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Abstract 

Background Human umbilical cord-derived mesenchymal stem cell (hUC-MSC) sheets have recently attracted 
attention as an alternative approach to injected cell suspensions for stem cell therapy. However, cell engraftment 
and cytokine expression levels between hUC-MSC sheets and their cell suspensions in vivo have not yet been com-
pared. This study compares hUC-MSC in vivo engraftment efficacy and cytokine expression for both hUC-MSC sheets 
and cell suspensions.

Methods hUC-MSC sheets were prepared using temperature-responsive cell culture; two types of hUC-MSC suspen-
sions were prepared, either by enzymatic treatment (trypsin) or by enzyme-free temperature reduction using tem-
perature-responsive cell cultureware. hUC-MSC sheets and suspensions were transplanted subcutaneously into ICR 
mice through subcutaneous surgical placement and intravenous injection, respectively. hUC-MSC sheet engraftment 
after subcutaneous surgical transplantation was investigated by in vivo imaging while intravenously injected cell sus-
pensions were analyzing using in vitro organ imaging. Cytokine levels in both transplant site tissues and blood were 
quantified by enzyme-linked immunosorbent assay.

Results After subcutaneous transplant, hUC-MSC sheets exhibited longer engraftment duration than hUC-MSC 
suspensions. This was attributed to extracellular matrix (ECM) and cell–cell junctions retained in sheets but enzymati-
cally altered in suspensions. hUC-MSC suspensions harvested using enzyme-free temperature reduction exhibited 
relatively long engraftment duration after intravenous injection compared to suspensions prepared using trypsin, 
as enzyme-free harvest preserved cellular ECM. High HGF and TGF-β1 levels were observed in sheet-transplanted 
sites compared to hUC-MSC suspension sites. However, no differences in human cytokine levels in murine blood were 
detected, indicating that hUC-MSC sheets might exert local paracrine rather than endocrine effects.

Conclusions hUC-MSC sheet transplantation could be a more effective cell therapeutic approach due to enhanced 
engraftment and secretion of therapeutic cytokines over injected hUC-MSC suspensions.
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Introduction
Mesenchymal stem cell (MSC) therapies have been fre-
quently investigated as effective stem cell therapies to 
address diverse pathologies since MSCs secrete diverse 
cytokines involved in cell proliferation, neoangiogen-
esis, inflammatory suppression, and immunoregulation 
[1–5]. MSCs from various tissues sources, including bone 
marrow, amniotic fluid, adipose tissue, dental pulp, and 
umbilical blood are applied in cell therapies [6]. Among 
these, human umbilical cord-derived mesenchymal stem 
cells (hUC-MSCs) have attracted recent attention for 
their higher proliferative capacity and cell viability com-
pared to bone marrow or adipose tissue-derived MSCs 
[7–11]. Moreover, UC-MSCs secrete higher levels of 
therapeutic cytokines compared to the other two MSC 
types [8]. In addition, hUC-MSCs are obtained noninva-
sively from umbilical cords obtained postnatally as rou-
tine tissue discards from childbirth [12].

To exploit numerous MSC therapeutic benefits in vivo, 
cell administration and transplantation using cell suspen-
sion injections, both systemically and locally, and direct 
tissue transplantation of MSCs within various scaffolds 
and carriers have been extensively investigated. None-
theless, administration of MSCs to humans clinically 
exhibits the requisite safety but generally fails to yield 
convincing therapeutic benefits observed in preclinical 
in vitro and in vivo models [7].

Despite over 900 MSC clinical trials describing these 
MSC delivery strategies for a multitude of different thera-
peutic goals, results are inconsistent [13], with only 3 
human MSC therapies approved for immune-related 
diseases (i.e., graft-versus-host disease) globally to date 
(none approved in USA) [14]. Given these long-standing 
challenges to effective MSC therapies, current stand-
ard MSC dosing and administration practices utilizing 
suboptimal injection-based delivery of “naïve” (i.e., het-
erogeneous, non-standardized) MSC suspensions or 
carrier-based constructs, both autologous and allogenic, 
should be reconsidered and redesigned around critical 
quality attributes and delivery methods [15–21].

MSC sheets—contiguous, robust, viable monolayers 
of cultured MSCs—have been reported as an alternative 
implantable cell therapy delivery system [22–25]. Cell 
sheets are fabricated using thermoresponsive poly(N-
isopropylacrylamide) (PNIPAAm)-modified commercial 
cell culture surfaces. PNIPAAm exhibits reversible hydra-
tion/dehydration changes in response to cell culture tem-
peratures near 37°C [26–37], facilitating cell harvesting 
from culture as versatile single, scaffold-free sheets use-
ful for cell therapy and tissue engineering [38–45]. Cell 
sheets harvested without use of destructive enzymes 
retain functional cell–cell junctions and endogenous 
extracellular matrix (ECM), unlike cells recovered using 

trypsin digestion [40]. Furthermore, sheets are readily 
handled and transplanted into patients, either ectopically 
or orthotopically without suturing, exploiting innate tis-
sue adhesion enabled by sheet ECM.

MSC sheet transplantation is interesting for regenera-
tive medicine applications due to known enhanced pro-
duction of therapeutic cytokines over MSC suspensions 
[23, 46–48]. Most MSC sheet applications have used 
bone marrow- or adipose tissue- derived MSC sheets; 
UC-MSCs are more recently reported in MSC sheets. 
hUC-MSC sheets have been characterized in  vitro by 
observing cellular microstructures, ECM, cell–cell junc-
tions, cell–ECM junctions, layered sheet constructs, and 
various cytokine and chemokine production [49–53]. 
Further, hUC-MSC sheet interactions with tissue cul-
ture surfaces have been investigated in vitro [8]. Despite 
increasing hUC-MSC sheet in  vitro analysis, hUC-
MSC sheet tissue interactions after transplantation 
in vivo, including sheet engraftment behavior and in situ 
cytokine secretion critical to their therapeutic relevance, 
has not yet been reported.

The aim of this study was to compare hUC-MSC sheets 
and two types of analogous cultured hUC-MSC suspen-
sions in vivo in a murine subcutaneous tissue site to elu-
cidate their respective in vivo therapeutic signals via local 
cell engraftment and cytokine production.

Materials and methods
Human umbilical cord MSC culture
Human MSCs derived from umbilical cord Wharton’s 
jelly were obtained from PromoCell (Heidelberg, Ger-
many). hUC-MSCs were cultured in Dulbecco’s modified 
Eagle’s medium (DMEM) (Gibco, Waltham, MA, USA) 
supplemented with 10% fetal bovine serum, 1% MEM 
nonessential amino acids, 1% GlutaMAX, 100 units/mL 
penicillin, and 100 μg/mL streptomycin. hUC-MSCs 
were incubated at 37°C with 5%  CO2 in a humidified 
chamber and passaged after cells reached confluence on 
10-cm-diameter culture dishes (Thermo Fisher Scientific, 
Waltham, MA, USA). In passage culture, hUC-MSCs 
were recovered through a digestive proteolytic enzyme 
(TrypLE, Gibco) treatment for 5 min and seeded into 
other standard tissue culture dishes (Thermo Fisher Sci-
entific) at a density of 4000–6000 cells/cm2; hUC-MSCs 
at passage 3–6 were used in this study.

Preparation of hUC‑MSC sheets and suspensions
hUC-MSC sheets were prepared by the following proce-
dure (Fig.  1): Cultured hUC-MSC were recovered from 
conventional 10-cm-diameter culture dishes using Try-
pLE treatment for 5 min. Then, recovered hUC-MSCs 
were seeded into 35-mm-diameter temperature-respon-
sive culture dishes (UpCell™, CellSeed, Tokyo, Japan) at 
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a density of 2 ×  105 cells/dish. Next, hUC-MSCs were 
incubated until confluency for 5 days in DMEM before 
moving these culture dishes to an incubator set at 20°C, 
and incubating for 30 min. At this point, the hUC-MSC 

sheets spontaneously release from the culture surfaces 
and are recovered from these dishes as single units [54]. 
Cell sheets contained approximately 4 ×  105 cells [8].

Fig. 1 Schematic illustration for preparing (A) a human umbilical cord-derived mesenchymal stem cell sheet using a temperature-responsive 
cell culture dish; (B) a conventional cell suspension after enzyme treatment; and (C) a cell suspension by temperature treatment 
in a temperature-responsive cell culture dish; (D) transplantation of cell sheets or two different cell suspensions to the mouse.
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Two types of hUC-MSC suspensions were prepared 
as follows: hUC-MSCs were seeded on conventional 
35-mm-diameter cell culture dishes (Thermo Fisher Sci-
entific) and incubated using DMEM for 5 days until con-
fluency. Then, hUC-MSC suspensions were recovered 
from culture using 0.05% trypsin for 5 min. This har-
vested cell suspension was called as “enzyme treatment 
(ET).” Another cell suspension was seeded in 10-cm-
diameter temperature-responsive cell culture dishes 
(UpCell™) in DMEM and incubated for 48 h (i.e., below 
cell confluence). Then, hUC-MSC suspensions were 
recovered from these dishes by changing culture temper-
ature from 37°C to 20°C. Individual cells were released 
from these surfaces after 30 minutes and collected. This 
recovered cell suspension was called “temperature reduc-
tion (TR).” Cell counts in each suspension were approxi-
mately 4 ×  105 cells.

Subcutaneous transplantation of hUC‑MSC sheets and cell 
suspensions
The reporting of all animal experiments adheres to the 
ARRIVE guidelines. The Institutional Animal Care and 
Use Committee at Keio University approved this pro-
cedure. Female Crl:CD1 (ICR) mice (6–8 weeks old, 
Japan SLC, Hamamatsu, Japan) were used in this study. 
A murine disease model is frequently used to moni-
tor and validate therapeutic efficacy of the transplanted 
cells; however, in this study we used a healthy mouse 
transplant model. This is because this study sought to 
compare in  vivo survival and in  vivo cytokine produc-
tion of hUC-MSC sheets and two types of hUC-MSC 
suspensions, and not to assess any therapy or disease 
efficacy. Therefore, murine cell transplant experiments 
used healthy instead of diseased murine models in order 
to eliminate factors that might otherwise possibly con-
found interpretation of cell transplantation effects only. 
Mice were housed in a specific pathogen-free facility 
and fed alfalfa-free food (AIN-76A Rodent Diet, D10001; 
Research Diets, New Brunswick, USA) during the week 
before transplantation to reduce tissue autofluorescence 
sourced from the feed. The locations of all mouse cages 
were randomized to avoid confounding bias.

In this investigation, the following two forms of 
hUC-MSC transplantation were performed: intra-
venous cell suspension injection and subcutaneous 
sheet transplantation (Fig.  2). Three different trans-
plantation groups—hUC-MSC sheets, ET hUC-MSC 
suspensions, and TR hUC-MSC suspensions—were 
transplanted subcutaneously (Fig.  2A). An additional 
sham control group was used. Two transplantation 
groups—ET hUC-MSC suspensions and TR hUC-MSC 
suspensions—were performed through intravenous 
injection (Fig.  2B). To assess the effectiveness of cell 

engraftment and cytokine expression, eight mice were 
employed per group, established by accounting for the 
reduction of errors related to individual variations in 
mice. For the duration of the cell transplant trial, a total 
of 48 mice were used. To prevent confounding bias, the 
placement of each mouse cage was randomized follow-
ing cell transplantation.

hUC-MSC sheets were stained with fluorescent dye 
XenoLight DiR (DiIC18(7))(1,1′-dioctadecyltetrameth-
ylindotricarbocyanine iodide, Caliper Lifesciences, 
Hopkinton, USA) after 1-h incubation. Both hUC-MSC 
suspensions were stained with this same dye by a 30-min 
incubation. The difference in cell staining duration is due 
to different stain uptake efficiencies between cell sheet 
and cell suspension. hUC-MSC suspensions were stained 
with a fluorescent dye for 30 min, sufficient for saturated 
staining of the cell suspension in vivo. By contrast, cells 
within cell sheets do not stain consistently with fluores-
cent dye when compared with cell suspensions. There-
fore, a longer staining duration (60 min) is required for 
saturated staining of cell sheets. This change in stain-
ing does not influence resulting fluorescent intensities 
because each fluorescent intensity is maximally saturated 
with each staining duration.

hUC-MSC sheet transplantation was performed using 
the following procedure. An ICR mouse was anesthe-
tized with somnopentyl and the hair on its back removed. 
Then, an incision in the dorsal skin was lifted to expose 
the subcutaneous tissue. One side of a silicone membrane 
was sutured to the interior surface of the exposed skin. 
The fluorescently labeled hUC-MSC sheet was placed 
between the skin and the fixed silicone membrane, and 
then replaced gently with the membrane directly against 
the subcutaneous tissue surface, and the incision was 
closed with 5-0 nylon sutures. After 1 h of transplanta-
tion, and at 1, 7, 14, and 28 days, fluorescent images of 
the mouse were acquired noninvasively using an in vivo 
imaging system (IVIS Spectrum, Caliper Lifesciences) 
at 710-nm excitation, 760-nm emission. During image 
acquisition, the mouse was anesthetized with isoflurane. 
Images were analyzed using IVIS Living Image (Caliper 
Lifesciences).

Two types of fluorescently dyed hUC-MSC suspen-
sions, “ET” or “TR” (see Figures  1 and 2), were trans-
planted into ICR mice in identical subcutaneous 
locations by subcutaneous injection as follows: ICR mice 
were anesthetized with isoflurane, and a given cell sus-
pension containing 4 ×  105 cells in DMEM was injected 
into dorsal subcutaneous tissues (Fig.  2A). After 1h of 
transplantation and at 1, 7, 14, and 28 days, fluorescent 
images were acquired noninvasively using IVIS in  vivo 
imaging system, identically to the process for imaging cell 
sheets in vivo.
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Two types of fluorescently dyed hUC-MSC suspensions, 
“ET” or “TR,” was transplanted into ICR mice by intrave-
nous injection as follows: ICR mice were anesthetized 
with isoflurane, and a cell suspension containing 4 ×  105 
cells was injected into the tail vein. After transplantation 
for 60 min, 1, 7, and 14 days, mice were anesthetized with 
isoflurane and euthanized by cervical dislocation and their 
organs, brain, heart, kidney, stomach, lungs, spleen, and 
liver, were collected. Fluorescent images of the collected 
organs were obtained using IVIS imaging.

Cytokine assay from hUC‑MSC sheets and cell suspensions 
in vivo
Human cytokines secreted by UC-MSCs in the subcuta-
neous transplant site or in murine plasma were measured 

by enzyme-linked immunosorbent assay (ELISA). 
Expression levels of the VEGF (vascular endothelial 
growth factor), HGF (hepatocyte growth factor), TGF-β1 
(transforming growth factor beta 1), IL-10 (interleukin 
10), and IL-6 (interleukin 6) were measured by ELISA. 
At 28 days post-transplantation, each mouse was anes-
thetized with isoflurane and its blood was collected from 
cardiac puncture. The mouse was then euthanized via 
cervical dislocation. The collected blood was centrifuged 
at 3000 rpm for 10 min, and the supernatant plasma was 
collected and frozen at − 80 °C until cytokine concentra-
tion assay was performed. After blood collection, dorsal 
subcutaneous tissues were also collected and placed in 
RIPA buffer (Wako, Osaka, Japan), with a protease inhibi-
tor cocktail (Nacalai Tesque, Kyoto, Japan) added, and 

Fig. 2 Illustration of the cell transplantation and imaging techniques used for assessing the human umbilical cord-derived mesenchymal stem cell 
sheets and suspensions. (A) Subcutaneous transplantation of sheets and suspensions; (B) intravenous tail vein injection of cell suspensions.
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minced using scissors. Then, the tissue was sonicated at 
4  °C for 10 min and repeated freeze–thawing of the tis-
sue suspension (x3) was conducted to extract proteins, 
and stored at − 80 °C until cytokine concentration assay. 
Cytokine concentrations of the prepared plasma and tis-
sue extract media suspension were quantified using a 
human cytokine ELISA assay kit (R&D Systems, Minne-
apolis, MN, USA). Protein concentration of each sample 
for ELISA was normalized by measuring plasma protein 
concentration with a BCA Protein Assay Kit (Thermo 
Fisher Scientific). Samples collected from mice without 
any hUC-MSC transplantation were used as negative 
control.

Statistical analysis
All values are expressed as average values and standard 
error (mean ± SEM). Differences were analyzed by Tuk-
ey’s test for multiple samples and by the Student’s t test 
for two groups. *p < 0.05 or **p < 0.01 were considered 
significant.

Results and Discussion
hUC‑MSC engraftment duration in murine subcutaneous 
transplantation
hUC-MSC sheets and two types of hUC-MSC suspen-
sions were prepared in cultures and harvested using 
either a commercial temperature-responsive cell culture 
surface or traditional enzymatic treatment with trypsin 
(Fig. 1). All MSCs were stained with fluorescence dye and 
transplanted into the dorsal subcutaneous tissues of ICR 
mice (Fig.  2A). Engraftment of transplanted hUC-MSC 
was monitored using an in vivo fluorescent imaging sys-
tem at 60 min, and at 1, 7, 14, and 28 days (Fig.  3). At 
28 days post-transplantation, the dorsal subcutaneous 
tissues were collected and hUC-MSC engraftment was 
observed by IVIS imaging (Fig. 3A). At 60 min and 1 day 
after transplantation, hUC-MSC engraftment was simi-
lar across all three MSC transplantation models. These 
results indicate that transplanted hUC-MSCs can survive 
in immune-competent murine host subcutaneous tissue 
at least until 1 day post-transplantation regardless of the 
cell preparation/implantation method.

hUC-MSC sheets were retained continuously in subcu-
taneous engraftment up to 28 days post-transplantation 
(Fig.  3A). In contrast, ET MSC suspension injections 
exhibited decreased engraftment at 7 days, nearly dis-
appearing at 28 days. Similarly, the TR MSC suspension 
injection also exhibited reduced engraftment over time. 
Distinct hUC-MSC engraftment duration was attributed 
to the endogenous MSC ECM and cell–cell junctions 
known to be retained for hUC-MSC sheet preparations 
[22, 53]. Improved MSC immunomodulatory properties 
in sheets versus dispersed cells might also contribute to 

this improved xenogenic MSC sheet retention [22]. Previ-
ously, endothelial and kidney cell sheets were also shown 
to maintain ECM and adhesive functions after culture 
recovery, with ECM fibronectin displayed basally under 
cell sheets [40, 55]. Furthermore, hUC-MSC sheets retain 
both structure and integrated function, including their 
ECM, cell–cell junctions, and cell–ECM junctions after 
culture harvest [49, 53]. This explains the strong spon-
taneous adhesion and retention in tissue sites without 
suturing observed for transplanted hUC-MSC sheets. In 
contrast, ET hUC-MSC suspensions lost both their ECM 
and cellular activity and could not effectively engraft into 
host subcutaneous tissue. However, the TR hUC-MSC 
suspension exhibited higher cell engraftment in vivo than 
the ET suspension as it retains its endogenous ECM and 
other surface proteins without proteolytic treatment.

These results support higher in vivo retention duration 
for xenogenic hUC-MSC sheet implants than both hUC-
MSC suspension injections due to sheet integrity, ECM 
and cell–cell junctions retained from culture and harvest 
processing, and possibly enhanced MSC sheet immu-
nomodulatory potential with host subcutaneous tissue 
compared to isolated injected MSCs.

As previous reports have indicated that tumorigen-
esis from transplanted human mesenchymal stem cells is 
negligible in an in vivo model [56–60], this risk at 28 days 
post-transplant was considered to be negligible.

Engraftment duration of hUC‑MSCs after intravenous 
injection
In most clinical cases, MSCs cell suspensions have been 
introduced via intravenous or direct tissue injection. 
Thus, the two types of hUC-MSC suspensions were intra-
venously injected, and MSC engraftment efficiency in 
various organs was investigated (Fig. 4). For the ET hUC-
MSC suspension, at 1 h after intravenous infusion, sub-
stantial cell engraftment was observed in the lung, and 
an even larger fraction in the spleen and liver. At 1 day 
post-infusion, the number of hUC-MSCs remaining in 
the lung notably decreased. Up to 7 days post-infusion, 
hUC-MSCs were present in the lung, spleen, and liver. 
However, at 14 days post-infusion, most fluorescent 
hUC-MSCs had cleared, indicating that hUC-MSC ET 
suspensions would only be present and active primarily 
in the lung, spleen, and liver up to 7 days post-infusion.

TR hUC-MSC suspension intravenous infusions pro-
duced similarly substantial hUC-MSC retention in the 
lung at 1 h post-infusion, while hUC-MSC presence in 
other organs was not observed (Fig.4). At 14 days post-
infusion, hUC-MSCs were still observed in the lung, 
indicating that the TR hUC-MSC suspension infusion is 
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retained longer in the lung (14 days) than the ET hUC-
MSC suspension (7 days).

Compared with subcutaneous hUC-MSC tissue cell 
suspension injections, intravenous MSC infusions exhib-
ited relatively low retention duration (compare Figures 3 
and 4). Thus, intravenous MSC injection appears to 
be a less effective hUC-MSC administration or dosing 
method, similar to low infused MSC tissue site engraft-
ment and retention observed in clinical studies [19].

Cytokine expression level comparisons of transplanted 
hUC‑MSCs
Previous reports consistently indicate that hUC-MSCs 
secrete various therapeutic cytokines in vitro includ-
ing HGF and TGF-β1 [8, 23, 24, 50–53]. However, 
cytokine secretion after in  vivo hUC-MSC transplanta-
tion has not been reported. Hence, we measured human 
cytokine levels at both the MSC transplant tissue site and 
in blood at 28 days post-transplantation (Figs. 5 and 6). 

Fig. 3 Optical evaluation of the engraftment of transplanted mesenchymal stem cell sheets and suspensions prepared from human umbilical cord 
sources in an ICR mouse. Subcutaneous transplants of human cell sheets and cell suspensions (ET or TR) were performed (see Fig. 2). (A) In vivo 
imaging of cell survival during cell sheet transplantation and cell suspension injection (ET and TR). (B) A quantitative evaluation of the in vivo 
fluorescence intensity of transplanted cell sheets and cell suspension (ET or TR)
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At the subcutaneous transplant site, hUC-MSC sheets 
exhibited higher HGF and TGF-β1 levels compared to 
those of both transplanted ET and TR cell suspensions 
(Fig. 5). This can be explained by higher MSC retention 
and engraftment duration for hUC-MSC sheets at these 
tissue sites (Fig.  3). HGF enhances cell viability, prolif-
eration ability, migration capability, and inflammatory 
suppression [61–64] and has shown positive effects as 
treatment for multiple sclerosis and COPD [65, 66]. Thus, 

possible HGF therapeutic effects might be enhanced by 
transplantation of hUC-MSC sheets versus MSC suspen-
sion injections. In addition, TGF-β1 produces inflamma-
tory suppression by inhibiting macrophage activation and 
secretion of inflammatory cytokines [61, 67, 68]. Thus, 
hUC-MSC sheets might better reduce host inflammatory 
response at cell transplant sites, even better assisting host 
xenogenic immunomodulation and human MSC toler-
ance in this murine model, as manifested by enhanced 

Fig. 4 Analysis of the engraftment of human umbilical cord-derived mesenchymal stem cell suspensions prepared by either enzyme treatment 
(ET) or temperature reduction (TR). (A) IVIS imaging of cell engraftment in various organs. (B) Quantitative analysis of IVIS fluorescent intensity 
in various organs.
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MSC sheet retention and reported sheet immunomodu-
latory phenotype [22]. In contrast, no obvious difference 
in human VEGF, IL-10, and IL-6 levels are detected, indi-
cating that neither hUC-MSC sheets nor cell suspensions 
might be effective in these specific cytokine-mediated 
in vivo effects.

Human cytokine levels in blood were measured at 28 
days after subcutaneous MSC transplantation (Fig.  6). 
No differences in levels of any tested cytokine between 
groups are observed, probably because they are either 
absent, or sufficiently dilute in blood to remain below the 

ELISA assay detection limit in blood. This indicates that 
hUC-MSC transplantation affects only the local tissue 
transplant environment, using paracrine signaling rather 
than endocrine effects. This result has important impli-
cations for possible future applications in MSC cell sheet 
therapy.

These collective results demonstrate that surgically 
placed hUC-MSC sheets remain engrafted longer and 
in higher viable cell numbers in tissue implant sites than 
injected hUC-MSC suspensions. In addition, hUC-MSC 
sheets in vivo secrete higher levels of select cytokines to 

Fig. 5 Human cytokine expression profiles in human MSC transplant sites in mice. Comparisons of subcutaneously transplanted human 
mesenchymal stem cell sheets and cell suspensions cord (ET or TR), all derived from human umbilical sources. Secreted cytokine levels 
in the subcutaneous human umbilical cord-derived mesenchymal stem cell sheet transplant site are examined using ELISA. Levels of VEGF, HGF, 
TGF-β1, IL-10, and IL-6 were measured. The subcutaneous region of sham-treated ICR mice was used as a negative control. (n = 3) * p < 0.05; ** p < 
0.01.
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local tissue sites than either injected hUC-MSC suspen-
sion. Thus, hUC-MSC sheet transplantation represents 
an improved alternative approach for enhancing MSC-
based cell therapies based on this preclinical murine 
xeno-transplant in vivo analysis.

Conclusions
We report comparisons for murine subcutane-
ous engraftment of surgically placed subcutaneous 
hUC-MSC sheets and injected cell suspensions after 
transplantation, and resulting select human cytokine 
secretion profiles in  vivo resulting from transplanted 

hUC-MSC. Subcutaneous hUC-MSC sheets exhibit 
higher engraftment with longer retention compared 
to hUC-MSC suspensions prepared either by conven-
tional enzyme treatment or harvested by temperature 
reduction without trypsin treatment. This difference is 
attributed to retention of endogenous ECM and cell–
cell junctions in sheets but not in suspension forms, 
and perhaps also improved immunomodulatory prop-
erties of human MSC sheets versus their suspensions in 
this murine xenograft model. Human cytokine secre-
tion from each form of transplanted hUC-MSC to local 
subcutaneous tissue and to systemic blood circulation 

Fig. 6 Human cytokine expression in murine blood samples after subcutaneous transplants of human umbilical cord-derived mesenchymal stem 
cell sheets and injected cell suspensions (ET or TR). Secreted human cytokine levels of VEGF, HGF, TGF-β1, IL-10, and IL-6 in blood were evaluated 
by ELISA. Sham-treated ICR mice were used as a negative control (n = 3)
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was also investigated. Significant amounts of HGF and 
TGF-β1 were observed in local tissue sites transplanted 
with hUC-MSC sheets compared to sites bearing either 
hUC-MSC suspension. This difference may be attrib-
uted to longer retention of larger amounts of MSCs in 
sheet-transplanted sites at assay time points. On the 
contrary, no intergroup differences were observed in 
levels of any tested cytokines in blood. This indicates 
that hUC-MSC transplantation only affects the local 
tissue environment at transplant sites, using paracrine 
signals rather than endocrine effects. This result has 
important implications for possible future applications 
in MSC cell sheet therapy. If these xenogenic murine 
cell implant model data reflect human allogenic MSC 
results, then transplantation of hUC-MSC sheets may 
offer a more effective therapeutic approach due to 
enhanced, local MSC engraftment with more substan-
tial, more sustained secretion of human cytokines use-
ful for various cell therapies and regenerative medicine.
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