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Abstract 

Dental implants are widely used to replace missing teeth, providing patients with unparalleled levels of effectiveness, 
convenience, and affordability. The biological basis for the clinical success of dental implants is osseointegration. Bone 
aging is a high-risk factor for the reduced osseointegration and survival rates of dental implants. In aged individuals, 
mesenchymal stem cells (MSCs) in the bone marrow show imbalanced differentiation with a reduction in osteogen-
esis and an increase in adipogenesis. This leads to impaired osseointegration and implant failure. This review focuses 
on the molecular mechanisms underlying the dysfunctional differentiation of aged MSCs, which primarily include 
autophagy, transcription factors, extracellular vesicle secretion, signaling pathways, epigenetic modifications, microR-
NAs, and oxidative stress. Furthermore, this review addresses the pathological changes in MSCs that affect osseointe-
gration and discusses potential therapeutic interventions to enhance osseointegration by manipulating the mecha-
nisms underlying MSC aging.
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Introduction
The rapid increase in the aging population has become a 
concern worldwide; the global population aged ≥ 65 years 
is estimated to reach approximately 1.5 billion by 2050 
[1]. With a surge in the aged population, an increased 

number of patients will face dental issues, requiring tooth 
replacement [2]. Tooth loss not only impairs the ability to 
chew and grind food but also makes it difficult to speak 
and modifies the facial features [3]. For decades, dental 
implants and implant-supported prostheses have been 
clinically applied as the most effective methods for oral 
rehabilitation of partially or fully edentulous patients. 
Notably, the long-term survival rate is 93.3–97% [4, 5]. 
The prerequisite for clinical success of dental implants is 
osseointegration, defined as a direct structural and func-
tional connection between the bone and the surface of 
the implant [6, 7]. Elderly patients undergoing implant 
surgery are at higher risk compared to younger patients 
owing to their age-related health conditions [8].  With 
an increase in age, bone quality and quantity deterio-
rate, leading to osteoporosis [9]. Senescent bone mar-
row mesenchymal stem cells (BMMSCs) have impaired 
osteogenic differentiation and increased adipogenic 
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differentiation abilities and play key roles in bone aging 
[10]. Differences in bone metabolism and biological 
properties of MSCs between elderly and young patients 
could result in differences in osseointegration patterns 
and success rate. The present review aims to provide 
an overview of the existing literature on the molecular 
mechanisms of MSC and bone aging and their effect on 
osseointegration. Based on this information, possible 
techniques to enhance osseointegration in aged popula-
tion are discussed.

Osseointegration and aging
In the 1960s, Professor P. I. Branemark laid the founda-
tion of modern implant dentistry by discovering the phe-
nomenon of direct bone-to-implant contact; he termed 
it as “osseointegration” [6]. During the same period, Pro-
fessor Andre Schroeder reported direct bone-to-implant 
contact and soft tissue reaction to titanium [11, 12]. 
Osseointegration is the direct structural and functional 
connection between the dental implant surface and the 
living bone without intervening soft tissue.

Titanium implants need to go through a  cascade  of 
healing events before they are “accepted” by the body tis-
sues. The implantation of biomaterials results in injury 
and initiation of the inflammatory response regardless 
of the method of introduction of the biomaterial into the 
body [13, 14]. An immune response occurs, as biomate-
rial insertion leads to the disruption of the host’s tissue 
[15]. Accordingly, osseointegration can be perceived as 
an immune-modulated inflammatory process, wherein 
the immune system is locally regulated, thus influencing 
the whole healing process. The osseointegration process 
includes several phases post implant placement. Initially, 
titanium implant surface causes surface protein absorp-
tion, followed by coagulation and complement system 
activation. Then, monocytes are recruited and differenti-
ate to macrophages to modulate the immune response. 
MSCs are recruited and differentiate to osteoblasts and 
osteocytes to deposit collagen matrix and form new 
bone. Finally, the peri-implant interface is completely 
replaced by a mature lamellar bone [16, 17] (Fig. 1).

Bone aging is characterized by decreased osteogenesis 
and increased adipogenesis[10]. Whether bone aging is 

Fig. 1  Schematic representation of the osseointegration process. Implant placement triggers the following events to initiate osseointegration. 
Titanium implant surface causes protein adsorption, followed by coagulation and complement system activation. Monocytes differentiate 
into macrophages and control the immune response; MSCs are recruited in an accurate balance and commit to bone-forming cells, leading 
to bone formation. Created with http://​BioRe​nder.​com

http://BioRender.com
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a negative factor in implant osseointegration has gained 
interest among the research communities. However, 
studies have reported contrasting results regarding the 
success and failure of dental implants in both patients 
and animals with bone aging. It has been reported that 
patients with advanced age receiving dental implants 
could have excellent implants survival rates and low peri-
odontal disease index scores. A systematic review and 
meta-analysis reported high implant survival rates in 
patients aged over 75 years (97.3% for 1 year and 96.1% 
for 5 years) [18]. In 1998, 39 older patients who had 190 
implants supporting 45 oral prostheses and 43 younger 
adults who had 184 implants supporting 45 oral prosthe-
ses were compared after being monitored for a period of 
4–16 years. The data showed an implant success rate of 
92.0% for the older group compared to an success rate 
of 86.5% for the younger group; however, no statistical 
significance was observed [19]. Moreover, a prospective 
study concluded that the clinical performance of man-
dibular two-implant overdentures is equally successful in 
younger and older patients after 10 years [20]. In contrast, 
Alsaadi et al. reported a positive relation between osteo-
porosis and early implant failure in a retrospective study 
[21]. Similarly, a systemic review concluded that osteo-
porotic subjects presented higher rates of implant loss 
[22]. Moreover, Niedermaier et al. studied survival rates 
of implant-supported dentures in patients with osteo-
porosis for up to 7  years and revealed increased rates 
of implant failure in these patients [23]. A multicenter 
study reported the lowest success rate in older patients 
after 6  years for 1022 implants placed in 440 patients 
[24]. Bertl et al. [25] reported that patients ≥ 80 years old 
showed a higher rate of early implant loss than younger 
patients. A retrospective, cross-sectional, matched sam-
ple study concluded that osteoporosis has a significant 
influence on peri-implant marginal bone level at the 
mesial and the distal implant aspect in postmenopausal 
women [26]. An animal study revealed that age-related 
estrogen deficiency in rats negatively influences preexist-
ing bone around titanium implants in both the cortical 
and cancellous bones [27]. Collectively, it can be con-
cluded that the osseointegration process is compromised 
in aged individuals, which may cause implant failure. 
Therefore, therapies enhancing the osseointegration pro-
cess in the aged population should be developed.

Strategies to improve osseointegration in aged individuals
Various methods have been used to improve osseointe-
gration in the aged population. These include systemic 
and local application of certain drugs and modification 
of the implant surface through novel techniques, such as 
varying the topography, applying coatings, or combining 
both of these. Systemic administration of bone-regulating 

hormones, such as calcitonin, parathyroid hormone 
(PTH), and estrogen, significantly improved bone forma-
tion and implant anchorage in osteoporotic rats [28–31]. 
Strontium ranelate and simvastatin improve titanium 
implant osseointegration by promoting bone formation 
and inhibiting bone absorption through various signal-
ing pathways [32]. Currently, the common sand blasting 
and acid etching strategy is widely applied to increase the 
surface roughness of implants, which enhances biological 
properties of MSCs and osseointegration process [33]. In 
addition to the design of implant surface, it is necessary 
to promote osteoinduction and inhibit bone resorption 
locally in osteoporotic patients. Implants coated with 
bioactive agents, such as anti-osteoporosis drugs [34, 35], 
bioactive molecules [36, 37], or bioactive inorganic ele-
ments [38, 39] with proper controlled release have been 
reported to be able to improve osseointegration in osteo-
porotic individuals. Although numerous methods have 
been developed to achieve favorable osseointegration in 
osteoporotic conditions, the exact underlying biological 
mechanisms of how bone aging affects the osseointegra-
tion process and possible methods to improve osseoin-
tegration based on molecular mechanisms of bone aging 
have not been summarized before.

MSCs in bone aging
MSCs are mesoderm-derived progenitor cells that 
can be obtained from a wide range of tissues such as 
bone marrow, adipose tissue, umbilical cord, muscle, 
and dental tissue. They have the ability to self-renew 
and differentiate into various mesodermal cell types, 
including osteoblasts, adipocytes, and chondrocytes 
[40]. During osseointegration, followed by MSCs 
recruitment to the bone remodeling site, these cells 
proliferate and commit to pre-osteoblasts, further 
maturing into osteoblasts, which are involved in ini-
tial matrix secretion, maturation, and mineralization. 
At the end of the bone-forming stage, osteoblasts can 
have one of the following fates: develop into osteocytes 
embedded in the mineralized bone matrix, inactivate 
to quiescent bone-lining cells, or undergo apoptosis 
(Fig. 1) [16, 17, 41]. During bone aging, BMMSCs pop-
ulation declines and show reduced osteogenic differ-
entiation and increased adipogenic differentiation [42, 
43]. This could be a possible reason for impaired osse-
ointegration and implant failure. However, the sign-
aling pathways driving this pathological shift remain 
elusive and are currently under thorough investiga-
tion. Understanding the molecular mechanisms gov-
erning the dysregulated osteogenesis of aged MSCs 
is crucial for developing new treatments to promote 
bone formation and enhance osseointegration. Here, 
we summarize the pathological and molecular changes 
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governing the biased differentiation of BMMSCs from 
various aspects, including autophagy, transcription 
factors, EV secretion, signaling pathways, epigenetic 
modifications, microRNAs, and oxidative stress. Fur-
thermore, the effects of pathological changes in MSCs 

on osseointegration and possible interventions at the 
molecular level, such as modifications of implants and 
their utility in treatment-based applications, are dis-
cussed (Fig. 2).

Fig. 2  Schematic representation of the potential uses of the mechanisms of MSC aging in improvement of osseointegration. Molecular changes 
associated with age-related changes in MSCs from varying perspectives include autophagy, transcription factors, EV secretion, signaling pathways, 
epigenetic modifications, microRNAs, and oxidative stress. Possible interventions at the molecular level to improve osseointegration include 
systemic administration, local delivery, and surface modification. Created with http://​BioRe​nder.​com

http://BioRender.com


Page 5 of 14Ma et al. Stem Cell Research & Therapy          (2023) 14:382 	

Osseointegration and aging: lessons from MSCs
Autophagy
Autophagy is a cellular process through which redundant 
components, such as proteins and damaged mitochon-
dria, are engulfed and delivered to lysosomes for deg-
radation and recycling to maintain cellular homeostasis 
[44]. Reduced autophagy is a hallmark of aging in both 
cells and tissues. The expression of several autophagy-
related genes is significantly reduced in various aged 
cells and tissues compared to that in their younger coun-
terparts [45, 46]. Activation of autophagy by rapamycin, 
an inhibitor of the mTOR pathway, has been shown to 
increase the life expectancy of mice when fed them to 
late in life [47] or for a short interval during mid-life [48]. 
BMMSCs from aged mice present impaired autophagy 
compared to those from young mice. Furthermore, stim-
ulation of autophagy by rapamycin not only enhances the 
osteogenic differentiation of aged BMMSCs in vitro but 
also restores the bone mineral density of senile osteo-
porotic aged mice [49].

Recently, it was revealed that during the process of 
implant osseointegration, several modifications in the 
topography of dental implants could promote osseoin-
tegration by modulating autophagy of the surround-
ing cells [50, 51]. Furthermore, metformin treatment 
promotes implant osseointegration under osteoporotic 
conditions by increasing autophagy and the osteogen-
esis of MSCs [52]. Moreover, multifunctional hydrogels 
fabricated from dynamic crosslinking of synthetic poly-
mers, natural polymers, and silver nanowires to deliver 
rapamycin significantly improve osseointegration in vivo 
and restore degenerative cellular properties of BMMSCs 
in vitro in osteoporotic models by increasing autophagy 
[53]. Collectively, the up-regulation of autophagy by dif-
ferent methods, including implant modification and drug 
application, could be a promising mechanism to enhance 
osseointegration in the aged population.

Transcription factors
Numerous transcription factors have been identified as 
critical mediators involved in the aging process and oste-
ogenic differentiation [54]. Recent studies have shown 
that the expression of transcription factors, includ-
ing FOXP1, MAF, CBFβ, and SATB2, could potentially 
affect and attenuate senescence-related changes, includ-
ing reduced bone mineral density, decreased trabecular 
thickness, and increased bone marrow adipogenic differ-
entiation [55–58]. In this context, elucidation of the links 
between transcription factors and osseointegration may 
aid in understanding bone metabolism, optimizing aging-
relevant skeletal disease therapies, and broadening the 
applications of dental implants.

FOXP1  Forkhead box P1 (FOXP1) is a critical tran-
scription factor that participates in and affects multiple 
biological processes. It plays a vital role in defining the 
switch of MSCs from osteogenic to adipogenic differen-
tiation by binding to the proliferator-activated receptor 
γ2 (PPARγ2) promoter [59, 60]. Li et al. recently reported 
age-correlated FOXP1 declination in BMMSCs as a cause 
of up-regulated adiposity and down-regulated bone mass, 
which may function through the inhibition of p16 [61]. 
Specifically, conditional ablation of FOXP1 in MSCs is 
associated with up-regulation of the CEBPβ/δ complex 
and dysregulation of recombination signal binding pro-
tein for immunoglobulin κ J region (RBPjκ), which further 
results in a reduced regenerative capacity of MSCs in vivo 
[55]. These studies preliminarily demonstrate the role of 
FOXP1 in regulating the fate of MSCs and age-depend-
ent bone metabolism [62]. However, further studies are 
required to elucidate the underlying mechanism connect-
ing FOXP1 and osseointegration.

MAF  MAF bZIP transcription factor (MAF) is a regu-
latory factor in the development of multiple tissues and 
immune system. Additionally, it is involved in senescence-
dependent MSC differentiation [10]. Nishikawa revealed 
the age-dependent declination in Maf expression in 
murine MSCs, which affected the osteoblast/adipocyte 
bifurcation in MSCs by interfering with the osteogenesis 
mediator Runx2 and the adipogenesis regulator Pparg. 
[58]. Furthermore, strontium can attenuate age-related 
bone loss, characteristic of decreased bone mineral 
density and trabecular thickness, by targeting Maf [63, 
64]. Similarly, Zn2 + /Sr2 + -collagen co-assembly with 
hydroxyapatite (HA) promotes bone reconstruction by 
up-regulating Nfatc1/Maf signaling pathway [65]. These 
results suggest Maf as a promising target to allocate the 
lineage of MSCs by inhibiting aging-dependent switching 
of osteoblasts to adipocytes and could be applied in the 
process of implant osseointegration in individuals with 
osteoporosis.

CBFβ  Core binding factor subunit beta (CBFβ) serves 
as a pivotal transcription factor in regulating osteoblast 
differentiation, bone anabolism, and senescence-related 
skeletal development by stabilizing and promoting Runx 
family proteins [56, 66–68]. Along with substantial accu-
mulation of bone marrow adipocytes and reduced bone 
mineral density, Cbfβ expression is dramatically dimin-
ished in aged mice, indicating that Cbfβ plays a critical 
role in age-related bone anabolic metabolism [69]. Fur-
thermore, Wu et al. reported that Cbfβ manipulates oste-
ogenesis/adipogenesis lineage commitment by activating 
the Wnt10b/β-catenin signaling pathway and inhibiting 
adipogenesis regulatory gene (c/ebpα) expression [69]. In 
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addition, conditional abrogation of Cbfβ in BMMSCs sig-
nificantly impairs osteogenic capacity and reduces bone 
mineral density [69, 70], whereas its overexpression can 
certainly reverse senescence and adipogenesis mediated 
by p53/miR-145a [71, 72]. In conclusion, these studies pri-
marily unveil the regulatory role of CBFβ in osteoblast/
adipocyte lineage commitment, which could be exploited 
as a therapeutic target for promoting osseointegration in 
aged individuals.

SATB2  Special AT-rich sequence-binding protein 2 
(SATB2), a nuclear matrix protein, is a pivotal media-
tor in coordinating stemness maintenance, craniofacial 
skeletal patterning, and osteogenic differentiation by 
H19 [73], miR-31 [74, 75], miR-103 [76, 77], miR-140-5p 
[78], and MALAT1 [79]. Interestingly, SATB2 expression 
decreases during senescence in alveolar bone-derived 
BMMSCs [80], through the regulation of Nanog tran-
scription [81, 82]. In parallel with SATB2 declination, 
the BMMSCs derived from elderly rats exhibit abrogated 
osteogenesis and up-regulated adipogenesis [83]. How-
ever, exogenous overexpression of SATB2 decreases the 
age-related  changes  in  MSCs, thereby reversing senes-
cence-related alveolar bone loss [81] and facilitating bone 
reconstruction in critical size mandibular defects [84]. In 
addition, local delivery of SATB2 significantly acceler-
ates new bone formation and promotes the osseointegra-
tion of titanium implants in vivo [57]. Considering this, 
increased SATB2 expression could be an effective strategy 
to regulate bone osteointegration and manage age-related 
bone diseases.

Extracellular vesicles (EVs)
Exosomes  EVs are membrane nano- and micro-vesicles 
generated by various cells and organs (MSCs [85], DCs 
[86], B cells [87], mast cells [88], epithelial cells [89]), 
which are important in cell-to-cell communication [90] 
and multiple biological processes [91, 92]. Among them, 
MSC-derived exosomes containing proteins, RNAs, and 
lipids serve as key mediators of the aging process [93]. The 
expression pattern of bone marrow exosomes differs sig-
nificantly between the young and elderly [94]. For instance, 
exosomal presentation of miR-294 and miR-872-3p [95] 
is significantly reduced during senescence, while bone 
marrow expression of miR-335-5p and miR-146a-5p [96] 
is characteristic in MSC-derived microvesicles secreted 
by older rats. The expression of exosomal miR-31a-5p, 
serving as a critical modulator of osteoclastogenesis and 
bone resorption, is markedly higher in aged MSCs than in 
young cells. Inhibition of miR-31a-5p expression prevents 
bone loss and reduces the osteoclastic activity of aged rats 
in the bone marrow microenvironment [83]. Intercellular 

transfer of microvesicles from young MSCs rejuvenates 
aged murine hematopoietic stem cells (HSCs) [97]. In 
addition, incubation of young MSCs with aged exosomes 
(including miRNA-183-5p) inhibits MSC differentiation 
into osteoblasts, thereby inhibiting osteogenesis [98]. In 
contrast, exosomes highly expressing miRNA-19b-3p 
from young donors ameliorate the reduced osteogenic 
differentiation of BMMSCs in aged rats with osteoporosis 
in vivo [99]. The exosomes derived from young BMMSCs 
specifically containing CD9, CD63, and TSG101 pro-
mote new bone regeneration and osseointegration dur-
ing distraction osteogenesis (DO) in older rats [100]. 
Collectively, these results indicate that the exosomes 
derived from older MSCs are associated with reduced 
osseointegration. In terms of sustained release and dura-
ble efficacy, liposomes [101], nanohydroxyapatite (nHP) 
[102, 103], tricalcium phosphate (β-TCP) ceramics [104, 
105] and hydrogel formulations (e.g., alginate [106, 107], 
hyaluronic acid [106, 107], poly (lactic-co-glycolic acid) 
(PLGA) [108–110], and polydopamine (PDA) [109, 110]) 
have been used to deliver MSC-Exos for osteogenesis and 
osseointegration. Recently, micro/nano-textured hierar-
chical titanium topography has been shown to be favora-
ble for BMMSC-Exos biogenesis and secretion, as it pro-
motes osseointegration [111]. These findings suggest that 
remodeling MSC-Exos via surface modification of bioma-
terials or local delivery may provide a cell-free strategy for 
enhancing osseointegration (Fig. 3). However, the efficacy 
of this method requires further validation.

Apoptotic vesicles  Apoptotic vesicles (ApoVs) are a het-
erogeneous population of EVs generated during apopto-
sis [112]. Reduction of apoptotic body formation signifi-
cantly impairs the self-renewal capacity and the balance 
of BMMSCs between osteogenesis-or-adipogenesis [113]. 
Young MSCs-derived apoVs effectively rejuvenate aged 
BMMSCs by enriching the levels of Ras-related protein 
7 (Rab7) [112]. Previous studies have shown apoVs to 
be effective in bone homeostasis, as they regulate bone 
remodeling [114, 115]. Nevertheless, further investiga-
tion on the design and use of MSC-Exos, especially MSC-
apoVs, can potentially present a unique opportunity for 
developing strategies for osseointegration enhancement 
and bone regeneration in the future [116].

Intracellular signaling pathways
Multiple signaling pathways regulate bone homeostasis 
and bone cell differentiation. Therefore, targeting signal-
ing pathways to enhance the osseointegration process is 
feasible. Here, we describe the pathways that are known 
to be affected by age and result in biased differentiation 
of MSCs.
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Wnt signaling  Wnt signaling is essential for differentia-
tion of MSCs and bone metabolism. Recently, it has been 
shown to be associated with aging. In the canonical Wnt 
pathway, Wnt proteins bind to their respective dimeric 
cell surface receptors, comprising seven transmembrane 
frizzled proteins and the LRP5/6, to activate the signaling 
cascade by recruiting, phosphorylating, and activating the 
cytoplasmic protein disheveled (DVL). This in turn inhibits 
the phosphorylation of β-catenin by the complex (GSK-3, 
APC, and Axin) and subsequently, promotes the translo-
cation of stabilized β-catenin into the nucleus to stimulate 
target gene expression [117]. Zhang et  al. reported that 
Wnt/β-catenin signaling is highly activated during MSC 
aging, leading to DNA damage response and p53/p21 
pathway activation by regulating reactive oxygen species 
(ROS) production [118, 119]. Another study showed that 
the expression of various Wnt-associated genes decreased 
in the bone tissues of aged mice compared with that in 
the tissues of young mice [120]. Kathleen et al. performed 
RNA-seq of implant-associated tissue from old and young 
mice one week after implantation and revealed that the 
expression of several Wnt ligand receptors (Fzd4, 5, 8, 

and 9) and Wnt-regulated transcription factors (Tcf7l1, 
Tcf7l2, Tle2, and runx2) decreased in old mice [121]. 
Wnt-10b is essential to maintain normal bone density 
and mesenchymal progenitor activity in adult bone. Wnt-
10b-/- mice show age-dependent loss of bone mass and a 
reduced number of MSCs. However, transgenic overex-
pression of Wnt-10b prevents bone loss in aged mice and 
enhances osteogenesis in  vitro [122]. In addition, ROS 
activate FoxOs, which in turn, binds β-catenin to reduce 
its availability for activating osteogenesis-related tran-
scription factors, leading to slow bone formation [123, 
124]. A recent study revealed that Gli1 + cells contribute 
to the formation of new bone around the dental implant 
and that the ablation of these cells impairs osseointegra-
tion. Canonical Wnt signaling plays crucial roles in medi-
ating Gli1 + stem cells [125]. Collectively, Wnt signaling 
mediates bone aging process by acting at different levels. 
Thus, modulating Wnt signaling could be a promising 
direction for improving osseointegration.

Notch pathway  Notch pathway is an essential regu-
lator of bone development. Notch signaling is crucial 

Fig. 3  Schematic representation of exosome application from young individuals for improving osseointegration with aging. The expression pattern 
of bone marrow exosomes differs significantly between the young and elderly. The application process includes MSC-Exo harvest, local application, 
and implantation. Created with http://​BioRe​nder.​com

http://BioRender.com
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for the maintenance of MSCs pool under physiological 
conditions. Disruption of Notch signaling causes bone 
loss in aged mice and increased trabecular bone mass in 
adolescent mice [126]. RNA-Seq of peri-implant tissue 
from young and old mice reveals multiple genes, includ-
ing Notch ligands (Jag1, Jag2, Dll1, and Dll4), receptors 
(Notch 3, Notch 4), and downstream transcription factors 
(Hey1, Hey2, Heyl, and Hes1), in the Notch pathway; the 
expression of these genes are significantly decreased in 
old peri-implant tissue. This indicates that Notch signal-
ing is inhibited during aging after implantation [121] and 
that targeting the Notch pathway may enhance osseointe-
gration in older patients. However, another study showed 
that the Notch pathway is activated in aged BMMSCs, and 
inhibition of the Notch signaling by γ-secretase inhibitor 
restores the osteogenic ability of BMMSCs [127]. Never-
theless, 12-month-old C57BL/6 mice were used as the old 
group in this study, and only an in vitro study was con-
ducted, whereas the previous study was performed on 
21-month-old mice as the old group in vivo. These differ-
ences may be responsible for the varying results. Notch 
activation by Jagged 1 enhances the osteogenic differen-
tiation of MSCs sheet by inhibiting the cellular senes-
cence caused by high density sheet culture [128]. There-
fore, Notch pathway could be a key regulator of MSCs 
and bone aging. However, the role of Notch signaling in 
osseointegration has not been thoroughly explored. Local 
aspirin administration enhanced hydroxyapatite-coated 
titanium implant osseointegration in OVX rats through 
activation of the Notch pathway in osteoporotic bone 
[129]. Notch pathway is activated by chemical/nanostruc-
tural (modSLA) and micro-roughened (SLA) surfaces that 
lead to increased osteogenic differentiation after cultur-
ing in osteogenic media [130]. In summary, Notch signal-
ing is closely associated with bone and MSC aging, and 
its modulation might be an effective strategy to enhance 
osseointegration in the elderly.

NF‑κB signaling  The transcription factor nuclear factor 
κB (NF-κB) is a key regulator of inflammation and bone-
modeling process. Increased NF-kB activity is accom-
panied by increased bone-resorption and decreased 
bone-formation abilities [131]. The MSCs derived from 
aged mice show impaired osteogenesis, which is associ-
ated with increased NF-κB activity [132]. The proinflam-
matory cytokines TNF and IL-17 inhibit the osteogenic 
differentiation of MSCs by activating NF-κB signaling. 
Inhibition of NF-κB  signaling promotes bone regenera-
tion and repair under chronic inflammatory conditions 
[133]. Prophylactic melatonin administration promotes 
the osteogenesis of BMMSCs and osteoblasts in vitro and 
reduces bone resorption and proinflammatory cytokine 
levels by inhibiting the activation of NF-κB to down-reg-

ulate TNF, IL-1β, and IL-6 [134]. These findings provide 
an unexplored strategy for enhancing osseointegration 
by inhibiting the NF-κB pathway. Methods such as drug 
administration to inhibit NF-κB signaling should be fur-
ther investigated.

Epigenetic modification
The role of epigenetic alterations in aging has become 
an interesting topic owing to the reversibility of these 
alterations. This may introduce a scope for developing 
treatment options for age-related diseases [135]. Epige-
netic modifications such as DNA methylation, histone 
modification, and chromatin remodeling regulate the 
patterns of gene expression by altering DNA accessibil-
ity or chromatin structure without changing the DNA 
sequence. They are both heritable and reversible and can 
occur in response to environmental stimuli and intrinsic 
changes to maintain cell homeostasis and function [136]. 
It has been widely documented that epigenetic changes 
play crucial roles in the aging process of MSCs. Several 
regulatory factors and sites related to DNA methylation 
have been found to have profound effects on MSC aging. 
Kalyan et  al. compared the methylomes of young and 
aged human BMMSCs using sequencing-based meth-
ods, identified DNA methylation changes associated with 
aging, and constructed hypo- and hypermethylation-spe-
cific regulatory networks [137]. RG108, the inhibitor of 
DNA methyltransferase (DNMT), can alleviate the senes-
cence of aged human BMMSCs by eliminating ROS and 
upregulating telomerase traverse transcriptase (TERT) 
activity, which can repair shortened telomeres [138]. 
Depletion of the DNA demethylases TET1 and TET2 
leads to an osteopenia phenotype in mice. Moreover, it 
reduces the self-renewal and osteogenic differentiation 
abilities of BMMSCs by inhibiting demethylation of the 
P2rX7 promoter and the release of exosomes, leading 
to the accumulation of miR-297a-5p, miR-297b-5p, and 
miR-297c-5p in BMMSCs, which inhibits the Runx2 sign-
aling pathway [139]. Histone modifications regulate aging 
in MSCs by regulating the transcriptional activity of the 
related genes. For instance, Twist-1 is down-regulated 
in aged MSCs, whereas overexpression of Twist-1 allevi-
ates human MSC senescence by increasing the recruit-
ment of EZh2, reducing the expression of the Lnk4A/Arf 
locus, and enhancing the levels of histone H3K27me3 at 
p16/p14 promoters [140]. In osteoporosis models, epige-
netic modifying protein lysine (K)-specific demethylase 
5A (KDM5A) is up-regulated, which in turn suppresses 
runx2 expression by reducing H3K4me3 levels [141]. 
Similarly, the expression of enhancer of zeste homology 
2 (EZH2) increases in osteporotic MSCs. It directly ele-
vates H3K27me3 levels on the promoters of Wnt1, Wnt6, 
and Wnt10a to silence Wnt signaling. Knockdown of 
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EZH2 and inhibition of H3K27me3 inhibit the repression 
of Wnt signaling and restore the osteogenic differentia-
tion of osteoporotic MSCs [142]. However, absent, small, 
or homeotic-like 1 (Ash1l), a histone 3 lysine 4 (H3K4) 
trimethyltransferase in mice, is downregulated and fails 
to mediate H3K4me3 recruitment at the transcription 
start sites of the OSX, Runx2, Sox9, and Cred genes. 
Silencing of Ash1l impairs osteogenic differentiation and 
promotes adipogenic differentiation [143]. In addition, 
microRNAs participate in the epigenetic regulation of 
MSC aging and osseointegration. This is further elabo-
rated in the following section.

The involvement of epigenetic modifications in osse-
ointegration and their application in functionalizing 
implant surface or systematically improve osseointegra-
tion need to be further investigated. To date, only the 
effects of microRNA coatings on implant surface have 
been investigated; DNA methylation and histone modi-
fications have not yet been studied, although they could 
hold some potential in enhancing the osseointegration 
process.

MicroRNAs
MicroRNAs (miRNAs) are single-stranded noncoding 
RNAs (∼22 nucleotides long) involved in the repression 
of the expression of target genes via either mRNA deg-
radation or translational inhibition in a broad range of 
organisms [144]. miRNAs participate in controlling cell 
function by acting on more than one gene [145]. Sev-
eral miRNAs are closely related to age-related changes 
in MSCs and bone aging. miRNA-195 targets the 3′ 
untranslated region of TERT. During skeletal aging, MiR-
196a was found to be up-regulated in MSCs that targeted 
homeobox B7 (HOXB7). A forced HOXB7 expression 
in MSCs led to increased cell growth, reduced senes-
cence, and improved osteogenic differentiation [146]. 
MiR-188 is a crucial regulator of the age-related differen-
tiation imbalance in MSCs. Its expression is elevated in 
MSCs derived from aged mice and humans, and forced 
expression of miR-188 causes age-related bone loss and 
fat accumulation. It directly targets histone deacetylase 
9 (HDAC9) and RPTOR- independent companion of 
MTOR complex 2 (Rictor) [147]. MiR-141 is up-regulated 
in the bones and MSCs of mice and humans. It inhibits 
the osteogenesis of MSCs. It targets ZMPSTE24, BMI1, 
SDF-1, SVCT2, and DLX5, which are known to con-
trol MSCs differentiation, migration, and proliferation 
[148–151]. Additionally, the expression of microRNAs is 
reduced in aged MSCs. The expression of MIR17–92 is 
reduced in old mice, and miR-17 overexpression restores 
the osteogenesis of old MSCs by regulating Smurf1 [152]. 
Both microRNA 23a and microRNA 23b are remarkably 
down-regulated in the MSCs of old mice and humans 

and are closely related to the imbalanced differentiation 
of aged MSCs. Overexpression of miR-23a/b promotes 
the osteogenic differentiation of MSCs, which targets 
transmembrane protein 64 (TMEM64) [153].

Multiple microRNAs regulate the osseointegra-
tion process by controlling the osteogenesis of MSCs 
[154]. MiRNA and anti-miRNA delivery has been used 
to improve the osseointegration process by applying 
them to the implant surface or surrounding tissue of 
the implant. An miR-21 nanocapsule immobilized on 
titanium surface via an in  situ polymerization method 
enhanced both the osteogenesis and angiogenesis of 
MSCs in  vitro and improved osseointegration during 
early stages in vivo [155]. Similarly, Zhen et al. fabricated 
a titanium (Ti)-based SrHA/miR-21 composite coating 
via hydrothermal deposition of SrHA, followed by miR-
21 nanocapsule immobilization, and revealed that the 
coating not only increased osteoblast proliferation and 
differentiation in  vitro but also enhanced osseointegra-
tion and bone-implant bonding strength in vivo [156]. A 
microporous Ti implant surface formed by microarc oxi-
dation (MAO) loaded with miR-29b and antimiR-138 via 
lyophilization enhances the osteogenic differentiation of 
MSCs and potentially leads to rapid and increased osse-
ointegration of the clinical implant interface [157]. These 
observations indicate that the application of age-related 
microRNAs to titanium surface could be a promising 
direction to enhance osseointegration in the aged popu-
lation. Further research is necessary for optimizing the 
process.

Oxidative stress
ROS are chemically reactive chemical species containing 
oxygen, which are mostly generated within the electron 
transport chain of mitochondria. An increase in ROS 
levels is highly correlated with aging and damage to cells 
and tissues [154, 158]. Aging can shift the differentia-
tion preference of MSCs from osteogenic to adipogenic 
through oxidative stress [159–161]. Consistent studies 
have shown that treatments eliminating ROS through 
various mechanisms can alleviate bone aging, and pro-
mote bone formation. SIRT3, a sirtuin involved in aging 
and the overexpression of SIRT3 in MSCs, restores the 
capacity of MSCs to differentiate and reduces oxidative 
stress [162]. Similarly, rapamycin enhances the osteo-
genesis of aged MSCs by restoring autophagy and reduc-
ing levels of ROS [49]. Recent research has revealed that 
titanium surfaces coated with ROS-responsive gelatin/
chitosan hold the potential to promote the osteogenic 
differentiation of MSCs and enhance osseointegration by 
eliminating intracellular ROS in osteoporotic conditions 
[163]. Therefore, reducing oxidative stress via application 



Page 10 of 14Ma et al. Stem Cell Research & Therapy          (2023) 14:382 

of drugs or implant modifications could be a promising 
strategy for implant treatment in aged population.

Conclusions and prospects
The pathological differentiation of senescent MSCs con-
tributes to bone aging, which is detrimental for the osse-
ointegration process and implant success. In this review, 
we summarized the current knowledge of molecular 
mechanisms underlying impaired MSCs differentiation 
in aging and the methods to counteract this imbalanced 
differentiation to improve osseointegration. In the field of 
dental implantology, it’s evident that the journey toward 
achieving better osseointegration is multifaceted. This 
review provides new perspectives and potential strate-
gies to enhance osseointegration and increase implant 
survival rate. However, osseointegration process include 
a cascade of events involving different kinds of cells and 
we still lack the knowledge of the cellular and molecu-
lar mechanisms of osseointegration during aging. Fur-
ther understanding of these processes will be crucial for 
developing better strategies to achieve optimal osseoin-
tegration. In addition, different methods such as surface 
modification, systemic or local administration of certain 
drugs need to be optimized. Also, how to minimize the 
side effects should be considered in future studies.
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