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CD317+ MSCs expanded with chemically 
defined media have enhanced immunological 
anti-inflammatory activities
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Abstract 

Background Although both preclinical and clinical studies have shown the great application potential of MSCs 
(mesenchymal stem/stromal cells) in treating many kinds of diseases, therapeutic inconsistency resulting from cell 
heterogeneity is the major stumbling block to their clinical applications. Cell population diversity and batch variation 
in the cell expansion medium are two major inducers of MSC heterogeneity.

Methods Cell population diversity was investigated through single-cell RNA sequencing analysis of human MSCs 
derived from the umbilical cord and expanded with fully chemically defined medium in the current study. Then, 
the MSC subpopulation with enhanced anti-inflammatory effects was studied in vitro and in vivo.

Results Our data showed that MSCs contain different populations with different functions, including subpopulations 
with enhanced functions of exosome secretion, extracellular matrix modification and responses to stimuli (regenera-
tion and immune response). Among them,  CD317+ MSCs have improved differentiation capabilities and enhanced 
immune suppression activities. Underlying mechanism studies showed that higher levels of TSG6 confer enhanced 
anti-inflammatory functions of  CD317+ MSCs.

Conclusions Thus,  CD317+ MSCs might be a promising candidate for treating immunological disorder-related 
diseases.
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Background
Mesenchymal stem/stromal cells (MSCs) have been 
intensively and extensively investigated in both pre-
clinical and clinical studies. They have shown promis-
ing potential in treating many kinds of diseases through 
their microenvironment-modulating functions, such as 
immune modulation and regenerative functions [1–5]. 
Although clinical trials of MSCs have grown rapidly in 
recent years, few of them have achieved expected clini-
cal outcomes, mainly resulting from the heterogeneity 
of MSCs [1, 4, 6].

MSC heterogeneity and therapeutic inconsistency 
severely hamper their clinical applications [1, 2, 7]. 
Sourcing, handling, healthy conditions and the genetic 
backgrounds of donors could induce heterogeneity [1, 
7]. Many efforts have been made to address the issue of 
MSC heterogeneity [1, 6], such as genetic modification 
and expansion with chemically defined media [8–10]. It 
is suggested that homogenous MSC populations might 
yield more consistent clinical outcomes [6]. Thus, puri-
fying specific MSC subpopulations for specific thera-
peutic purposes is another promising approach to 
reduce the heterogeneity of MSCs and improve their 
therapeutic consistency [1, 4]. Some human MSC mark-
ers have been identified, such as Stro-1 [11], CD166 
[12], CD271 [13], CXCR4 [14], GD2 [15], CD146 [16], 
CD200 [17], CD49f, PODXL [18], CD140α [19], Lgr6 
[20], Lgr5 [20], ROR2 [21], CD264 [22], CD143 [23] 
and CD362 [24]. However, these identified MSC mark-
ers are not MSC-specific. Furthermore, the underlying 
mechanisms of these MSC markers on their functions 
remain largely unsolved. Therefore, more MSC-specific 
markers need to be identified.

Cell subpopulation identification, based on transcrip-
tome diversity revealed via high-throughput single-cell 
RNA sequencing (scRNA-seq), makes uncovering new 
MSC markers possible [25–30]. Unfortunately, few of 
these studies have identified novel MSC markers. Previ-
ously, we found that the conventional MSC expansion 
strategy with human platelet lysate induces MSC heter-
ogeneity, and MSCs expanded with chemically defined 
medium have shown improved therapeutic consistency 
[9]. In addition, we have developed a fully chemically 
defined medium for expanding human MSCs without 
losing their characteristics and functions [9, 10]. There-
fore, the aim of this study was to uncover the MSC het-
erogeneity resulting from cell population diversity and 
batch variation in cell expansion medium by scRNA-
seq analysis and to identify the MSC subpopulation 
with enhanced immune suppression activities and ther-
apeutic effects in a mouse model of acute inflammation.

Methods
Human MSC isolation, expansion and characterization
This study was approved by the ethics committee of 
Shenzhen Zhongshan Obstetrics & Gynecology Hos-
pital (formerly Shenzhen Zhongshan Urology Hos-
pital) and followed the tenants of the Declaration of 
Helsinki. Human MSCs were derived from the umbili-
cal cord as described previously [8–10, 31]. Briefly, the 
human umbilical cords were minced, digested with 
1  mg/mL collagenase B (STEMCELL Technologies) 
and expanded with the chemically defined medium 
NBVbe [10]. Human MSCs were passaged with Try-
pLE (Thermo Scientific) and stimulated with 20 ng/ml 
IFN-γ (PeproTech). MSC differentiation and charac-
terization were performed with a  StemPro® Adipogen-
esis Differentiation Kit (Gibco),  StemPro® Osteogenesis 
Differentiation Kit (Gibco) and  StemPro® Chondrogen-
esis Differentiation Kit (Gibco) as described previously 
[10].

Single‑cell RNA‑seq and analysis
Human MSCs derived from the umbilical cord and 
expanded with chemically defined medium [10] were 
prepared for scRNA-seq (single-cell RNA sequencing) 
at passage 3 as described previously [31]. Briefly, the 
MSCs were detached with TrypLE and resuspended 
in 0.04% BSA in HBSS (1 ×  106 cells/mL). The librar-
ies were constructed with a 10 × Genomics Chromium 
platform and sequenced with an Illumina NovaSeq 
6000 System (paired-end mode). Data were processed 
with the 10 × Genomics pipeline Cell Ranger (v2.1.0) 
and analyzed with the Seurat package in R (v 4.0.0).

Flow cytometry
Cell preparation, antibody staining and flow cytometry 
were performed as described previously [8–10, 31]. 
Briefly, the MSCs were detached with TrypLE, resus-
pended in PBS plus 5% BSA (bovine serum albumin, 
Sigma) and incubated with anti-CD317-PE (Thermo 
Fisher Scientific), anti-CD73-FITC, anti-CD90-FITC, 
anti-CD105-FITC, anti-CD45-FITC, anti-CD34-FITC, 
anti-CD19-FITC, anti-CD11b-FITC, anti-HLADR-
FITC, IgG-PE or IgG-FITC (all from BD Biosciences). 
Data were collected with BD AccuriC6 Plus (BD Bio-
sciences) and analyzed with FlowJo software.

CD317+/CD317− MSC purification
Human MSCs derived from the umbilical cord and 
expanded with chemically defined medium [10] 
were prepared for cell purification at passage 3. 
The MSCs were detached with TrypLE and stained 
with anti-CD317-PE (Thermo Fisher Scientific) or 
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IgG-PE. Then, the  CD317+ and  CD317− MSCs were 
purified with the BD FACSAria SORP cell sorter (BD 
Biosciences). Total RNA sequencing was performed at 
BGI (Beijing Genomics Institute) as described previ-
ously [10]. For shRNA construction, target sequences 
were cloned and inserted into the lentivirus pLKO.1-
puro vector as described previously [32]. Lentivi-
rus production and cell infection were performed as 
described previously [8]. Target sequences are listed in 
Additional file 1: Table S1.

ELISA and qPCR
The  CD317+ or  CD317− MSCs were plated onto 12-well 
plates (20 ×  104 cells per well), and the cell culture super-
natant was collected three days later. The protein levels of 
CCL2 and TSG6 were measured with a Human MCP-1/
CCL2 ELISA Kit (Sigma) and Human TSG6 ELISA Kit 
(Thermo Fisher Scientific) according to the instructions.

Peripheral blood was collected from the eyes of the 
mice, and the serum levels of IL-6 (BioLegend), TNF-α 
(BioLegend), IFN-γ (BioLegend) and IL-1β (BioLeg-
end) were measured with ELISA kits as described previ-
ously [31]. Quantitative PCR (qPCR) was performed as 
described before after total RNA extraction and reverse 
transcription [8, 31]. The primer sequences are listed in 
Additional file 1: Table S1.

MSC‑PBMC coculture
Whole blood was collected into 10-mL EDTA tubes 
from 8 healthy subjects. Written informed consent was 
received from donors prior to the study. This study was 
approved by the ethics committee of Shenzhen Zhong-
shan Obstetrics & Gynecology Hospital (formerly Shen-
zhen Zhongshan Urology Hospital) and followed the 
tenants of the Declaration of Helsinki. Human PBMCs 
(peripheral blood mononuclear cells) were purified 
with the EasySep™ Direct Human PBMC Isolation Kit 
(STEMCELL Technologies). MSC-PBMC coculture was 
performed as described previously with modifications 
[8, 31]. Briefly, PBMCs were stimulated with  Dynabeads® 
Human T-Activator CD3/CD28 (Thermo Fisher Scien-
tific) for 24 h and then cocultured with purified  CD317+ 
or  CD317− MSCs (20 ×  104 PBMCs vs. 5 ×  104 MSCs) for 
72  h. Cell proliferation was assessed with the Cell Pro-
liferation Kit I (Roche) and quantified by an automated 
microplate reader (Bio-Rad) at 570 nm.

Cell proliferation analysis
Cell proliferation was assessed as described previously 
[10]. Briefly,  CD317+ and  CD317− MSCs were purified 
with FACS and plated onto p6 plates at a concentra-
tion of 10 ×  104 cells per well. When the cell confluence 
reached 80–90%, the MSCs were detached with TrypLE 

and counted with a hemocytometer, and the dead cells 
were identified with a cytotoxicity detection kit (Sigma).

Mouse model of acute inflammation and cell 
transplantation
The mice (C57BL/6  J, female, 8  weeks old) were pur-
chased from the Guangdong Medical Laboratory Ani-
mal Center and maintained in specific pathogen-free 
conditions. This study adheres to the ARRIVE guidelines 
and was approved by the Animal Research Ethics Com-
mittee of the School of Medicine, Shenzhen University. 
Mice were divided into 5 groups of eight mice each as 
follows: Group I, mice transplanted with PBS; Group 
II, mice transplanted with  CD317+ MSCs; Group III, 
mice transplanted with  CD317− MSCs; Group IV, mice 
transplanted with  CD317+ MSCs infected with lenti-
virus expressing scramble shRNA (negative control for 
shRNA experiment); and Group V, mice transplanted 
with  CD317+ MSCs infected with lentivirus expressing 
shRNA targeting TSG6.

The mouse model of acute inflammation was induced 
by endotoxin LPS (lipopolysaccharides) as described 
[31]. Briefly, LPS was intraperitoneally injected into the 
mice (20 mg/kg, Sigma). Ten minutes later, PBS,  CD317+ 
MSCs or  CD317− MSCs were intraperitoneally trans-
planted into the mouse model (1 ×  106 cells/mouse).

Lung analysis
Mice were anesthetized with isoflurane by using the 
anesthesia system (R550, RWD Life Science) and eutha-
nized with overdose  CO2. The analysis of immune cell 
infiltration and MPO (myeloperoxidase) activities was 
performed as described [31]. Briefly,  CD45+ lympho-
cytes and neutrophils  (CD45+CD11b+Ly-6G+Ly-6Cmed) 
in BAL (bronchoalveolar lavage) were measured by 
flow cytometry. The MPO activity was determined by 
the MPO Activity Assay Kit (Abcam). HE (hematoxylin 
and eosin) staining of the lung tissue was performed as 
described [8, 31].

Statistics
Data are shown as the mean ± SEM (standard error of 
the mean) and were analyzed with SPSS software for 
Windows (SPSS Inc.). Student’s t test was applied to the 
two-group comparison. One-way ANOVA was applied to 
the multiple group comparison with normal data distri-
bution, parametric test and Tukey post hoc tests. P < 0.05 
indicates statistical significance.

Results
Our previous investigations have shown that conven-
tional culture medium containing hPL (human platelet 
lysate) could induce MSC heterogeneity and therapeutic 
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inconsistency [9]. Interestingly, MSCs expanded with 
chemically defined medium have reduced heterogeneity 
and improved the therapeutic efficacy and consistency of 
MSCs [9]. Furthermore, the distribution and constitution 
of MSC subpopulations varied significantly among MSCs 
expanded with different batches of hPL cells, which was 
revealed through scRNA-seq analysis, while they were 
more stable in chemically defined medium (data not 
shown, unpublished).

Therefore, to identify the potential cell markers 
of human MSCs expanded with chemically defined 
medium, which might have improved therapeutic effi-
cacy and consistency, scRNA-seq was performed in 
human MSCs derived from the umbilical cord. A total of 
888,476,328 reads were detected, 95.30% of which were 
valid barcodes (Additional file  1: Table  S2, Fig. S1). The 
estimated number of cells was 12,760 in total (Addi-
tional file 1: Table S2). There were 12,063 genes detected 
in total, and the median number of genes per cell was 
4,916 (Additional file 1: Table S2). Nonlinear dimension-
ality reduction analysis with UMAP (Uniform Manifold 
Approximation and Projection) showed that 7 different 
clusters were detected (Fig. 1A, Additional file 1: Fig. S2). 
DEG (differentially expressed gene) analysis revealed that 
these 7 MSC clusters had different transcriptomes (Addi-
tional file 1: Table S3). KEGG and GO analyses showed 
that the MSCs clustered into 3 different groups based on 
their biological functions, including the subpopulations 
with enhanced functions of exosome secretion, extra-
cellular matrix modification and responses to stimuli 
(regeneration and immune response) (Fig.  1B), which is 
in accordance with the current understanding of MSC 
functions [1–5].

Marker gene identification indicated that different clus-
ters predominantly expressed a panel of potential mark-
ers (Fig.  1C, Additional file  1: Table  S4). Unfortunately, 
these bioinformatic identified potential markers could 
not discriminate different clusters clearly (Fig. 1C). They 
had different expression levels among different clusters, 
and different percentages of cells were positive within 
the clusters (Fig.  1C). It is well known that MSCs have 
high levels of plasticity [33]. Therefore, it is possible that 
the bioinformatic identified markers could not discrimi-
nate different clusters [31]. We also tried to adjust the 
parameters to reduce or increase the cluster numbers of 
the MSCs. However, similar results were obtained (data 
not shown). The different functions of MSCs revealed by 
the bioinformatic analysis prompted us to try alternative 
strategies to uncover different MSC populations with dif-
ferent functions (Fig.  1B). Thus, the mRNA levels of all 
identified cell membrane proteins were plotted. Our data 
showed that CD317 was predominantly expressed within 
some MSCs but not others (Fig. 1D). Its expression levels 

could be further induced by IFN-γ (Fig. 1E), which is in 
accordance with previous findings [34]. Thus, CD317 
is a potential cell surface marker for labeling MSCs, 
which were purified from the human umbilical cord and 
expanded with chemically defined medium.

To further characterize the functions of  CD317+ MSCs, 
they were purified with FACS (fluorescence-activated cell 
sorting). The  CD317+ MSCs and  CD317− MSCs showed 
similar morphology (Fig. 2A) and levels of MSC marker 
expression (Additional file 1: Fig. S3). CD317 expression 
was detected in  CD317+ MSCs but not  CD317− MSCs 
by immunofluorescence analysis (Fig.  2B). A tri-differ-
entiation assay showed that  CD317+ MSCs had a higher 
efficiency of differentiating into adipocytes (Fig.  2C, D), 
osteocytes (Fig.  2E, F) and chondrocytes (Fig.  2G–J). 
Furthermore, the  CD317+ MSCs had a slower prolifera-
tion rate than the  CD317− MSCs (Fig.  2K). Therefore, 
 CD317+ MSCs have classical MSC characteristics, bet-
ter tri-differentiation efficiency and a slower proliferation 
rate.

Then, the immune suppression activities between 
the  CD317+ MSCs and  CD317− MSCs were estimated 
by MSC-PBMC coculture. The data showed that both 
types of MSCs had similar levels of suppressing lympho-
cyte proliferation (Fig.  3A). However, after simulation 
with IFN-γ, the  CD317+ MSCs had significantly higher 
suppression activities (Fig.  3A). To further confirm the 
stronger immune suppression activity of  CD317+ MSCs 
in  vivo, an LPS-induced mouse model of acute inflam-
mation was established. Indeed,  CD317+ MSCs main-
tained the tissue structure (Fig. 3B) and reduced  CD45+ 
lymphocyte infiltration (Fig. 3C) more significantly than 
 CD317− MSCs. Furthermore,  CD317+ MSCs reduced 
neutrophil infiltration (Fig.  3D, E) and the serum levels 
of proinflammatory cytokines (IL-6, TNF-α, IFN-γ and 
IL-1β) (Fig.  3F) more significantly than  CD317− MSCs. 
Thus,  CD317+ MSCs had stronger immune suppression 
activity than  CD317− MSCs both in vitro and in vivo.

CD317, also known as tetherin or BST2 (bone marrow 
stromal cell antigen 2), is involved in virus production 
and immune modulation [35]. However, the functions 
and mechanisms of CD317 in MSCs are largely unde-
termined. To uncover the underlying mechanisms, the 
transcriptomes of  CD317+ MSCs and  CD317− MSCs 
were analyzed (Additional file  1: Table  S5). There were 
469 genes specifically expressed in  CD317− MSCs, while 
531 genes were specifically expressed in  CD317+ MSCs 
(Fig.  4A). GO analysis showed that the  CD317− MSCs 
had functions such as ligand–receptor interaction, cAMP 
pathway, metabolism and cytoskeleton reorganization 
(Fig.  4B), while  CD317+ MSCs had functions such as 
immune modulation, ligand–receptor interaction, migra-
tion and metabolism (Fig.  4C). Although both  CD317+ 
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MSCs and  CD317− MSCs had specifically expressed 
genes (Fig.  4A), their expression levels were quite low, 
with the highest FPKM (Fragments Per Kilobase of 
exon model per Million mapped fragments) values of 
2.39 and 2.21, respectively (Additional file  1: Table  S5). 
Therefore, we also analyzed the DEGs between  CD317+ 

and  CD317− MSCs. Among 15,148 co-expressed genes, 
77 genes were differentially expressed (Fig.  4D, Addi-
tional file 1: Table S5). There were 31 DEGs with log2 > 1 
(Fig.  4E). Among these 31 genes, the TSG6 (tumor 
necrosis factor-stimulated gene-6), CCL2 (C–C motif 
chemokine ligand 2) and IL1RN (interleukin 1 receptor 

Fig. 1 Identification of  CD317+ MSCs. A Cell cluster identification via nonlinear dimensionality reduction analysis with UMAP. B Biological function 
clustering based on KEGG and GO network analysis. C Expression levels of the top 2 markers among different clusters. D Plotting of CD317 
among different MSC clusters. E Flow cytometry analysis of CD317 expression without or with 20 ng/ml IFN-γ for 48 h. UMAP, uniform manifold 
approximation and projection; KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, gene ontology; IFN-γ, interferon gamma
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antagonist) genes are important immune regulators in 
MSCs [2]. Then, the mRNA levels of known anti-inflam-
matory cytokines in MSCs [2] were determined by qPCR 
with stimulation or without stimulation (Additional 
file  1: Fig. S4). The data revealed that the mRNA levels 
of CCL2, TSG6 and IL1RN were differentially expressed 
between  CD317+ MSCs and  CD317− MSCs after stimu-
lation with IFN-γ (Fig. 4F), which is in accordance with 
the RNA-seq data. This finding was further validated at 
the protein level (Fig. 4G). However, the protein level of 
IL1RN was too low to be detected, which might result 
from its low mRNA levels (Fig. 4E). Therefore, CCL2 and 
TSG6 might contribute to the stronger immune suppres-
sion activity of  CD317+ MSCs.

CCL2 is a major contributor to recruiting immune 
cells via the CCL2-CCR2 axis [36, 37]. Furthermore, it 
has been demonstrated that CCL2 expressed by MSCs 
can recruit monocytes and suppress inflammation [38]. 
TSG6, also known as TNFAIP6 (tumor necrosis fac-
tor alpha-induced protein 6), is a secreted glycoprotein 
with strong immune suppression activities [2, 39]. Our 
previous investigations have shown that  TSG6+ mouse 
MSCs have improved immune suppression activities 
[31]. Therefore, TSG6 might be an important immune 
suppressor in  CD317+ MSCs. Indeed, silencing TSG6 
significantly impaired the immunosuppressive activity 
of  CD317+ MSCs in  vitro (Fig.  5A). Then, the function 
of TSG6 was further investigated in a mouse model of 
acute inflammation. Our data demonstrated that silenc-
ing TSG6 significantly impaired the immune suppres-
sion activities of  CD317+ MSCs, from the perspectives 
of lymphocyte infiltration in the lung (Fig.  5B), MPO 
activity (Fig.  5C), neutrophil recruitment (Fig.  5D) and 
the serum levels of proinflammatory cytokines (Fig. 5E). 
Thus, TSG6 might confer the stronger immune suppres-
sion functions of  CD317+ MSCs (Fig. 5J).

In summary, we have demonstrated here that the 
 CD317+ subpopulation in human MSCs isolated from 
the umbilical cord and expanded with chemically defined 
medium has improved differentiation capabilities and 
enhanced immune suppression activities. The TSG6 

secreted by MSCs might confer the enhanced immune 
suppression activities of  CD317+ MSCs.

Discussion
Although both preclinical and clinical studies have shown 
the great application potential of MSCs in treating many 
different kinds of diseases, the therapeutic inconsistency 
resulting from cell heterogeneity is the major stumbling 
block to their clinical applications [1–7]. We and other 
groups have made many efforts to reduce MSC hetero-
geneity and improve therapeutic efficacy and consist-
ency [1, 6, 8–10]. Among different strategies, purifying 
homogenous MSC populations with enhanced biological 
functions is a promising approach [1, 4, 6].

Few human MSC-specific markers have been identi-
fied, although many different human MSC subpopula-
tions have been demonstrated [11–24, 40]. Therefore, 
scRNA-seq has been applied to uncover new MSC mark-
ers and subpopulations [25–30]. Our previous investi-
gations have demonstrated that the conventional MSC 
expansion strategy with human platelet lysate induces 
MSC heterogeneity, and MSCs expanded with chemi-
cally defined medium have shown improved therapeutic 
consistency [9]. Thus, we performed scRNA-seq analysis 
on human MSCs derived from the umbilical cord and 
expanded with fully chemically defined medium in the 
current study [9, 10].

Unfortunately, we also failed to uncover new human 
MSC markers via scRNA-seq analysis, which is in accord-
ance with previous investigations [25–30]. The underly-
ing mechanism might be the high levels of plasticity of 
MSCs [31, 33]. As our previous investigation also showed 
the limitations of bioinformatic analysis in identifying 
MSC markers [31], an alternative approach, in which 
the mRNA levels of genes expressed on the cell mem-
brane were plotted on different clusters, was applied to 
identify new MSC markers. Among the three major MSC 
functions revealed by our scRNA-seq analysis, immune 
modulation is the most studied function in MSC biology 
and therapeutic applications. MSC marker identification 
analysis showed that CD317 is a potential MSC marker 

Fig. 2 Characterization of  CD317+ MSCs. A Cell morphology of  CD317+ and  CD317− MSCs. B Immunofluorescence analysis of CD317 expression 
in  CD317+ and  CD317− MSCs. C The adipocyte differentiation efficiency was quantified by Oil Red O staining and qPCR analysis of the LPL 
and PPARγ genes (n = 3). D Representative images of adipocyte differentiation stained with Oil Red O. E The osteocyte differentiation efficiency 
was quantified by Alizarin Red staining and qPCR analysis of the OSTERIX and RUNX2 genes (n = 3). F Representative images of osteocyte 
differentiation stained with Alizarin Red. G Chondrocyte differentiation efficiency was quantified by Alcian blue staining and qPCR analysis 
of the genes SOX9 and BMP2 (n = 3). H Representative images of chondrocyte differentiation stained with Alcian blue after sectioning. I 
Representative sphere images of chondrocyte differentiation stained with Alcian blue. J Chondrogenic sphere forming efficiency analysis (n = 3). K 
Cell proliferation of MSCs was determined by cell number counting (n = 3). MSCs, human mesenchymal stem/stromal cells; LPL, lipoprotein lipase; 
PPARγ, peroxisome proliferator activated receptor gamma; OSTERIX, Sp7 transcription factor; RUNX2, RUNX family transcription Factor 2; SOX9, 
SRY-box transcription Factor 9; BMP2, bone morphogenetic protein 2. * indicates P < 0.05

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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whose function is related to immune modulation [35]. 
Therefore, in the current study, we investigated the multi-
potent characteristics, immune suppression capability 
and underlying mechanism of  CD317+ MSCs.

CD317, also known as tetherin or BST2 (bone marrow 
stromal cell antigen 2), is involved in virus production 
and immune modulation [35]. It has been demonstrated 
that  CD317+ MSCs, which were derived from human 
bone marrow and immortalized, had higher levels of 
colony-forming capabilities with higher levels of IL-7 
expression (40). Furthermore, the  CD317+ circulating 

progenitors had higher regenerative potentials [41, 
42]. However, whether our identified  CD317+ MSCs, 
which were purified from the human umbilical cord and 
expanded with chemically defined medium, have similar 
functions to immortalized  CD317+ MSCs isolated from 
bone marrow [40, 42] remains unclear.

The data here have shown that  CD317+ human MSCs 
have better multipotency, from the perspectives of dif-
ferentiating into adipocytes, osteocytes and chondro-
cytes; a slower proliferation rate; and enhanced immune 
suppression activities both in vitro and in vivo. However, 

Fig. 3 Enhanced immune suppression of  CD317+ MSCs. A PBMC proliferation assay after coculture with  CD317+ or  CD317− MSCs 
without or with 20 ng/ml IFN-γ for 48 h (n = 3). B Representative images of HE staining of lung tissues 24 h after LPS stimulation. C The  CD45+ 
cells in the lung were measured 24 h after LPS stimulation via flow cytometry (n = 8). D The neutrophil number in BAL fluid was determined 
as  CD45+CD11b+Ly-6G+Ly-6Cmed 24 h after LPS stimulation by flow cytometry (n = 8). E MPO activity was quantified 24 h after LPS stimulation 
(n = 8). (F) Serum levels of IL-6, TNF-α, IFN-γ and IL-1β were determined 24 h after LPS stimulation via ELISA (n = 8). MSCs, human mesenchymal stem/
stromal cells; sti-MSCs, MSCs stimulated with 20 ng/ml IFN-γ for 48 h; PBMCs, peripheral blood mononuclear cells; HE, hematoxylin and eosin; BAL, 
bronchoalveolar lavage; MPO, myeloperoxidase; IL-6, interleukin 6; TNF-α, tumor necrosis factor alpha; IFN-γ, interferon gamma; IL-1β, interleukin 1 
beta. * indicates P < 0.05
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Genever et al. demonstrated that  CD317+ human MSCs, 
which were derived from bone marrow and immortal-
ized, have reduced immune suppression activities and 
regenerative abilities [42]. The discrepancy might result 
from tissue origin (umbilical cord vs. bone marrow), 

expansion medium (chemically defined medium vs. fetal 
bovine serum) and cell population (primary vs. immor-
talized and clonal selected).

Transcriptome analysis showed that  CD317+ MSCs 
express higher levels of TSG6. Both in vitro and in vivo 

Fig. 4 Transcriptome analysis  CD317+ and  CD317− MSCs. A Venn diagram showing the numbers of genes differentially expressed in  CD317+ 
and  CD317− MSCs. B GO enrichment analysis of genes specifically expressed in  CD317− MSCs. C GO enrichment analysis of genes specifically 
expressed in  CD317+ MSCs. D Differentially expressed gene analysis between  CD317+ and  CD317− MSCs. E Differentially expressed genes 
between  CD317+ and  CD317− hMSCs with log2 > 1. F The mRNA levels of CCL2, TSG6 and IL1RN were determined via qPCR after stimulation 
with 20 ng/mL IFN-γ for 48 h (n = 3). G The protein levels of CCL2 and TSG6 were determined via ELISA after stimulation with 20 ng/mL IFN-γ for 48 h 
(n = 3). MSCs, human mesenchymal stem/stromal cells; DEGs, differentially expressed genes; CCL2, C–C motif chemokine ligand 2; TSG6, tumor 
necrosis factor-stimulated gene-6; IL1RN, interleukin 1 receptor antagonist; IFN-γ, interferon gamma. * indicates P < 0.05
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studies showed that TSG6 contributes to the anti-
inflammatory function of  CD317+ MSCs. More inter-
estingly, in the mouse model of acute inflammation 
induced by LPS, knocking down TSG6 could impair the 
immune suppression function of  CD317+ MSCs. TSG6 
is a secreted anti-inflammatory glycoprotein [39]. It has 
been demonstrated that TSG6 is a critical contributor 
to MSCs suppressing immune responses [43–57]. The 
expression level of TSG6 has been developed as a pre-
dictor of the therapeutic effects of MSCs in  vivo [58]. 
Furthermore, we have identified that purified  TSG6+ 
mouse MSCs have enhanced immune suppression 
activities and improved therapeutic effects in a mouse 
model of acute inflammation [31].

Conclusions
In conclusion, we have identified that  CD317+ 
MSCs have improved differentiation capabilities and 
enhanced immune suppression activities. Higher levels 
of TSG6 might confer the enhanced anti-inflammatory 
functions of  CD317+ MSCs.
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