregulated [106]. The 
limitations of this material are that it is expensive and 
that cracks can easily form within the thin electrocon-
ductive metal layers, which can reduce reliability [107]. 
To overcome these problems, Liu and colleagues devel-
oped a platform called “AgNWs-E-PDMS”, in which 
they integrated a nano-textured poly-dimethylsiloxane 
cantilever with an embedded silver nanowire [108]. 
hiPSC-CMs cultured on this platform showed more syn-
chronized beating and calcium transient signals [108]. 
Moreover, improving the electrical signal transduction 
capacity of hiPSC-CMs can also promote maturation 
[109]. To this end, Sottas and colleagues have reported 
that overexpression of connexin-43 (GJA1/CX43), which 
is the predominant gap junction protein in ventricular 
myocytes, significantly enhanced gap junction forma-
tion and electrical coupling between hiPSC-CMs [110]. 
However, the intercalated disc, an important structure 
between adjacent adult primary CMs which contributes 
to electrical conduction, was hardly observed in hiPSC-
CMs, even after stimulating their maturation. Therefore, 
further investigation to understand how this special and 
complex structure is assembled in vivo may provide more 
clues to promote the formation of intercalated discs in 
hiPSC-CMs.

Taken together, these studies demonstrate that the 
characteristics of the biomaterials used to culture hiPSC-
CMs play a vital role in promoting the maturation of 
hiPSC-CMs.

In vivo maturation
The in vivo environment provides the elements required 
for guiding CM maturation, indicating that exposure 
of hiPSC-CMs to the same in  vivo micro-environ-
ment might confer similar maturation effects. Indeed, 
researchers have found that hPSC-CM maturation was 

enhanced after transplantation into hearts for cardiac 
repair [20, 111, 112]. However, Kadota and colleagues 
found that only partially matured hiPSC-CM myofi-
brils developed three months after transplantation into 
neonatal or adult rat hearts, whereas rat neonatal car-
diomyocytes transplanted into rat hosts displayed more 
mature phenotypes, suggesting that matching graft and 
host species is important [113]. Indeed, in infarcted 
hearts of adult macaque monkeys, hiPSC-CMs devel-
oped an adult-like structure and contractile function 
after three months [20]. Conversely, Cho and colleagues 
showed that both mouse ESC-CMs and hiPSC-CMs 
transplanted into neonatal hearts of rats for one month 
showed mature morphology, T-tubule and intercalated 
disc-like structure formation, and faster calcium dynam-
ics [114]. Therefore, more studies are needed to clarify 
these discrepancies. These studies demonstrate that 
hiPSC-CMs have the potential to achieve adult matura-
tion. However, obvious graft-associated arrhythmias in 
non-human primates limited the therapeutic potential 
of hiPSC-CMs for repairing injured hearts [10, 19, 20]. 
Further disadvantages of directly applying this method 
to produce matured hiPSC-CMs include low cell viability 
after transplantation and the contamination of host cells, 
which makes them difficult to isolate.

3D culture
In recent years, 3D-culture systems such as engineered 
heart tissues (EHTs) and cardiac organoids have been 
developed to mimic cell–cell and cell–matrix inter-
actions. Regardless of which approach was used to 
construct 3D cardiac tissues, hiPSC-CMs displayed struc-
tural, functional, physiological, and metabolic maturation 
compared to their 2D counterparts [115–118]. However, 
the use of 3D-culture systems per se is insufficient to 
achieve complete CM maturation. One of the potential 
issues is that hiPSC-CMs alone cannot create an appro-
priate extracellular matrix. To overcome this hurdle, 
Shadrin and colleagues generated a cardiac patch which 
included hiPSC-CM, SMCs, and CFs [118]. After 3 weeks 
in culture, hiPSC-CMs were characterized by organized 
structure, enhanced conduction velocity and contractile 
force, and the formation of T-tubule and intercalated 
disc-like structures [118]. Giacomelli and colleagues fur-
ther combined hiPSC-CMs with hiPSC-CFs and -ECs to 
generate 3D micro-tissues. Their results showed that the 
addition of CFs and ECs significantly promoted hiPSC-
CM maturation in terms of structure, electrophysiology, 
and metabolism. This was partly attributed to the tri-
cellular crosstalk mediated by endothelin-1 and nitric 
oxide which were secreted from ECs and strengthened 
the coupling between hiPSC-CMs and CFs via con-
nexin-43 gap junctions [119]. By using proteomic analysis 
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and single-cell RNA sequencing, several recent studies 
have proposed that more complex intercellular signalling 
pathways, such as BMP4—BMPR1A, NRG3—ERRB4, 
and GDF11 (growth differentiation factor 11)—TGFRB1 
(the former is the ligand from ECs and the latter is the 
receptor in hiPSC-CMs), between hiPSC-CMs and vas-
cular cells are involved in promoting maturation [120, 
121]. However, functional studies to confirm these results 
are currently lacking.

In the adult heart, the heartbeat is controlled by pace-
maker cells in the sinoatrial node, whereas isolated 
healthy adult CMs do not beat spontaneously without 
electrical stimulation. In contrast, hiPSC-CMs show high 
automaticity and immature electrophysiological prop-
erties [122]. Several studies have revealed that external 
electrical stimulation yielded hiPSC-CMs with rod-like 
morphology and enhanced calcium handling [123, 124]. 
Interestingly, applying electric stimulation during cardiac 
differentiation not only enhanced the differentiation effi-
ciency of hiPSC-CMs but also promoted their maturation 
[125, 126]. In terms of the combination with 3D culture, 
Nunes and colleagues developed 3D, self-assembled car-
diac bio-wires by seeding hiPSC-CMs with fibroblasts, 
ECs, and SMCs into a sterile surgical suture and assessed 
hiPSC-CM maturation under two different electrical 
stimulation strategies: (1) a low-frequency ramp-up regi-
men, where stimulation started at 1 Hz, increased to 3 Hz 
(1  Hz, 1.83  Hz, 2.66  Hz and 3  Hz on days 1–4, respec-
tively) and was maintained at 3  Hz for the remainder 
of the week, or (2) a high-frequency ramp-up regimen, 
where stimulation started at 1 Hz and increased to 6 Hz 
throughout the week (1  Hz, 1.83  Hz, 2.66  Hz, 3.49  Hz, 
4.82 Hz, 5.15 Hz and 6 Hz) [127]. The results showed that 
the gradual increase from 1 to 6 Hz was the best stimu-
lation condition in terms of enhancing hiPSC-CM mat-
uration, as indicated by higher cardiac gene expression, 
organized sarcomeres, and improved calcium handling 
properties. However, their maturity was still not compa-
rable with adult CMs, indicated by the absence of M-lines 
and T tubules [127].

Although electric stimulation can promote hiPSC-
CM maturation, the limitation of this technique is that 
it can generate toxic Faradaic reactions at higher volt-
ages and the in vitro apparatus is costly [128, 129]. In the 
last decade, the development of optogenetics has pro-
vided an alternative strategy to stimulate hiPSC-CMs. 
Optogenetic actuators can transform photon flux into 
transmembrane ion flux, thereby manipulating trans-
membrane potential on a millisecond scale [130, 131]. 
Quach and colleagues then generated hiPSC-CMs with 
the expression of ArchT (archaerhodopsin T, a hyperpo-
larizing opsin). By injecting an inward rectifier potassium 
current, hiPSC-CMs displayed a more negative resting 

membrane potential [132]. Another study employed a 
similar strategy to chronically optically paced EHTs for 
one week and reported improved electrophysiological 
properties in EHTs [133]. Lemme and colleagues further 
increased the pacing duration over 3  weeks and found 
that the paced EHTs had faster contraction kinetics, 
shorter action potentials, and shorter effective refractory 
periods compared with the control group [134]. Moreo-
ver, the improved electrophysiological properties of EHTs 
also lead to a high vulnerability to burst pacing-induced 
tachycardia, suggesting that matured hiPSC-CMs are 
more susceptible to pathogenic stimulation [134]. Over-
all, optogenetic tools show great potential to accelerate 
the development of more mature and physiologically rel-
evant hiPSC-CMs.

In addition to stimuli from pacemaker cells, CMs 
are also exposed to increasing mechanical stress dur-
ing development [135]. Dou and colleagues employed a 
micro-device array that can exert dynamic mechanical 
stimulation on hiPSC-CMs and quantitatively monitor 
cell contractility, and observed increased contractility 
and enhanced sarcomere structure under strains rang-
ing from 1.54 to 14.79  kPa [136]. Further applying this 
mechanical loading to EHTs caused CM hypertrophy and 
alignment [137]. Recently, Ruan and colleagues combined 
electrical and mechanical strain in EHTs and found that 
molecular, structural, and force-generating properties 
displayed additive positive effects on maturation [138]. 
Ronaldson-Bouchard et  al. invented a program called 
“intensity training” (two weeks at stimulation frequen-
cies increasing from 2 to 6 Hz, followed by one week at 
2 Hz) in combination with mechanical forces to mature 
EHTs [139]. The results showed that these hiPSC-CMs 
developed an adult-like cell size, T-tubules, and intermy-
ofibrillar mitochondria with densely packed cristae [139]. 
Electrophysiological investigations showed a slightly less 
immature resting membrane potential, action poten-
tial, and upstroke velocity compared to adult CMs [139]. 
After that, a growing body of research using similar 
methods has shown that the combination of biophysical 
stimuli with 3D culture enabled the generation of adult-
like heart tissues [140, 141]. Taken together, these studies 
confirmed that biophysical stimulation (mechanical or 
electric stimulation) applied to the 3D micro-tissues can 
further improve hiPSC-CM maturation.

Most of the 3D culture systems described above are 
EHTs or spheroids. In recent years, self-organizing car-
diac organoids have drawn intensive attention as they 
recapitulate human cardiogenesis [142–145]. Although 
most studies were mainly focused on the developmental 
trajectory and downstream applications in disease mod-
eling, several of them observed improved maturation of 
hiPSC-CMs in these self-organizing organoids [144, 146]. 
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For instance, Silva and colleagues found that the presence 
of endoderm tissue (gut/intestine) in the hiPSC-derived 
organoids contributed to the functional maturation 
of hiPSC-CMs, indicated by larger cell size, elongated 
morphology, enhanced calcium handling, action poten-
tial amplitudes, and upstroke velocity, highlighting the 
importance of multi-tissue interactions for the physiolog-
ical maturation of hiPSC-CMs [146]. In addition, Meier 
and colleagues recently utilized retinoic acid, a metabo-
lite implicated in epicardial development, to promote 
the formation of epicardial cells and their derivatives to 
generate cardiac organoids showing self-organization of 
highly functional ventricular myocardium and epicar-
dium [147]. Transcriptome analysis showed upregulated 
expression of the mature ventricular marker MYL2 by 
Day 15, a higher ratio of TNNI3/TNNI1, and increased 
expression of calcium-handling genes at Day 30, indi-
cating progressive maturation [147]. Current challenges 
associated with studying cardiac organoids include diffi-
culties in measuring the function of hiPSC-CMs in whole 
intact organoids due to their large size, high cell density 
and cellular heterogeneity. Furthermore, scaling up the 
generation of cardiac organoids in a reproducible way 
represents another challenge.

Collectively, these studies demonstrate that hiPSC-
CMs are highly sensitive to the 3D environment as well 
as to biophysical cues. However, a notable limitation is 
that generating these engineered platforms is expensive, 
time-consuming, and challenging compared with tradi-
tional 2D monolayer culture.

Conclusion and perspectives
Here, we reviewed multiple strategies that have been used 
to enhance the proliferation or maturation of hiPSC-
CMs (Fig. 2). Since immature hiPSC-CMs are prolifera-
tive but matured hiPSC-CMs lack this capacity, directly 
scaling up the production of matured hiPSC-CMs is dif-
ficult. Therefore, sustaining or enhancing the cell cycle of 
hiPSC-CMs at an early stage is vital for promoting prolif-
eration. Gene editing in cell cycle-related genes currently 
shows promising results in cell cycle maintenance and 
downstream application in cell therapy, but it is impos-
sible to generate such autologous gene-edited hiPSC for 
human individuals. Moreover, special caution should be 
taken in using these proliferating hiPSC-CMs in drug 
screening and disease modeling, as they are probably 
immature and further studies should investigate whether 
this permanent cell cycle gene editing could hinder later 
stimulation of maturation or have undesired side-effects. 
Compared to the gene editing strategy, drug-induced 
proliferation might be a more appropriate method, as it 
is easy and controllable. The effect of drugs will reduce 
during long-term culture and treated hiPSC-CMs still 

retain the potential to be matured, which enables hiPSC-
CM proliferation to be stimulated at an early stage before 
inducing their maturation and subsequent use. For other 
strategies of increasing proliferation such as epigenetic 
modifications, future studies should be focused on eluci-
dating the underlying mechanisms, which may facilitate 
the discovery of pro-proliferative targets.

Many different methods have been developed to pro-
mote hiPSC-CM maturation in terms of structure, 
metabolism, and electrophysiology, and since all of 
these are related to mitochondrial function, this sug-
gests that mitochondria play a key role in regulating CM 
maturation. Improved mitochondrial function has been 
observed in hiPSC-CMs following stimulation of matu-
ration, but the mitochondria in these cells are not fully 
developed and incomparable to those of adult CMs [51, 
148, 149], which might hinder their potential to acquire 
an adult-like phenotype. The development of methods 
involving intercellular mitochondrial transfer provides 
the possibility that transferring mitochondria from adult 
CMs into hiPSC-CMs might promote the generation of 
adult-like hiPSC-CMs [150–152]. Additionally, indi-
vidual intervention strategies only promote one or sev-
eral aspects of maturation, suggesting that maturation is 
driven by the coordinated regulation of multiple factors 
(Table  1). Moreover, chronological maturation of dif-
ferent cardiomyocyte structures and functions suggests 
that a mere combination approach may not be sufficient 
to formulate an effective maturation cocktail [153]. Fur-
ther optimization of the timing, intensity, and duration 
of stimulating the maturation of individual cardiomyo-
cyte properties might facilitate the generation of adult-
like hiPSC-CMs, as 3D culture systems with biophysical 
stimulation have shown promise in terms of promoting 
maturation. Since the limitations of current engineered 
platforms are complex and costly, developing a reproduc-
ible, scalable, and cost-effective system remains a priority 
for achieving a high-throughput strategy.

Although current matured hiPSC-CMs are still incom-
parable to adult CMs, they have indeed advanced the 
field of disease modeling, drug screening, and cell ther-
apy. The fetal characteristics of hiPSC-CMs allow them 
to  tolerate hypoxic conditions, whereas metabolically 
matured hiPSC-CMs show reduced mitochondrial res-
piration after exposure to hypoxia and increased cell 
death after increased duration of hypoxia, which may 
provide a good model for studying ischemia/reperfu-
sion injury [154]. As another example, the use of con-
ventional monolayer cultured hiPSC-CMs makes it 
harder to capture more clinically relevant phenotypes, 
especially for restrictive cardiomyopathy (RCM), which 
is characterized by impaired cardiac relaxation during 
diastole [155], a parameter which is difficult to measure 



Page 10 of 17Yang et al. Stem Cell Research & Therapy          (2023) 14:228 

in cells attached to a plastic substrate. By using EHTs, 
Wang and colleagues confirmed that a mutation in fil-
amin C caused RCM phenotypes indicated by sarcomere 
disorganization, decreased active contraction force, and 
increased passive contraction force [156]. Subsequent 
drug screening identified that trequinsin, a phospho-
diesterase 3 inhibitor, might be a potential drug which 
could ameliorate RCM phenotypes [156]. In terms of cell 

therapy, mature CMs have so far displayed poor engraft-
ment within the host myocardium and low survival 
rate after transplantation, while immature hiPSC-CMs 
can cause severe engraftment arrhythmias. Therefore, 
choosing an optimal state of hiPSC-CMs with appro-
priate maturity and proliferative capacity is crucial for 
cell therapy. To achieve this aim, drug screening using 
mature hiPSC-CMs (such as EHTs and organoids) may 
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Table 1 Summary of the effects of different methods on hiPSC-CM maturation and proliferation

Methods Proliferation/
Maturation

Effects References

Cell cycle Proliferation Increase the number of Ki67, BrdU, pH3 and Aurora positive cells [17, 18]

Small molecules Proliferation CHIR99021 [28, 29]

Increased the number of Ki67 and pH3 positive cells

Decreased contractile force

Hit compounds from Hudson’s paper

Increased the number of Ki67 and pH3 positive cells

Small molecules Maturation Fatty acid-based medium [41, 51, 52]

Increased contractile force

Enhanced oxidative and glycolytic metabolism

Enhanced calcium cycling

Highly negative resting membrane potential and increased AP upstroke 
velocity

T3 and glucocorticoids

Larger cell size

Improved myofibril organization

T-tubule formation

Increased contractile force

Enhanced calcium handling

Prolonged culture Maturation Increased cell size [7, 8]

Increased number of MLC2v-positive/MLC2a-negative hiPSC-CMs

No detection of T-tubules

Epigenetic regulation Proliferation miRNA [64, 66, 83]

Increased the number of Ki67, BrdU, pH3 and Aurora positive cells

m6A modification

Increased the number of EdU and pH3 positive cells

Epigenetic regulation Maturation miRNA [68, 72]

Larger cell size

Increased contractile force

Enhanced oxidative metabolism

Histone modification

Larger cell size

Increased expression of genes related to ion channels

Co-culture Proliferation Increased the number of Ki67 positive cells [87, 88]

Decreased sarcomere structural organization

Co-culture Maturation Larger cell size [93]

Increased expression of genes related to ion channels

Substrate stiffness Maturation Improved myofibril organization [97, 98, 101]

Increased contractile force

Enhanced oxidative metabolism

Enhanced calcium handling

Physiological pattern Maturation Improved myofibril organization [96, 105]

T-tubule formation

Increased contractile force

Conductivity Maturation Increased expression of genes related to ion channels [108, 110]

Enhanced calcium handling
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help to discover drugs which can promote proliferative 
capacity without compromising cardiac function. Addi-
tionally, revascularization is important for the engraft-
ment to survive in the host tissue. Several studies have 
reported that transplanted micro-vessels or endothelial 
cells significantly improved hiPSC-CM survival and their 
maturation compared to hiPSC-CMs transplanted alone 
in infarcted hearts, which was attributed to an improve-
ment in revascularization and remuscularization [157, 
158]. These findings suggest that transplanting vascu-
larized cardiac tissues or organoids might have stronger 
effects on cardiac repair compared to the transplantation 
of a mixture of different cell types. However, this goal is 
hindered by the challenge of creating successful vascular-
ized cardiac tissues or organoids. To address this issue, 
microfluidic devices could be used to enhance the vascu-
lar microenvironment, which has been demonstrated by 
successful vascularization of kidney and liver organoids 
[159, 160]. It is also important to note that several studies 
reported that transplanting hiPSC-CM derivatives is also 

beneficial for cardiac repair. Paracrine factors, mitochon-
drial transfer, and injection of exosomes were shown to 
improve cardiac remodeling by inhibiting apoptosis, reg-
ulating inflammation, and promoting angiogenesis [161–
166]. Determining whether these derivatives from mature 
hiPSC-CMs could improve their function is valuable, 
as functional hiPSC-CM features such as mitochondria 
are underdeveloped in immature hiPSC-CMs. Moreo-
ver, whether co-transplantation of hiPSC-CMs and their 
derivatives can further promote cardiac repair warrants 
further investigation. Collectively, since different down-
stream applications require specific degrees of hiPSC-
CM maturation, a more comprehensive investigation of 
the in vivo maturation process may help to generate opti-
mal mature hiPSC-CMs for individual applications.

Overall, here we provide an overview of current 
research in hiPSC-CM proliferation and maturation, 
highlighting the knowledge gap and technical challenges 
that need to be addressed in the future.

Table 1 (continued)

Methods Proliferation/
Maturation

Effects References

In vivo transplantation Maturation Larger cell size [113, 114]

Improved myofibril organization

T-tubule formation

Intercalated disc-like structure formation

Increased contractile force

Enhanced calcium handling

Electric stimulation Maturation Larger cell size [125, 127]

Improved myofibril organization

Enhanced calcium handling

Mechanical stress Maturation Larger cell size [138, 139]

Improved myofibril organization

Increased contractile force

Optogenetics Maturation Enhanced calcium handling [133, 134]

Improved myofibril organization

3D culture Maturation EHTs and spheroids [118, 119, 146, 147]

Larger cell size

Improved myofibril organization

T-tubule formation

Intercalated disc-like structure formation

Increased contractile force

Enhanced calcium handling

Enhanced oxidative metabolism

Organoids

Larger cell size

Enhanced calcium handling

Increased action potential amplitudes and upstroke velocity
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Abbreviations
ABRO1  Abraxas 2
ALKBH5  AlkB homolog 5, RNA demethylase
BMPR  Bone morphogenetic protein receptor
CDKs  Cyclin-dependent kinases
CDK1  Cyclin-dependent kinase 1
CDK4  Cyclin-dependent kinase 4
CCNA2  Cyclin A2
CCNB1  Cyclin B1
CCNG1  Cyclin G1
CCND2  Cyclin D2
CFs  Cardiac fibroblasts
CFSE  Cytoplasmic carboxyfluorescein succinimidyl ester
CHIR  CHIR99021
CMM  Cardiac mimetic matrix
CPCs  Cardiac progenitor cells
ECG  Electrocardiogram
ECs  Endothelial cells
EdU  Thymidine 5-ethynyl-20-deoxyuridine
EHTs  Engineered heart tissues
EPIs  Epicardial cells
ERRγ  Estrogen-related receptor gamma
FSTL1  Follistatin like 1
H3K4me3  Trimethylation of lysine 4 on histone H3
hESC  Human embryonic stem cell
hESC-CMs  Human embryonic stem cell-derived cardiomyocytes
HIF1α  Hypoxia inducible factor 1 subunit alpha
hiPSCs  Human-induced pluripotent stem cells
hiPSC-CM  Human-induced pluripotent stem cell-derived cardiomyocyte
HSP90  Heat shock protein 90
IGF1  Insulin-like growth factor 1
KCNJ2  Potassium inwardly rectifying channel subfamily J member 2
LATS  Large tumor suppressor homolog
m6A  RNA N6-methyladenosine
METTL3  Methyltransferase 3, N6-adenosine-methyltransferase complex 

catalytic subunit
miRNAs  MicroRNAs
MST  Mammalian ste20-like kinases
MYL2  Myosin light chain 2
NRG1  Neuregulin 1β
PDMS  Polydimethylsiloxane
PG  Prostaglandin
PPAR  Peroxisome proliferator activated receptor
PKA  Protein kinase A
RCM  Restrictive cardiomyopathy
SCN5A  Sodium voltage-gated channel alpha subunit 5
SMCs  Smooth muscle cells
TGF-βR  Transforming growth factor β receptor
THs  Thyroid hormones
T3  Triiodothyronine
TNNT2  Troponin T2
TNNI3  Troponin I3
RYR2  Ryanodine receptor 2
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