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The heterogeneity of mesenchymal stem 
cells: an important issue to be addressed in cell 
therapy
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Abstract 

With the continuous improvement of human technology, the medical field has gradually moved from molecular 
therapy to cellular therapy. As a safe and effective therapeutic tool, cell therapy has successfully created a research 
boom in the modern medical field. Mesenchymal stem cells (MSCs) are derived from early mesoderm and have high 
self-renewal and multidirectional differentiation ability, and have become one of the important cores of cell therapy 
research by virtue of their immunomodulatory and tissue repair capabilities. In recent years, the application of MSCs 
in various diseases has received widespread attention, but there are still various problems in the treatment of MSCs, 
among which the heterogeneity of MSCs may be one of the causes of the problem. In this paper, we review the cor-
relation of MSCs heterogeneity to provide a basis for further reduction of MSCs heterogeneity and standardization 
of MSCs and hope to provide a reference for cell therapy.
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Introduction
Mesenchymal stem cells (MSCs) are derived from the 
early mesoderm with high potential for self-renewal and 
multidirectional differentiation. Since 1968, when Profes-
sor Friedenstein first discovered the presence of MSCs 
in bone marrow, and also isolated and cultured MSCs 
in vitro using the apposition method [1, 2]. Subsequently, 
it has been shown that MSCs can be obtained from bone 
marrow, skin, adipose, umbilical cord and other tissues 
and organs [3, 4] and have the ability to differentiate 
into adipocytes, osteoblasts, and chondrocytes [5], and 

later confirmed the ability of MSCs to self-renew in vivo. 
Numerous studies have shown that MSCs have at least 
two important functions: immunosuppression and tissue 
repair, and paracrine action of MSCs can produce large 
amounts of cytokines, chemokines, and growth factors 
to promote tissue injury repair, which is usually consid-
ered as the main mechanism for MSCs to participate in 
tissue injury repair [6]. In 2008, it was suggested in Nat 
Rev Immunol that MSCs act in a "Touch and Go" man-
ner, i.e., by rapidly migrating to the damaged organ and 
releasing stress-induced therapeutic molecules that are 
then cleared by the body [7]. MSCs have been widely 
used in preclinical and clinical studies and have shown 
satisfactory results in the treatment of various hema-
tologic, cardiovascular, neurological, and autoimmune 
diseases. For example, MSCs have the ability to improve 
the function of the patient’s islets or transplanted islets, 
to repair diabetic neuropathy in streptozotocin-induced 
insulin-deficient T1D mice, and also to repair diabetic 
neuropathy in high-fat diet-induced T2D mice [8]; MSCs 
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can also enhance chondrogenesis by improving chondro-
genesis [9], promoting cartilage regeneration and pre-
venting degeneration [10, 11]. They can also be used in 
the treatment of skin defects and wound healing. How-
ever, while MSCs are receiving more and more attention 
from researchers and clinical filings are increasing, there 
are also problems that need to be solved in their use for 
clinical treatment. Although the safety of MSCs has been 
verified, the safety of MSCs preparations, such as the 
problem of microbial contamination, quality control in 
the transportation of MSCs; on the other hand, the prob-
lem of clinical treatment modalities, such as the route 
of administration, dose and timing of treatment, have 
not yet formed a clear consensus and standard. With the 
standardization of quality control, the introduction of 
international treatment consensus, and the emergence of 
treatment guidelines for different diseases, it is believed 
that we can minimize the objective differences. How-
ever, more variability is caused by the heterogeneity of 
MSCs, which is mainly reflected in the following aspects: 
(1) uncertainty in nomenclature; (2) differences in MSCs 
from different donors; (3) differences in MSCs from 

different tissues; and (4) intercellular differences (Fig. 1). 
Therefore, it is important to solve the problem of het-
erogeneity of MSCs to enhance their clinical therapeutic 
effects, as well as productization. In this review, we sum-
marize the current studies on the definition of MSCs and 
the differences between different sources by summarizing 
MSCs-related studies, with particular attention to MSCs 
heterogeneity-related studies, and summarize the results 
and perspectives in these studies to provide reference for 
further research and future clinical translation of MSCs.

Clinical application of MSCs
Since the first stem cell drug indicated for knee cartilage 
injury repair was approved in 2009, MSCs have shown 
significant potential in clinical applications. Up to now 
(November 2023), there are more than 13,300 MSC-
related clinical studies in the registry (http:// www. clini 
caltr ials. gov/) using "MSC" as the search term for a drug 
name. Taking adipose tissue-derived MSCs (AD-MSCs) 
as one of the most accessible and important sources of 
MSCs, they are currently primarily used in the follow-
ing areas: (1) Plastic and esthetic surgery: AD-MSCs are 

Fig. 1 Different source of MSCs

http://www.clinicaltrials.gov/
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widely utilized in plastic and esthetic surgeries. They can 
be used for tissue filling and repair, such as treating facial 
wrinkles, skin scars [12–14], and breast reconstruction 
[15–17]. (2) Arthritis and cartilage injury treatment: AD-
MSCs have demonstrated potential effects in the treat-
ment of arthritis and cartilage injuries. They can promote 
cartilage tissue regeneration and repair, reduce inflamma-
tion, and improve joint function [18]. (3) Wound healing: 
AD-MSCs possess the ability to promote wound healing 
and regeneration. They can facilitate neovascularization 
at the site of injury, stimulate tissue regeneration, and 
alleviate inflammation. AD-MSCs can be applied directly 
to wounds or used in combination with techniques such 
as fat transplantation, hyaluronic acid, biomaterials, and 
platelet-rich plasma (PRP) to enhance wound healing 
speed and quality [13, 19, 20]. (4) Treatment of autoim-
mune diseases: AD-MSCs exhibit immunomodulatory 
and immunosuppressive effects, making them suitable 
for treating autoimmune diseases such as rheumatoid 
arthritis and systemic lupus erythematosus [21, 22]. They 
can regulate immune responses, alleviate inflammation, 
and promote tissue repair. (5) Cardiovascular disease 
treatment: AD-MSCs show potential in the treatment of 
cardiovascular diseases [23]. They can promote myocar-
dial tissue repair and regeneration, improve cardiac func-
tion, and have been used for conditions like myocardial 
infarction and heart failure. Furthermore, recent research 
has also indicated potential applications of AD-MSCs 
and other MSCs in various other fields, including liver 
disease, lung disease, and kidney disease. In response to 
the COVID-19 pandemic, MSCs have also demonstrated 
promising therapeutic effects [24–27], highlighting their 
strong potential in the field. It is important to note that 
these are just a few examples of MSCs in the clinic and 
that specific clinical applications are still in the research 
and development phase and may be variable depending 
on the region and medical institution. We will focus on 
the heterogeneity of MSCs in the following.

Divergence in the definition of MSCs
There are many different nomenclatures for MSCs, such 
as "mesenchymal stem cell," "mesenchymal stromal cell," 
and "multipotent stromal cell." The differences in nomen-
clature indicate that the current study of the MSCs cell 
population is still relatively ambiguous. The term mesen-
chymal stem cell has been widely used since it was offi-
cially named 30 years ago [28], mainly to represent a class 
of cells derived from human and mammalian bone mar-
row and periosteum that can be isolated from the body 
and have the ability to expand and induce the formation 
of a variety of mesenchymal cells and tissues in  vitro. 
Mesenchymal stromal cells are a heterogeneous group 
of cells that are multipotent with a variety of biological 

properties, including directional migration, paracrine 
secretion, immunosuppression, and anti-inflammation 
effects, and is considered an ideal candidate cell type 
for repairing tissue damage due to multiple etiologies 
[29]. The nomenclature of multipotent stromal cells 
focuses on a limited capacity for self-renewal, but this 
cell population still has the ability to differentiate along 
a multi-mesenchymal lineage [30], which does not mean 
that this cell population is completely free of heteroge-
neity, as studies have confirmed that there are multiple 
cell types that share this ability to differentiate along a 
multi-mesenchymal lineage, with specific phenotypic 
and functional characteristics in different tissues and dif-
ferent organs. Due to the lack of specificity and unique 
markers in MSCs cultured in vitro, it is widely accepted 
that MSCs must express CD105, CD73, and CD90 and 
lack CD45, CD34, CD14 or CD11b, CD79a or CD19, and 
HLA-DR surface molecules expressed [31]. The core rea-
son for the discrepancy in nomenclature is that the vast 
majority of MSCs are pericytes derived from the perivas-
cular (vessel wall) [32], whereas it has been demonstrated 
through several in vivo and in vitro studies that pericytes 
isolated from various tissues can produce MSCs and have 
immunomodulatory and trophic functions [33]. Different 
definitions encompass different combinations of specific 
cells, so it is essential to use a clear definition. However, 
the lack of a precise definition of the constituent cell 
types makes it impossible to predict the overall behavior 
of these heterogeneous populations. Thus, it also leads 
to variability in clinical studies. With the advancement 
of research tools, such as further development of tech-
nologies like single-cell sequencing, the implementation 
of new meticulous international identification standards 
will help the promotion and standardization of clinical 
studies of MSCs.

Inter‑individual variation
MSCs have been identified in an internationally accepted 
manner and criteria, and in 2006 the International Soci-
ety for Cell & Gene Therapy (ISCT) established the basic 
criteria for the definition of MSCs [31], which are also 
the minimum criteria for the identification of MSCs: (1) 
an appressed growth state under standard in  vitro cul-
ture conditions; (2) greater than or equal to 95% of cells 
expressing CD105, CD73, and CD90, and no more than 
2% of the total number of cells expressing CD45, CD34, 
CD14, CD11b, CD79a, CD19, or HLA-II class molecules; 
(3) the ability to differentiate into osteoblasts, chondro-
cytes, and adipocytes under in  vitro induction condi-
tions. However, the biological differences between MSCs 
from different individuals cannot be ignored. The differ-
ences between individuals are mainly reflected in two 
aspects: On the one hand, longitudinal comparisons show 
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differences between MSCs of different ages; on the other 
hand, horizontal comparisons show differences between 
MSCs of different individuals of the same age, for exam-
ple, MSCs from adult and neonatal skin show significant 
differences in lipogenesis and chondrogenesis [34]. Dif-
ferences also existed between MSCs of the same tissue 
origin in the elderly and infants. Aging is a universal fea-
ture of all organisms and is considered a high-risk factor 
for many diseases from a medical perspective. There is 
evidence that MSCs also undergo functional decline dur-
ing organism development as the organism ages [35–37]. 
The aging of MSCs with age is manifested by enlarge-
ment, telomere shortening or p53/p21-mediated accu-
mulation of DNA damage, impaired DNA methylation 
or histone acetylation, and elevated levels of reactive oxy-
gen species (ROS) and nitric oxide (NO) [38]. In humans 
and mice, once born, the content of MSCs in the bone 
marrow decreases continuously, and aging of the organ-
ism reduces the density of MSCs and their osteogenic 
potential [39, 40]. In addition, there is growing evidence 
that MSCs aging favors adipogenesis at the expense of 
osteogenesis, leading to impaired bone formation [41–
43]. This is consistent with the in  vivo situation, where 
adipose tissue in the bone marrow increases with aging. 
This situation may be related to the reduced expression of 
activator proteins of the PDZ structural domain thereby 
enhancing the expression of peroxisome proliferator-acti-
vated receptor γ (PPAR-γ), which is associated with adi-
pogenesis and suppresses the expression of Runt-related 
transcription factor 2 (RUNX2), which is associated with 
osteogenesis [44]. Furthermore, in a study on MSCs of 
adipose origin, adult MSCs (individuals > 40 years of age) 
produced significantly higher levels of IL-6 and IL-8 than 
MSCs from individuals younger than 16 years of age [45], 
and this enhanced pro-inflammatory secretome may 
significantly reduce the immunomodulatory capacity of 
MSCs. Although the mechanisms of inflammation pro-
duction are unknown, it has been proposed that adipose 
tissue is a major producer of systemic pro-inflammatory 
cytokines with age [46–48]. In particular, through senes-
cence-associated secretory phenotype (SASP), aging cells 
themselves produce many pro-inflammatory cytokines 
and chemokines [49, 50]. The accumulation of adipose 
tissue and adipocytes was observed in the bone marrow 
of the elderly [51] and mice [52]. Notably, the increased 
number of adipocytes may be due to the bias of aging 
MSCs toward lipogenic differentiation [53]. Since senes-
cence represents a decline in systemic function, all cells 
in the bone marrow should be subjected to similar senes-
cence stress, which affects neighboring cells. In addition, 
senescence reduces the expression level of Fibroblast 
Growth Factor-2 (FGF-2) in most cells, which may lead 
to a decrease in the proliferative capacity of MSCs [54]. 

According to studies with aging, the Wnt/β-catenin sign-
aling pathway is increased in aged mice, but its function 
needs to be further investigated [55, 56]. Although MSCs 
offer possibilities for the treatment of various diseases, 
aging and aging-related processes can significantly affect 
the outcome of stem cell therapy. Baster et al. [57] showed 
that the number of bone marrow-derived MSCs (BM-
MSCs) with osteogenic potential decreases during early 
human aging, which may be associated with age-related 
reduction in bone formation, mechanical properties, 
and integrity of bone. In addition to MSCs, neural stem 
cells (NSCs), satellite cells, and hematopoietic stem cells 
(HSCs) have also been reported to exhibit age-related 
decreases in proliferation and differentiation potential 
both in vitro and in vivo [58, 59]. The loss of some func-
tional stem cells with age can have profound effects on 
tissue viability. The mechanisms of stem cell depletion 
are unclear, but are most likely due to a combination of 
many intrinsic and extrinsic factors, including changes 
in growth factor activity, accumulation of DNA damage, 
and decreased progenitor cell responsiveness. Therefore, 
it is essential to consider the age of the donor tissue and 
recipient environment in any treatment based on MSCs 
transplantation. There are also differences in MSCs from 
different donor sources. A study published in Stem Cell 
Res Ther [60], 13 hMSC samples from 10 "healthy" donors 
were assessed for donor variability and tissue origin dif-
ferences in single-cell gene expression profiles, indicating 
that there is a donor effect on the expression of a gene in 
MSCs and that the donor effect on MSCs is mainly on the 
cell cycle. Subtle differences were found between the BM-
MSCs and cord tissue-derived MSCs (CT-MSCs) groups 
in cytokines (IL-1β, IL-8, IL-12, and IL-17), anti-inflam-
matory cytokines (IL-1RA, IL-13), chemokines (MCP-1, 
MIG, MIP-1α, MIP-1β, and RANTES), and pro-angio-
genic (VEGF) markers. Researchers observed differences 
in growth factors (HGF and G-CSF) between BM-MSCs 
and CT-MSCs. We found significant donor differences in 
the UCT and BM-MSCs groups, suggesting that the cell 
cycle is indeed a major driver of MSCs heterogeneity. In 
summary, differences exist both in different ages of the 
same individual and in different individuals of the same 
age (Table 1).

Heterogeneity of different tissue sources
Currently, MSCs can be isolated from many different tis-
sues, including adipose tissue 65], skin tissue [66], blood 
[67], umbilical cord blood [68], teeth [69], pancreas [70], 
and liver [71]. Cells from different tissues are capable of 
tri-lineage differentiation (osteogenic, chondrogenic, 
lipogenic) and display similar surface markers [34, 72], 
but still differ significantly in content, proliferative capac-
ity, immunomodulation, and differentiation capacity. (1) 
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There are differences in the content of MSCs from dif-
ferent tissue sources. According to the presenting as cell 
clone-forming units (CFU-F) assay, the content of MSCs 
of bone marrow source is roughly 0.001–0.01% of mono-
nuclear cells (MNCs) [73, 74], while placental amniotic 
membrane and umbilical cord-derived MSCs (UC-MSCs) 
account for 0.2–1.8% of MNCs [75]. The extremely low 
number of MSCs in umbilical cord blood results in a 
probability of isolating and successfully culturing MSCs 
from cord blood of only 5.7–10% [76]. It is not clear what 
the amount of MSCs from individual adipocytes is, but 
it has been reported that it does not exceed 50% [77]. 
(2) There are differences in the proliferative capacity of 
MSCs from different tissue sources. It has been shown 
that human umbilical cord perivascular cells (HUCPVCs) 
show a higher proliferative potential than BM-MSCs 
and are able to differentiate into bone, cartilage, and adi-
pose, and in addition, HUCPVCs exhibit higher levels 
of CD146 relative to BM-MSCs [78]. Since the genetic 
background of the mouse models is highly consistent, the 
comparative data of MSCs from different tissues of mice 
are more meaningful and convincing. Compared to BM-
MSCs, AD-MSCs have higher proliferative activity and 
produce more vascular endothelial growth factor (VEGF) 
and hepatocyte growth factor (HGF) [79–81]. MSCs are 
age-specific, with a marked decrease in the number and 
proliferative capacity of BM-MSCs with increasing age. 
Interestingly, gender also affects the proliferative capacity 
of MSCs, with female BM-MSCs having a cell diameter 
of 20.9 ± 0.8  µm and a doubling time of approximately 
3.3 ± 1.9 days, while male BM-MSCs have a cell diameter 
of 22.0 ± 1.1  µm and a doubling time of approximately 
5.0 ± 3.7 days [82]. (3) MSCs from different tissue sources 
also differ greatly in their immunomodulatory and differ-
entiation capacity. Data from genetic aspects surface that 
UC-MSCs and amniotic membrane origin have a higher 
immunomodulatory potential, while MSCs of bone mar-
row origin have a higher potential to support regenera-
tive development, such as neuronal development and 
differentiation [83, 84]. The experimental results showed 
that AD-MSCs have a stronger adipogenic differentia-
tion capacity and produce more cellular matrix compo-
nents, which may be due to the high expression of fatty 
acid-binding protein FABP4 in AD-MSCs compared to 

BM-MSCs [85]. In terms of gene expression, MSCs at 
the umbilical cord junction showed the least difference 
from UC-MSCs, whereas AD-MSCs differed significantly 
from MSCs of other sources in terms of protein expres-
sion, most likely due to the longer developmental time 
and higher differentiation of AD-MSCs compared to 
MSCs of other sources. A comparative study of human 
and mouse-derived MSCs found that, compared with 
hMSCs, Muse-MSCs exhibited higher expression levels 
of the p53 repressor MDM2; signal acceptance-related 
genes EGF, VEGF, PDGF, WNT, TGFB, INHB, and CSF; 
ribosomal protein; and glycolysis and oxidative phospho-
rylation. Conversely, hMSCs had higher expression lev-
els of FGF and ANGPT; Rho family and caveola-related 
genes; amino acid and cofactor metabolism; MHC class 
I/II, and lysosomal enzyme genes than Muse-MSCs [86]. 
Currently, MSCs are commonly found in three major tis-
sue sources: bone marrow, umbilical cord, and adipose. 
In summary, in terms of cell abundance, umbilical cord 
is the most abundant, followed by bone marrow and 
adipose sources, and the least abundant in umbilical 
cord blood; for the proliferative capacity of MSCs, due 
to their age-specific characteristics, UC-MSCs have a 
clear advantage, followed by adipose and bone marrow; 
in terms of immunomodulation, MSCs from umbilical 
cord, amniotic membrane, and adipose sources are supe-
rior to MSCs from bone marrow, and MSCs from placen-
tal sources have the least immunomodulatory capacity 
(Table 2).

Heterogeneity of MSCs of the same tissue origin
It is generally assumed that cell clusters derived from 
single-cell clones should be homogeneous, but this is not 
really the case. Clonal cell masses grown in single-cell 
clone cultures of BM-MSCs usually do not accurately 
represent either a homogeneous stem cell population 
or a specific function of stem cells derived from a sin-
gle cell [94]. Just as there are no identical leaves in the 
world, there are no identical cells. It was found that the 
clonal cell clusters (non-single-cell clones) that emerged 
from BM-MSCs in apposed culture were only about 35% 
derived from single cells [94]. BM-MSCs are MSCs with 
pluripotent properties and are considered as a poten-
tial approach for the treatment of several diseases. Since 

Table 1 Effects of cellular aging on MSCs

Aged MSCs References

Morphology increase in cell size; contain more actin stress fibers; telomere attrition [61, 62]

Differentiation loose osteogenic potential; gain adipogenic potential [42, 43, 53]

Growth rate decrease [63]

Pathway more positive for SA-βGAL activity; the upregulation of the p53 pathway [64]
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1995, several clinical trials have progressed, but to date 
MSC therapy has not been applied on a large scale. 
One factor contributing to the unsuccessful clinical tri-
als is the heterogeneity among individual participants, 
which can be attributed to the heterogeneity among the 
patients treated as well as the heterogeneity among bone 
marrow donors. However, even cells from a single donor 
can show functional heterogeneity (including prolif-
eration rate, number of colonies formed, differentiation 
potential) under the same culture conditions. However, 
heterogeneity in stem cell culture processes is often over-
looked and underestimated in many studies. It has been 
demonstrated that colonies of BM-MSCs from the same 
donor (single biological cell source) differ significantly 
in terms of colony size, fusion, and multidirectional dif-
ferentiation potential [95, 96]. It has been demonstrated 
that few individual cells are formed under sparse inocula-
tion conditions (30 cells/cm2). Regardless of the source, 
most cells showed heterogeneity in proliferative capacity 
and biological properties after only four days of growth, 
and even the most homogeneous colonies of single-cell 
origin are affected by neighboring progeny and exhib-
ited heterogeneity within seven days, suggesting that the 
appearance of heterogeneity is inevitable even in specific 
stem cell colonies. According to the analysis, physical 
contact between cells alone does not change the biophys-
ical properties or the ability of cells to add value [94]. In 
2017, Professor Davies from the University of Toronto, 
Canada, suggested that "umbilical cord MSCs share the 
same population heterogeneity as BM-MSCs and that 
UC-MSCs gradually lose several differentiation func-
tions and homogenize into ’fibroblasts’ as culture time 
increases" [97]. However, in reality, UC-MSCs still have 
the ability to differentiate toward lipoblasts and osteo-
blasts after long-term culture [98]. When two different 
populations of isogenic MSCs(UCB1 and UCB2) were 
isolated from cord blood for comparison, UCB1 exhib-
ited faster growth kinetics, higher population multipli-
cation capacity, and higher lipogenic capacity compared 
to UCB2, and the UCB2 population had a higher osteo-
genic differentiation capacity; moreover, the gene expres-
sion profiles were not consistent, with only 121 genes 
co-expressed [99, 100]. Heterogeneity was also present 
in AD-MSCs, starting with the fact that the content of 
MSCs in adipose tissue was not constant, and there were 
no differences in the number, proliferation, and differen-
tiation potential acquired by adipose MSCs isolated from 
the abdominal and gluteal regions. After several gen-
erations of adipose isolated MSCs in adipose culture, the 
expression of CD34 and HLA-DR decreased to less than 
2% or was negative [101]. However, CD34 expression can 
persist for 10–20  weeks if AD-MSCs are cultured with 
M199 medium supplemented with factor aFGF. Cloning 

experiments in 96-well plates of BM-MSCs revealed that 
50% had the ability to differentiate in three directions, 
14% only in two directions, while 1% of the cloned cells 
had the ability to differentiate in one direction [102]. Sin-
gle-cell cloning experiments of AD-MSCs also showed 
that not all AD-MSCs had the ability to differentiate tri-
directionally, with approximately 81% having the abil-
ity to differentiate unidirectionally and 52% having the 
ability to differentiate bidirectionally or tridirectionally 
[95, 103]. BM-MSCs are similarly heterogeneous, with 
the CD200 + subpopulation in mouse BM-MSCs having 
a strong osteogenic capacity, whereas the SSEA4 + sub-
population has a strong lipogenic differentiation capacity 
but lacks osteogenic capacity, and the expression of the 
CD140a + subpopulation in lipogenic cells is not associ-
ated with osteogenic efficiency. BM-MSCs are currently 
isolated and identified using a combination of non-spe-
cific cell surface markers, such as high level expression 
of CD271, CD44, CD105, CD73, and CD90 and low level 
expression/non-expression of CD45, CD34, CD14 or 
CD11b, CD79a or CD19, and HLA-DR. Among these 
markers, CD271 exhibits extremely high efficiency, but 
recent studies have found that CD45 and CD34, which 
have been thought to be inexpressed, are expressed in 
a small proportion of BM-MSCs [104]. Also only about 
50% of MSCs were found to be positive for CD105. So, 
are these cells MSCs for the minimum criteria estab-
lished in 2006 for MSCs, i.e., CD73, CD90, CD105 ≥ 95%, 
CD11b or CD14, CD34, CD45, CD19 or CD79a,  and 
HLA-DA ≤ 2%? MSCs are identical to humans in that the 
entire genome is not fully conserved, and the presence of 
genetic polymorphisms will result in differences between 
the offspring and the parent cells, which may not have an 
impact on the overall function, but may have an impact 
on the intensity of certain functions.

Plasticity of MSCs
MSCs obtained from different disease states, tissue 
sources, and donors exhibit variations (Fig.  2). How-
ever, even MSCs derived from the same adipose tissue 
source can have differences in population doubling time 
and growth rate when obtained from different locations 
such as the skin, abdomen, and subcutaneous fat [105]. 
Studies have shown that MSCs sourced from UC-MSCs 
and human amniotic fluid (hAF-MSCs) possess broader 
differentiation potentials [106], while placenta-derived 
MSCs have a lower potential for adipogenesis. Nguyen 
et al. compared BM-MSCs with MSCs derived from the 
acetabulum and femur and found that bone marrow and 
femur-derived MSCs formed more calcium deposits dur-
ing osteogenic differentiation, while BM-MSCs exhibited 
a stronger role in chondrogenic and adipogenic differenti-
ation processes [107]. Furthermore, MSCs obtained from 
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the femoral head demonstrated a stronger chondrogenic 
induction capacity compared to MSCs sourced from 
the iliac crest and vertebral bone marrow [108]. What 
causes heterogeneity in MSCs of different origins? A very 
important reason may be the niche of MSCs. In 1978, the 
concept of MSCs niche was defined as the place where 
stem cells accumulate in vivo and the environment allows 
them to remain in an undifferentiated state [109]. Stem 
cells are regulated by their niches, which leads to the tis-
sue specificity of stem cells [110]. All components of the 
niche act together to control the cellular and non-cellular 
components of adult stem cells, and these interactions 
usually include two mechanisms, namely physical contact 
and diffusion factors; cell adhesion proteins play a role 
in intercellular adhesion, differentiation and polarity of 
MSCs, and are associated with the Wnt pathway involved 
in the MSCs niche, which will affect their function [111, 
112]. The canonical Wnt signaling pathway is involved in 
the osteogenic and chondrogenic differentiation of MSCs 
while inhibiting adipogenic differentiation. Additionally, 
the Wnt/β-catenin pathway is implicated in abnormal 
skeletal development, including endogenous chondro-
sarcoma and osteosarcoma [113]. Therefore, the effects 
occurring during MSC therapy for tumors are closely 
related to the type of tumor [114]. For instance, a study 
on acute lymphoblastic leukemia (ALL) demonstrated 
that the upregulation of specific T-cell receptors (TCRs) 

in MSCs facilitated the body’s anticancer response [115]. 
Due to the local and systemic interactions of MSCs with 
other niche cells, the different niche in which MSCs are 
located may result in different secretion profiles of MSCs, 
leading to heterogeneity in the different sources of MSCs. 
A study on interleukins found that IL-1α, IL-1β, and IL-2 
induce an immunosuppressive phenotype in MSCs [116–
118]. However, there are some problems in explaining 
the heterogeneity of MSCs using niche alone. A review 
of recent studies revealed that it is not possible to clas-
sify MSCs simply by the presence of tissue sites; a simple 
example is that osteoblasts that should have developed in 
bone tissue can also be found in other parts of the body 
such as heart or muscle during ectopic bone develop-
ment. Longitudinal studies of MSCs have revealed that 
these cells are dynamic and can change their function by 
rapidly altering gene expression. Due to the long-term 
focus on the therapeutic potential of in  vitro expanded 
MSCs, human knowledge of the phenotype of MSCs has 
been obtained from in vitro culture, which led to a long 
period of time where the non-expression of CD34 was 
used as a criterion for MSCs, but as research progressed 
it was gradually recognized that CD34 may be expressed 
in vivo but rapidly downregulated during in vitro culture 
[119–121]. These have been hindering the understanding 
of the role of human MSCs in homeostasis and pathology 
in vivo. On the other hand, the advent of single-cell RNA 

Fig. 2 The impact of aging on MSCs
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sequencing (scRNA-seq) has allowed precise identifica-
tion of corresponding cell subpopulations in humans and 
mice, and there has been agreement through lineage trac-
ing studies on showing a common surface phenotype of 
MSCs, but comparative analysis of scRNA-seq datasets 
has revealed an additional nomenclatural heterogeneity 
[86], namely that even within the same species, different 
research groups uniformly refer to overlapping cell popu-
lations as MSCs or fibroblasts depending on the focus in 
their studies, giving the false impression of the existence 
of many cell populations with different properties [122]. 
In addition, MSCs are altered accordingly when cul-
tured in  vitro. Under in  vitro culture conditions, MSCs 
can be induced to differentiate toward specific cell lines 
by modulating specific factors and conditions in the cul-
ture medium, and this alteration in differentiation poten-
tial may also cause phenotypic changes in MSCs [123, 
124]. Besides, a number of commonly expressed surface 
markers, such as CD44, CD73, CD90 and CD105, may 
also change during the course of in  vitro culture. Some 
surface markers may decrease or disappear when MSCs 
are cultured in vitro, for example, the markers CD34 and 
CD45, which are associated with hematopoiesis, gradu-
ally decrease during the culture process. Moreover, the 
surface markers of MSCs may also undergo transforma-
tion, such as the expression of CD146, a cell adhesion 
molecule that is mainly involved in cell–cell or cell–
matrix interactions, during the early stages of cell culture. 
However, as MSCs are further cultured and proliferate, 
they may gradually lose the expression of CD146. During 
the course of in  vitro culture, MSCs may express some 
additional surface markers related to proliferation, differ-
entiation or cellular activity. For example, in an inflam-
matory environment MSCs may express more major 
histocompatibility complex (MHC) class II, which can 
affect the function of MSCs in immunomodulatory and 
anti-inflammatory actions [125, 126]. Changes in in vitro 
culture can also lead to differences in clinical treatment. 
Therefore, clarifying the functional and phenotypic status 
of MSCs and fibroblasts in different niches is the key to 
solving the MSCs heterogeneity puzzle.

Discussion and outlook
As of 2023, there have been more than 13,300 MSCs-
related clinical studies registered on the ClinicalTrials.
gov website, indicating that MSCs have a promising 
application as a stem cell drug for a number of diseases. 
For example, MSCs have been approved in the Euro-
pean Union for the treatment of Crohn’s complicated 
by intestinal fistula, and in Korea, Japan, and Canada 
for the treatment of GVHD [127]. Although MSCs have 
been approved for marketing in some countries, there is 
always confusion about the application of MSCs, such as 

dose differences [128]. In the treatment of RA, we can see 
that even with the same source of MSCs, the cell volume, 
and efficacy vary. The most important reason for this is 
the heterogeneity of MSCs in the treatment of differ-
ent diseases. In summary, the heterogeneity of MSCs is 
mainly reflected in the following aspects: (1) Cell pro-
liferation and differentiation capability: MSCs derived 
from different sources and donors may exhibit variations 
in their cell proliferation and differentiation potential. 
This can result in inconsistent growth rates and differen-
tiation levels among different MSCs during the treatment 
process, thereby affecting the treatment outcome [129]. 
(2) Cytokine secretion: MSCs regulate tissue repair and 
immune response through the secretion of cytokines and 
growth factors. MSCs from different sources and donors 
may differ in their cytokine secretion profiles. This can 
lead to variations in the quantity and types of cytokines 
released by different MSCs during treatment, thus influ-
encing the therapeutic effect [60, 130]. (3) Individual dif-
ferences and microenvironmental influences: MSCs from 
different individuals may vary in biological characteristics 
and functions, which can be influenced by factors such as 
age, gender, health status, and genetic background. These 
individual differences and microenvironmental fac-
tors can impact the biological behavior and therapeutic 
effects of MSCs, including cell proliferation rates, differ-
entiation potential, and immunomodulatory abilities [58, 
60, 131]. Overall, the heterogeneity of MSCs may lead to 
variations in their biological behavior and treatment out-
comes among different cell populations. This presents a 
challenge in determining the optimal MSC therapy regi-
men, dosage, and timing, requiring further research and 
clinical practice to address these issues. By delving into 
the heterogeneity and individual differences of MSCs, a 
better understanding of their impact on treatment out-
comes can be achieved, leading to the development of 
personalized treatment strategies for achieving optimal 
clinical results. Therefore, it is important to standardize 
the MSC and thus reduce the effect of heterogeneity. (1) 
UC-MSCs have the great advantage of large-scale expan-
sion and standardization compared to MSCs of other ori-
gins. When UC-MSCs are sorted into surfaces based on 
their size, smaller cells grow faster and age more slowly 
than larger cells. In addition using multicolor lentiviral 
genetic barcode labeling as a clonal developmental analy-
sis revealed that heterogeneity of MSCs can be reduced 
in their in vitro expansion. (2) It has been shown that pre-
treatment with inflammatory cytokines (IFNγ and TNFα) 
can improve the therapeutic effect and after treatment of 
MSCs showed some consistent changes in gene expres-
sion [132–134]. Further cell cycle-based analysis showed 
that limited heterogeneity was strongly associated with 
the entry of these cells into the G2/M phase [100, 135], 
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which is also one of the ways to reduce heterogeneity. (3) 
Induction of MSCs using cells differentiated from iPSCs 
showed good consistency. Since iPSCs can be taken from 
multiple sources of somatic cells in  vivo and show the 
ability to grow and proliferate indefinitely, they have an 
advantage over somatic-derived MSCs. MSCs have been 
applied in several fields such as tissue engineering and 
regenerative medicine, which are considered as potential 
means of treating various inflammatory diseases, espe-
cially the discovery of immunomodulatory effects brings 
light to the treatment of inflammatory diseases. Although 
optimal criteria for MSCs dose, donor, culture condi-
tions, administration routes, patients, and clinical evalu-
ation criteria have not been established, we believe that 
further research on MSC heterogeneity and the search 
for theories and ways to standardize MSCs will be impor-
tant for the future development of MSC therapy, which 
still has a bright future and is important for the treatment 
of various diseases.

Conclusions
MSCs is considered to be a potential therapeutic 
approach for various diseases due to its ability of self-
renewal and multidirectional differentiation. However, 
there are great differences between individuals in the 
application process, and the difference of MSCs is con-
sidered to be the biggest factor in the difference of cura-
tive effect. There are differences in different individuals 
from the same species; there are differences in differ-
ent organizations from the same individual; even from 
the same batch of MSCs, different colonies have differ-
ent proliferation and differentiation potential. In order 
to seek better therapeutic effect, it is very important to 
obtain more stable, uniform and functional MSCs. Based 
on the study of iPSC, induced pluripotent stem cell 
(iPSC)-derived mesenchymal stem cells (iMSCs) have 
good consistency, and iMSCs are more stable in prolifer-
ation, tissue repair, and differentiation applications than 
other types of tissue-derived MSCs [136]. In addition, in 
the process of cell therapy, the problem of tumorigenicity 
that puzzles researchers has also been solved to a certain 
extent, and iMSCs greatly reduce the possibility of tumor 
formation. iMSCs have great potential in commercializa-
tion and can provide new sustainable and stable products 
for disease treatment. In conclusion, the most important 
thing for the treatment of MSCs at present is to solve 
its heterogeneity, seek a unique and accurate definition 
of MSCs, reduce the heterogeneity of MSCs to obtain a 
more inclusive therapeutic effect, and provide more pos-
sibilities for cell therapy.
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