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Abstract
Background Acute hypoxic proximal tubule (PT) injury and subsequent maladaptive repair present high mortality 
and increased risk of acute kidney injury (AKI) - chronic kidney disease (CKD) transition. Human bone marrow 
mesenchymal stem cell-derived exosomes (hBMMSC-Exos) as potential cell therapeutics can be translated into clinics 
if drawbacks on safety and efficacy are clarified. Here, we determined the real-time effective dose and treatment 
window of allogeneic hBMMSC-Exos, evaluated their performance on the structural and functional integrity of 3D 
microfluidic acute hypoxic PT injury platform.

Methods hBMMSC-Exos were isolated and characterized. Real-time impedance-based cell proliferation analysis 
(RTCA) determined the effective dose and treatment window for acute hypoxic PT injury. A 2-lane 3D gravity-driven 
microfluidic platform was set to mimic PT in vitro. ZO-1, acetylated α-tubulin immunolabelling, and permeability 
index assessed structural; cell proliferation by WST-1 measured functional integrity of PT.

Results hBMMSC-Exos induced PT proliferation with ED50 of 172,582 µg/ml at the 26th hour. Hypoxia significantly 
decreased ZO-1, increased permeability index, and decreased cell proliferation rate on 24–48 h in the microfluidic 
platform. hBMMSC-Exos reinforced polarity by a 1.72-fold increase in ZO-1, restored permeability by 20/45-fold against 
20/155 kDa dextran and increased epithelial proliferation 3-fold compared to control.

Conclusions The real-time potency assay and 3D gravity-driven microfluidic acute hypoxic PT injury platform 
precisely demonstrated the therapeutic performance window of allogeneic hBMMSC-Exos on ischemic AKI based on 
structural and functional cellular data. The novel standardized, non-invasive two-step system validates the cell-based 
personalized theragnostic tool in a real-time physiological microenvironment prior to safe and efficient clinical usage 
in nephrology.
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Background
Acute hypoxic proximal tubule (PT) injury is the initia-
tion step of ischemic acute kidney injury (AKI) [1] pre-
senting a high risk for chronic kidney disease (CKD) 
[2, 3] on hospitalized and intensive care unit patients 
[4, 5]. As a preventable cause of morbidity and mortal-
ity, extensive research is needed for prevention of AKI 
as underlined by International Society of Nephrology 
(ISN)’s 0by25 initiative [6]. Current experimental mod-
els for research involving cell monolayers [7–14] and in 
vivo animal settings [15–18] evaluate hypoxic PT injury 
for theragnostic approaches to some extent. The human 
monolayer renal parenchymal cell cultures even though 
easy to set [19], provide poor epithelial polarization that 
may cause low levels of key protein transporters [20], no 
output on PT ultrafiltrate flow [21] and do not contain 
any of the stromal microenvironmental elements [22]. 
Murine models, mainly consisting of surgical ischemia 
protocols, are able to monitor kidney functions within 
in vivo organ/system configuration to investigate efficacy 
and safety of therapeutic candidates [19, 23–26]. How-
ever; murine PT hypoxic injury differs from humans in 
terms of cellular responses [27] relating to different phar-
macokinetic profiling of chemical and cellular therapeu-
tics [28, 29] alongside ethical concerns [30] for clinical 
scaling. The cell-based agents require safety assessment 
and efficacy standardization before clinical use as thera-
peutic candidates [31, 32]. 

Mesenchymal stem cells (MSC) [33, 34] and MSC exo-
somes (MSC-Exos) [27, 35] are strong therapeutic can-
didates for AKI but their safety [36, 37] and efficiency 
[38, 39] remain controversial. A total of 8 currently 
undergoing or completed phase I-II clinical trials with 
MSC-based therapeutics targeting post-operative or 
drug-induced AKI [40] reported limited outputs with 
only one completed study [41] and no study on MSC-
Exos exists. Allogeneic and xenogeneic MSC-Exos gave 
favorable outcomes in terms of increasing epithelial 
cell proliferation [42], reducing cell death [42–44] and 
injury biomarkers [45] when applied to monolayer acute 
hypoxic PT injury setups [44–49]. They induce homing 
to kidney [42, 50], improve serum creatinine [23, 42, 43], 
blood urea nitrogen [23, 43] levels and reduce cell death 
[23, 43, 51] when applied to murine acute surgical isch-
emia models [24, 42, 49, 51–54] for AKI. Regarding these 
favorable results, MSC-Exos may be key to preventing 
maladaptive repair of PT epithelium in ischemic AKI to 
deter AKI - CKD transition [3, 55, 56]. The lagged tran-
sition of these expectations to clinic may be due to the 
uncertainties of safe dose range (10 to 1000  µg/ml) [23, 
45, 57], treatment window (0 to 48  h) [46, 58] and het-
erogenous population (30 to 200  nm) of extracellular 
vesicles [36, 39]. Exosomes require preclinical real-time 
standardized potency assessment following proper 

expansion, characterization and purification for transla-
tion as potential precision medicine tools.

Three-dimensional (3D) microfluidic proximal tubule-
on-a-chip platforms are fine-tunable standardized 
dynamic ex vivo microenvironments that provide tubular 
epithelial cell polarization, fluid shear stress, reabsorp-
tion, secretion capability and peritubular vascularization 
in physiological and pathological conditions [59–64]. 
Membraneless microphysiological systems with peri-
staltic pumps and tubing sensitively screened multiple 
(1–4 to 9) nephrotoxic agents in one setting in terms 
of heme oxygenase-1 (HO-1) and kidney injury mole-
cule-1 (KIM-1) as potential biomarkers for AKI [65–67]. 
Polydimethylsiloxane (PDMS)-based pumped systems 
assess cell proliferation, apoptosis and PT epithelial func-
tions such as albumin uptake, ALP activity and glucose 
transport [68] for drug-induced AKI. Those prototypes 
require pumps and external tubing for each chip, thus 
lacking ease of use in routine assays of PT epithelium. 
In recent studies, gravity-driven platforms without an 
artificial membrane screened 3D PT structure by zonula 
occludens 1 (ZO-1) and acetylated α-tubulin immunos-
taining [69–71], cellular proliferation assays [69, 71–74] 
and epithelial barrier integrity assays [69, 73, 74] for 
drug-induced AKI. These microphysiological systems 
may real-time evaluate cellular therapeutics for acute 
hypoxic PT injury in AKI [61, 75–77]. 

In this study, we hypothesized that a gravity-driven 
membraneless microfluidic-based 3D culture platform 
can reproduce acute hypoxic PT injury and real-time 
assess the therapeutic potency of human bone marrow-
derived MSC exosomes (hBMMSC-Exos) as cellular 
therapeutics. To test this hypothesis, we precisely iso-
lated, purified, characterized, and quantitatively ana-
lyzed hBMMSC-Exos with a novel proliferative potency 
assay in acute hypoxic PT injury in vitro. A gravity-
driven 2-lane microfluidic PT-on-a-chip platform mod-
eled the hypoxic PT injury ex vivo in terms of structure 
and function by epithelial permeability, cell polarity, and 
proliferation. The novel microfluidic system successfully 
established acute hypoxic PT injury and assessed the 
therapeutic potential of allogeneic hBMMSC-Exos in 
terms of structural integrity and functional capacity.

Methods
Study design
An observational, prospective in vitro study was 
designed with the independent variables of the groups 
(a) 2D-Normoxia, (b) 2D-Hypoxia, (c) 3D-Normoxia, 
(d) 3D-Hypoxia, (e) 3D-Hypoxia + Vehicle and (f ) 
3D-Hypoxia + hBMMSC-Exos, respectively.
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Construction of Acute hypoxic PT Injury-on-a-Chip, Ex Vivo 
Assessment of Acute Hypoxic PT Injury and therapeutic 
potential of hBMMSC-Exos
Cell culture HK-2, human immortalized PT epithelial 
cell line (CRL-2190, ATCC-LGC, USA) was cultured in 
Keratinocyte-Serum Free Medium (17,005,042, Thermo, 
USA) with 5 ng/ml of human recombinant epidermal 
growth factor, 0.05  mg/ml of bovine pituitary extract. 
The cells were tested for mycoplasma contamination, 
examined in transmission electron microscopy (TEM) to 
validate their cellular characteristics and used in passages 
8–10.

Microfluidic chip setup A commercial organ-on-a-chip 
system composed of microfluidic culture plates containing 
96 individual membraneless chips with 2 microchannels 
were utilized to model 3D PT epithelium in microphysio-
logical conditions (2-lane OrganoPlate, Mimetas, Nether-
lands). Briefly, 2 µl of extracellular matrix (ECM, Matrigel, 
Corning, USA) was pipetted to gel microchannel and 
polymerized at 37°C for 30 min for each chip, and 1.5 × 104 
cells in 2 µl of media were seeded to flow microchannel. 
An intermittent rocker platform (OrganoFlow L, Mime-
tas, Netherlands) provided perfusion of the chips with a 
swing angle of (-7°) – (+ 7°) and an interval of 8 min.For 
2D control, 1.5 × 104 cells in 200 µl media were seeded to 
96-well flat-bottom plates.

Hypoxia setup A standard protocol based on a gas pres-
sure change in the incubator environment (Panasonic, 
Japan) was applied to mimic hypoxic injury [78]. The sam-
ples were cultured at 37°C with either hypoxia (1% O2, 5% 
CO2) or normoxia (17% O2, 5% CO2). O2 concentration 
was monitored with a zirconium O2 sensor of the incuba-
tor (Panasonic, Japan).

Cellular proliferation assay The effects of the acute 
hypoxic PT injury on the proliferation of PT cells were 
assessed with WST-1 assay (ab155902, Abcam, UK) with 
a colorimetric plate reader.

Epithelial barrier integrity assay Fluorescein isothio-
cyanate (FITC)-dextran and tetramethyl rhodamine 
(TRITC)-dextran probes weighing 20  kDa and 155  kDa 
were dissolved in culture media with 0.5 mg/ml concen-
tration each. After perfusion leakage of the probes into the 
ECM was quantified in series of fluorescent micrographs 
under fluorescent microscope (IX-73, Olympus, Japan). 
The permeability index of the epithelial barrier was cal-
culated for each chip from the intensity data acquired 
according to the formula.
Papp (cm/s) = (ΔCreceiver x Vreceiver) / (Δt x Abarrier x Cdonor)

Immunolabelling As previously described [69, 79], the 
cells were fixed within 3.7% paraformaldehyde, permea-
bilized with 0.1% Triton X-100, blocked with 2% BSA 
and incubated with Alexa Fluor 594 conjugated ZO-1 
(339,194, Invitrogen, USA) and FITC conjugated acety-
lated α-tubulin (sc-23,950, Santa Cruz, ABD) antibod-
ies at 4°C overnight. DAPI stained the nuclei (D1306, 
Thermo, USA). Micrographs were captured with fluo-
rescent (IX-73, Olympus, Japan) or confocal microscope 
(DM8i, Leica, Germany) to determine means of corrected 
total fluorescence intensity (CTFI) of the immunolabel-
ling with ImageJ software according to the formula below.

CTFI = [Integrated Density – (Area of ROI x Mean Back-
ground)] / Total Cell Count

Isolation, characterization, and proliferative potency assay 
of hBMMSC-Exos
The exosome isolation and characterization have been 
performed in total accordance to “Minimal information 
for studies of extracellular vesicles 2018 (MISEV 2018)” 
guidelines [80] with sequential ultracentrifugation fol-
lowed by protein concentration, morphology (size and its 
distribution) and at least 2 out of 3 CD markers (CD63 
and CD81).

Cell culture hBMMSCs (PCS-500-012, ATCC, USA) 
were cultivated in Dulbecco’s Modified Eagle Medium 
(DMEM) with 10% fetal bovine serum (FBS) and 1% pen-
strep at 5% CO2 and 37 °C. The cells were tested for myco-
plasma contamination and experiments were conducted 
in passage 4.

Ultracentrifugation hBMMSCs were washed with phos-
phate-buffered saline (PBS) and cultivated at 5% CO2 and 
37  °C in DMEM supplemented with exosome-depleted 
FBS (10%) for 48 h. The collected media was centrifuged 
at 1500xg for 10 min, 10000xg for 10 min, and 30000xg 
for 30 min, respectively. The supernatant was filtered with 
0.22 micron filter and ultracentrifuged for 2 × 90  min at 
100000xg. The collected exosomes were resuspended in 
PBS and stored at -80 °C.

TEM and BCA Bicinchoninic acid (BCA) protein quan-
tification and TEM were performed to characterize 
hBMMSC-Exos [81]. BCA assay (#23,225, Thermo, USA) 
was performed and measured with a colorimetric micro-
plate reader in 562  nm (VersaMax, Molecular Devices, 
USA).
For TEM, hBMMSC-Exos were precipitated onto 
200 mesh formvar/carbon-coated nickel grids (EMS, 
USA) by gravity and stained with 1% phosphotungstic 
acid and 2% uranyl acetate. Grids were air-dried and 
inspected by TEM (JEM 1400, JEOL, Japan). hBMMSC-
Exos were quantitatively evaluated for width and length 
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in micrographs captured with a digital camera (Gatan, 
USA).

Flow cytometry The hBMMSC-Exos were character-
ized by their surface markers CD63 and CD81 using flow 
cytometry. First, exosomes were captured with CD63-
conjugated capture beads (ab239686, abcam, USA) and 
labeled with phycoerythrin (PE)-conjugated CD81 anti-
body (130-118-481, Miltenyi, USA) after serum blockage. 
CD63 and CD81 positive exosomes were quantified using 
a flow cytometer (Novocyte 2000, Agilent, USA) against 
isotype control.

RTCA Real-time impedance-based cell proliferation 
analysis (RTCA, Agilent, USA) quantitatively determined 
the effective therapeutic dose (ED50) and time profile of 
hBMMSC-Exo intervention. HK-2 cells were plated in 
96-well E-plates as 1.5 × 104 cells/well [79]. hBMMSC-
Exos were applied under normoxia (17% O2) with doses of 
0.5 µg/ml, 5 µg/ml, 50 µg/ml, and 500 µg/ml, respectively 
to determine the treatment window. A time-dependent 
ED50 graph determined the time profile of hBMMSC-
Exos intervention. The ED50 of hBMMSC-Exos in acute 
hypoxic PT injury was determined with application of the 
same hBMMSC-Exos doses under hypoxia (1% O2) for 
48 h.

Statistics
The Shapiro-Wilk test assessed the normality of distri-
bution. The subsequent parametric data were evaluated 
with one-way variance analysis and post hoc Tukey test. 
Kruskal-Wallis and post hoc Mann Whitney U tests were 
conducted for the analyses of the nonparametric data. 
All analyses were plotted with GraphPad Prism8 (v8.4.2, 
USA) with a significance degree of p < 0.05.

Results
Acute hypoxic PT Injury impairs structural and functional 
integrity of the epithelium on 3D dynamic microfluidic 
setup
Proximal tubule epithelial cells formed 3D tubules suc-
cessfully on day 8 in the microfluidic system under nor-
moxia validated by a phase-contrast microscope. The 
barrier integrity assay revealed increased PT permeabil-
ity by 5.92- and 4.80-fold against 20  kDa and 155  kDa 
dextran respectively under hypoxia compared to the 
normoxia at 24  h (p = 0.0001 and p = 0.0001, respec-
tively; Fig.  1A and B). Permeability against 20  kDa dex-
tran remained 1.81-fold high under hypoxia compared to 
normoxia at 48 h (p = 0.0001, Fig. 1A and B). Permeabil-
ity against 155 kDa dextran was slightly recovered under 
hypoxia giving a similar Papp compared to normoxia at 
48 h (p > 0.05, Fig. 1B).

Acute hypoxic PT injury decreased the CTFI of ZO-1 
immunolabelling by 50% at 48 h in 3D setups compared 
to normoxia (p = 0.0131, Fig.  1C and D). The 3D setups 
showed similar ZO-1 expressions in both normoxia and 
hypoxia at 0 and 24th hours (p > 0.05, Fig. 1C and D). PT 
epithelial cells in 2D and 3D setups presented granular 
labeling patterns for ZO-1 under hypoxia, unlike the con-
tinuous reticular appearance of intercellular tight junc-
tions under normoxia (Fig.  1C). Comparison of CTFI 
revealed similar intensity levels of ZO-1 in 2D setups 
under hypoxia and normoxia from 0 to 48 h (p > 0.05 for 
each time point, Fig. 1D).

Acetylated α-tubulin expression of PT epithelial cells 
was diminished by 80% and 72% in time from 0 to 24 
and 48 h respectively under hypoxia compared to initial 
expression in the 3D setup in terms of CTFI (p = 0.003 
and p = 0.0023, respectively, Fig.  1C and E). Acetylated 
α-tubulin showed similar expressions in 2D samples 
under both normoxia and hypoxia throughout all time 
points in terms of CTFI (p > 0.05 for each time point, 
Fig.  1C and E). The 3D microfluidic setup enhanced 
the expression of acetylated α-tubulin in terms of CTFI 
under normoxia in all time points compared to the 
2D setup (p = 0.0003, Fig.  1F). The expression of ZO-1 
was similar in both 2D and 3D setups in terms of CTFI 
(p > 0.05, Fig. 1G).

Acute hypoxia decreased the proliferation rate of PT 
cells by 39% and 95% respectively compared to normoxia 
in 2D setups at both 24 (p = 0.0026) and 48 h (p = 0.0001, 
Fig. 1H). The proliferation rate also declined 48% and 77% 
respectively in 3D setups under hypoxia compared to 
normoxia at 24 (p = 0.0069) and 48 h (p = 0.0001, Fig. 1H).

hBMMSC-Exos induce PT cellular proliferation under both 
normoxia and hypoxia with an ED50 of 172,582 µg/ml at 
26th hour
The BCA assay detected the mean protein concentration 
as 3552 ± 499.1 µg/ml for hBBMSC-exos (Fig. 2A). Aggre-
gated or individual exosomes presented as typical spheri-
cal (p > 0.05) nano-sized intact particles in a homogenous 
size range between 33.55 and 67.33  nm under TEM 
(Fig.  2B). Flow cytometry revealed that 80.41% of exo-
somes were positive for surface marker CD81 and mean 
fluorescent intensity of the labeling was 2.63-fold higher 
compared to isotype control (p < 0.0001, Fig. 2C).

Proliferative potency assay revealed that hBMMSC-
Exos increased the proliferation rate of PT cells com-
pared to vehicle at 50  µg/ml and 500  µg/ml doses from 
12 to 48  h under normoxic conditions (p = 0.0003 and 
p = 0.0001 for 12  h, p = 0.0001 and p = 0.0001 for 24  h, 
p = 0.021 and p = 0.0132 for 36 h, p = 0.0028 and p = 0.0002 
for 48 h; Fig. 2D). The 26th hour of the experiment, where 
ED50 began to elevate significantly, marked the decline 
in the proliferative potency of the particles and indicated 
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Fig. 1 The epithelial barrier integrity, polarity, and PT cell proliferation deteriorate upon acute hypoxic tubular injury. (A) The barrier integrity assay 
revealed increased permeability for the 3D-Hypoxia group against both 20 kDa- and 155 kDa-Dextran. (n = 28) (B) Permeabilization indexes revealed 
increased permeability for the 3D-Hypoxia group against 3D-Normoxia for both 20 kDa- and 155 kDa-Dextran. (n = 28) (C) ZO-1 (Alexa Fluor 594) and 
acetylated α-tubulin (FITC) immunolabelling showed structurally intact and polarized PT epithelial cells in 2D- and 3D-Normoxia groups compared to 
the loss of polarity in 2D- and 3D-Hypoxia groups. (n = 36) (D) The CTFI detected a decrease in ZO-1 immunolabelling compared to 3D-Normoxia in 48 h 
compared to 0–24 h. (n = 36) (E) Calculated CTFI revealed a decline in acetylated α-tubulin immunolabelling in 3D-Hypoxia in 48 h. (F) The CTFI detected 
an increase in acetylated α-tubulin immunolabelling in 3D-Normoxia compared to the 2D-Normoxia, indicating amplification of polarization with fluid 
flow. (n = 18) (G) The CTFI of ZO-1 was similar in 2D and 3D setups in normoxia. (n = 18) (H) WST-1 assay detected a decrease in proliferation rate of PT cells 
in 2D-Hypoxia compared to 2D-Normoxia in both 24 and 48 h. The proliferation rate of 2D-Hypoxia was similar to 3D-Normoxia in 24 h and was decreased 
at 48 h. (n = 56) Data in scattered dot plots (B), (D-E) and (G-H) are mean ± SD. Data in scattered dot plot (F) are median ± interquartile range. (*) denotes 
(p < 0.05) comparing the groups in the indicated time point
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the end of treatment window (Fig.  2E). The effective 
proliferative dose of hBMMSC-Exos on HK-2 cells was 
determined as 7.0409 µg/ml at the 26th hour under nor-
moxia (R2 = 0.99926).

hBMMSC-Exos increased the proliferation rate of 
PT cells compared to vehicle at 50  µg/ml and 500  µg/
ml doses from 12 to 48  h under hypoxia (p = 0.0001 
and p = 0.0215 for 12  h, p = 0.01 and p = 0.0001 for 
24  h, p = 0.0001 and p = 0.0001 for 36  h, p = 0.0001 and 
p = 0.0001 for 48  h; Fig.  2F and H). The effective prolif-
erative dose of hBMMSC-Exos on HK-2 cells was deter-
mined as 172.582 µg/ml at the 26th hour under hypoxia 
(R2 = 0.99999, Fig. 2G).

hBMMSC-Exos alleviate hypoxic injury on barrier integrity 
and cellular proliferation
hBMMSC-Exos alleviated hypoxic injury in terms of bar-
rier integrity 20-fold against 20 kDa dextran (p = 0.0004) 
and 45-fold against 155  kDa dextran (p = 0.0001) com-
pared to the 3D-Hypoxia-Vehicle group in 24  h after 
treatment (Fig.  3A and B). CTFI of ZO-1 expression 
was significantly increased after hBMMSC-Exo treat-
ment in injured PT epithelial cells (p = 0.0121, Fig.  3C 
and D). hBMMSC-Exos did not alter the CTFI of acety-
lated α-tubulin (p > 0.05, Fig. 3C and D). hBMMSC-Exos 
treatment improved the proliferation rate of PT epithelial 
cells compared to the vehicle group (p = 0.0001, Fig. 3E).

Discussion
In this report, we generated a new human 3D gravity-
driven microfluidic acute hypoxic tubular injury plat-
form that assessed structural and functional phenotype 
of PT epithelial cells under hypoxic conditions, and 
subsequently evaluated the therapeutic performance 
of allogeneic hBMMSC-Exos on the validated ischemic 
AKI model. A novel real-time potency assay established 
precise proliferative ED50 and treatment window of 
hBMMSC-Exos as 172.582  µg/ml for 26  h for ischemic 
AKI. The microfluidic platform successfully validated the 
treatment window for allogeneic hBMMSC-Exos correct-
ing PT epithelial barrier and restoring cellular polarity by 
ZO-1 for 24 h.

We first constructed the non-invasive ex-vivo 3D grav-
ity-driven microfluidic acute hypoxic tubular injury plat-
form to mimic injury process on human PT in AKI. Here, 
we achieved the formation of the PT epithelial barrier by 
leak-tight tubules from day 8 under normoxia. Previous 
studies report the establishment of the barrier in a period 
between 7 and 10 days for drug-induced AKI models 
within the same microfluidic platform [69, 71]. PT epi-
thelial barrier that is successfully formed on day 8 in our 
study confirmed the standard performance of the system. 
Then, we established acute hypoxic PT injury by set-
ting the 3D microfluidic platform into a 1% oxygenated 

incubator for 48 h. Acute hypoxia increased PT epithelial 
permeability, decreased polarity and decreased epithelial 
proliferation rate from 24 to 48 h within the 3D micro-
fluidic system. The hypoxia and its structural/functional 
impacts on ischemic AKI have not been assessed in any 
3D platform before.

Acute hypoxia decreased PT epithelial cell numbers 
by 49% at 24  h and 78% at 48  h in the 3D microfluidic 
platform; similar to 40% at 24  h and 97% at 48  h in 2D 
culture. The previous acute hypoxia models set by 1% 
oxygenation on 2D monolayer culture revealed a decrease 
in proliferation rate in a range of 30–95% [9, 12–14] at 
24 h and 65–99% [14, 82] at 48 h by MTT/MTS assays. 
3D microfluidic systems similarly detected a decrease 
in proliferation rate of PT cells in a range of 10–99% in 
drug-induced AKI models by WST-8 [69, 72–74]. Our 
data related to proliferation decrease on 2D monolayer 
controls were totally in line with previous literature and 
our 3D microfluidic platform have been successful to 
sense the decrease in epithelial cells and screen acute 
hypoxic injury. However, proliferation rate stands for late 
phases of cell loss which is anticipated by impairment of 
epithelial junctions causing functional incapability. 3D 
microfluidic proximal tubule-on-a-chip platforms might 
monitor those early phases of epithelial impairment.

Here we describe that 3D microfluidic platform-based 
hypoxia displayed a significant increase in PT epithelial 
permeability by 6- and 4-fold against 20 kDa and 155 kDa 
dextran at 24 h, respectively, and by 2-fold against 20 kDa 
dextran at 48  h compared to normoxia. The selected 
dextran probe molecular weights of 20 and 155 kDa rep-
resent small molecules passing through glomerular filtra-
tion barrier (GFB) in physiological conditions and large 
molecules leaking through GFB reflecting pathological 
conditions such as AKI, respectively [83]. Epithelial per-
meability has been studied on 3D microfluidic systems 
before in drug-induced AKI models [69, 73, 84, 85] but 
a study on ischemic AKI was missing. Our microflu-
idic setup defined the increase in epithelial permeability 
quantitatively in acute hypoxic PT injury in 3D micro-
environment for the first time. We also report a 50% 
decrease in ZO-1 immunolabelling intensity and transi-
tion from a continuous reticular appearance to a granu-
lar labeling pattern reflecting the impairment of cellular 
junctions upon acute hypoxic PT injury at 48  h in 3D 
microfluidic platform. The 2D setup also revealed a gran-
ular pattern under confocal microscope but has not been 
sensitive enough to monitor the decline of ZO-1 labeling. 
Decrease in ZO-1 labeling is consistent with increased 
epithelial leakage by barrier integrity assay, which col-
lectively refers to the impairment of tight junctions rep-
resenting the key element of epithelial permeability [86]. 
Previous 2D [87] and 3D [74] in vitro studies reported 
decrease of ZO-1 intensity in a range of 20–90% upon or 
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Fig. 2 Isolated and characterized hBMMSC-Exos induce PT cellular proliferation under normoxia and hypoxia. (A) BCA assay detected a high protein 
concentration of hBMMSC-Exos samples (n = 7). (B) Electron micrographs of aggregated and individual hBMMSC-Exos revealed homogenous and typi-
cal globular particles. Micrographs were also quantified in terms of diameter and size distribution was demonstrated as scatter plot. Uranyl acetate, 
phosphotungstic acid; 150000x (Scale bar = 100 nm), 250000x (Scale bar = 50 nm) (n = 32). (C) Flow cytometry revealed that 80.41% of exosomes were 
positive for surface marker CD81 compared to isotype control. (n = 2) (D) The normalized cell index scatter dot plots from 12 to 48 h and (E) ED50 to time 
graphic of RTCA data for hBMMSC-Exos treatment on PT epithelial cells under normoxia (n = 22). Arrow marks 26th hour of the experiment as the end 
of the treatment window. (F) The normalized cell index scatter dot plots from 12 to 48 h, (G) dose-response curve and (H) normalized cell index to time 
graphic of RTCA data for hBMMSC-Exos treatment on PT epithelial cells under hypoxia (n = 32). ED50 of hBMMSC-Exos on PT epithelial cells at 26th hour 
was calculated as 172,582 µg/ml. The descriptive data is plotted as mean ± SD in (A), (D) and (F). (a) denotes p˂0.05 compared to vehicle, (b) to 0.5 µg/ml 
hBMMSC-Exos, (c) to 5 µg/ml hBMMSC-Exos, (d) to 50 µg/ml hBMMSC-Exos and (e) to 500 µg/ml hBMMSC-Exos groups
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Fig. 3 hBMMSC-Exos alleviate hypoxic injury of PT cells by decreasing epithelial permeability, increasing proliferation and polarity. (A) hBMMSC-Exos 
decreased the permeabilization of epithelial barrier against 20 kDa and 155 kDa Dextran. (n = 6) (B) The barrier integrity assay revealed amelioration of 
hypoxic injury on PT epithelial barrier upon 24th hour after hBMMSC-Exos treatment. (n = 6) (C) ZO-1 (Alexa Fluor 594) and acetylated α-tubulin (FITC) 
immunolabelling showed structurally intact and polarized PT epithelial cells in hBMMSC-Exos group compared to the loss of polarity in vehicle. (n = 10) 
(D) CTFI outputs revealed the increase of ZO-1 after hBMMSC-Exos treatment reversing the effects of hypoxic injury. (n = 10) (E) hBMMSC-Exos increased 
the proliferation rate of PT epithelial cells after acute hypoxic tubular injury (n = 12). Plotted data in scatter dot plots (C), (D) and (E) are mean ± SD. (*) 
denotes (p < 0.05) between indicated groups
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septic [87] or drug-induced [74] AKI. Our data of a 50% 
decrease in ZO-1 following hypoxic AKI at 48 h is coher-
ent with the magnitude of decrease in earlier reports [74, 
87] and marks the loss of epithelial polarity and integ-
rity of tight junctions, leading to increased permeability. 
Here we report acute hypoxic PT injury decreased acety-
lated α-tubulin immunolabelling intensity by 80% and 
70% at 24 and 48 h in 3D setup compared to 0 h. We also 
detected that the 3D microfluidic platform significantly 
increased acetylated α-tubulin intensity but not ZO-1 
significantly compared to 2D setups under normoxia. The 
nonsignificant increase in ZO-1 is attributed to our lim-
ited sample size. Keele et al. [8] qualitatively reported that 
acetylated α-tubulin labeling in PT cells was increased 
upon shear stress via shaking on 2D setup and decreased 
under hypoxia (1% O2). Their monolayer setup on rocker 
presents similarity with our 3D microfluidic platform 
since they both include shear stress via perfusion and 
qualitative findings on acetylated α-tubulin labeling are 
parallel. In conclusion, our 3D microfluidic platform 
provided an optimal PT epithelial polarization with fluid 
flow and successfully assessed structural impairment due 
to acute hypoxia.

We isolated, and characterized hBMMSC-Exos for 
their morphology, protein quantification, and surface 
markers. Ultracentrifugation of hBMMSC media yielded 
a large amount (3694 ± 439.2 µg/ml) of hBMMSC-Exos as 
typical homogenous spherical vesicles with bilayer mem-
brane under TEM with a size range of 33.55–67.33  nm 
in our study. Our exosome purification data confirmed 
optimal ultracentrifugation protocol which is compat-
ible with our former work [88]. The previous studies 
on MSC-Exo treatments in ischemic AKI [17, 18, 42, 
44, 48, 51] report a wide and heterogenous size ranging 
from 20 to 150  nm compared to our hBMMSC-Exos. 
The heterogeneity of MSC-Exo size in these studies can 
be attributed to different isolation protocols contain-
ing sequential ultracentrifugation + filtration [18, 42, 51], 
sequential ultracentrifugation alone [17, 44] and den-
sity gradient ultracentrifugation [48]. Our protocol of 
sequential ultracentrifugation + 0.22  μm filtration aimed 
to avoid cell debris and other extracellular vesicle types, 
resulting in a pure and homogenous vesicle population 
detected by TEM. We also characterized hBMMSC-
Exos by high surface marker CD81 on flow cytometry 
as 80,41% compared to isotype control. The expression 
levels of CD81 in exosomes were previously reported 
in a range of 63-98.4% by flow cytometry [89–91] con-
firmed by high expression of CD81 proteins by western 
blot in several human MSC studies [18, 23, 92, 93]. Our 
data on the expression level of CD81 is coherent with 
the previous studies and validates isolation of the pure 
hBMMSC-Exos population. Thus, we confirmed the iso-
lation of hBMMSC-Exos by their morphology, protein 

concentration, and surface marker CD81 as recently 
adopted triple characterization approach [94] in line with 
MISEV 2018 Guidelines [80] and our previous techni-
cal report outputs [88] assuring precise quantification of 
exosomes as potent therapeutic tools.

Prior to this study, exosomes lacked an established pro-
liferative potency assay and had heterogeneous applica-
tion reports in terms of dose and treatment window. The 
proliferative potency assay of hBMMSC-Exos revealed 
an effective proliferative dose of 172.582  µg/ml in isch-
emic AKI and a decrease in proliferative effect after 26th 
hour of the treatment. Previous potency assays of exo-
somes [95, 96] covered immunomodulatory effects of 
these nanovesicles but not cellular proliferation [97]. Ear-
lier ischemic AKI studies used hBMMSC-Exos in a wide 
dose range of 10-1000 µg/ml with limited dose determi-
nation work [23, 45, 57]. We detected precise prolifera-
tive ED50 of hBMMSC-Exos within described dose range 
but at a short time window. Therefore our RTCA-based 
ED50 assessment sensing the temporal decline in pro-
liferative efficacy of therapeutic agent manifests a novel 
strategy to estimate half-life of exosomes with a potential 
to overtake previous methods consisting of exogenous 
labeling [98], reporter proteins [99] and bioluminescence 
[100]. A recent study reported no difference in prolifera-
tion rates at 48 h and 2 weeks after 100 µg/ml of intra-
venous exosome application on an in vivo rat ischemic 
AKI setup [43]. Our previous study revealed the quick 
engraftment of fluorescent-labeled xenogeneic BMMSCs 
into rat proximal tubules (detected in 24 h, eliminated in 
48 h) following renal arterial injection in ischemic AKI. 
Both studies revealing lack of effect and elimination of 
stem cells/stem cell exosomes within 48  h may appeal 
to the tight therapeutic window in our study. Therefore, 
real-time proliferative potency assay detecting ED50 in 
a tight time window presents a stepping stone for fur-
ther in vivo preclinical treatment assessments and estab-
lishes the pharmacokinetics of exosomes as standardized 
therapeutics.

In our study, hBMMSC-Exos restored polarity and 
structural integrity by a 1.72-fold increase in ZO-1, and 
by a 20- and 45-fold decrease in permeability against 
20  kDa and 155  kDa dextran, respectively. Although 
effects of hBMMSC-Exos on PT epithelial permeabil-
ity is not studied before, exosomes derived from mouse 
BMMSCs [101] and human breast milk [102] increased 
ZO-1 immunolabelling in mouse brain microvascular 
endothelium and human intestinal epithelium, respec-
tively. Those data are parallel with ours in terms of time 
window and beneficial effect of exosomes on integrity of 
epithelium but no dosing [101, 102]. Although previous 
nephrotoxicity studies in same 3D microfluidic platform 
successfully showed antiproliferative effects of applied 
therapeutics [66, 72, 103, 104], proliferative effect of 
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hBMMSC-Exos was shown in a 3D platform for the first 
time. Therefore, we validated the determined dose and 
treatment window of hBMMSC-Exos in our 3D micro-
fluidic setup, providing a novel assessment platform for 
therapeutics. Our results imply that hBMMSC-Exos 
could deter AKI-CKD transition by preventing maladap-
tive repair of the PT epithelium, increasing proliferation, 
and preserving cell polarity.

Our data are limited to in vitro and ex vivo condi-
tions, requiring further confirmation in in vivo micro-
environment to get a comprehensive grasp on ischemic 
AKI and safe use of hBMMSC-Exos in the nephrology 
clinic. Allogeneic cell-based therapeutics can only be 
precisely tested in ex vivo setups due to ethical limi-
tations and pharmacokinetic profiling unlike chemi-
cal therapeutics. Our microfluidic platform provided 
a real-time therapeutic analysis of allogeneic stem cell 
exosomes in an ex vivo microenvironment. RTCA [79] 
and microfluidic platforms [59–63] are widely used for 
drug development in terms of personalized and precise 
assessment of both cell-based and chemical therapeutics 
thus our data is reproducible and statistically reliable. 
Although PT cell lines are questioned in a recent study 
for resembling native proximal tubules [105], these lines 
still provide translational tools for diagnostic and thera-
peutic approaches with help of 3D culture systems [30]. 
Our platform consists standardized human proximal 
tubule epithelium (PTE) and BMMSC cell lines that will 
shed light on future investigations with human primary 
MSCs and PTE cells. The lack of long-term assessment 
for AKI-CKD transition is also a limitation mainly due to 
the challenging long-term maintenance of microfluidic 
culture setup. Therefore, the results reflect an improve-
ment in the acute phase of kidney injury and the chronic 
stages of organ failure should be further evaluated. 
Recently, few preclinical studies reported some mecha-
nisms mediating nephroprotective effects of MSC-Exos 
such as promotion of tubular proliferation by mRNA 
of IGF-1 receptor [106] and activation of MAPK/ERK 
pathway [107, 108], inhibition of apoptosis by upregulat-
ing Bcl-2, Bcl-xL and BIRC8 [109] also antioxidation by 
upregulating Nrf2 [110] and Calbindin1 [111]. Immu-
nomodulation by downregulation of pro-inflammatory 
cytokines (IL-6, IL-1β, IFN-γ, TNF-α) [18] and promo-
tion of angiogenesis by VEGF-A and bFGF [108] present 
alternative molecular pathways for therapeutic potential 
for exosomal products. Those will be the main subject of 
the future preclinical studies before the clinical phase tri-
als. Thus, present study should continue with molecular 
scale-up trials on microfluidic 3D platforms comprising 
larger groups of patients and donor samples [31, 32]. 

In conclusion, our 3D gravity-driven microfluidic acute 
hypoxic PT injury platform provides a stepping stone to 
assess pathological mechanisms precisely and evaluate 

potential theragnostic applications for reaching the 
goals of 0by25 initiative of ISN. Two-step evaluation of 
hBMMSC-Exos as a potential therapeutic agent with our 
novel proliferative potency assay and 3D gravity-driven 
microfluidic acute hypoxic tubular injury platform pro-
vides a reproducible and safety-driven approach against 
cell-based therapies. The novel system also provides an 
alternative translational tool to reduce dependency on 
animal experiments with its controlled microenviron-
ment allowing a realistic modelling for physiological and 
pathological conditions. The hBMMSC-Exos may pro-
vide an allogeneic or autologous intervention tool for 
AKI-CKD transition by preventing maladaptive repair of 
the PT epithelium. Future modifications of our platform 
with patient-derived PTE cells may also serve as a point-
of-care evaluation tool for therapeutic efficacy. Assess-
ment of the cell-based therapies on these personalized 
platforms will provide reassurance about the safety and 
efficacy of the therapy before clinical use in nephrology.
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