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Abstract 

Musculoskeletal disorders are the leading causes of physical disabilities worldwide. The poor self-repair capacity 
of musculoskeletal tissues and the absence of effective therapies have driven the development of novel bioengineer-
ing-based therapeutic approaches. Adipose-derived stem cell (ADSC)-based therapies are being explored as new 
regenerative strategies for the repair and regeneration of bone, cartilage, and tendon owing to the accessibility, 
multipotency, and active paracrine activity of ADSCs. In this review, recent advances in ADSCs and their optimization 
strategies, including ADSC-derived exosomes (ADSC-Exos), biomaterials, and genetic modifications, are summa-
rized. Furthermore, the preclinical and clinical applications of ADSCs and ADSC-Exos, either alone or in combination 
with growth factors or biomaterials or in genetically modified forms, for bone, cartilage, and tendon regeneration are 
reviewed. ADSC-based optimization strategies hold promise for the management of multiple types of musculoskele-
tal injuries. The timely summary and highlights provided here could offer guidance for further investigations to accel-
erate the development and clinical application of ADSC-based therapies in musculoskeletal regeneration.
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Background
Musculoskeletal disorders that affect bone, cartilage, 
tendons, ligaments, and skeletal muscles are character-
ized by tissue degeneration, debilitating pain, functional 
impairment, and disability. These disorders impact 1.7 
billion people worldwide, with the burden doubling over 
the last few decades owing to factors such as aging, obe-
sity, traumatic injuries, and genetic mutations [1]. Mus-
culoskeletal tissues such as tendons and ligaments have 
a limited self-repair capacity, whereas articular cartilage 
exhibits poor intrinsic regenerative potential. Bones 
and skeletal muscles possess the ability to regenerate 
after minor injuries. However, larger or chronic injuries, 
including critical-sized bone defects and pathological 
fractures, can exceed the self-repair capacity of these tis-
sues [2]. These characteristics contribute to the develop-
ment and progression of musculoskeletal diseases.

Tissue engineering and regenerative medicine are the 
focus of research aimed at repairing or replacing defec-
tive tissues and restoring their biological functions, 
and such work can potentially provide solutions to the 
growing prevalence of musculoskeletal disorders. These 
approaches typically integrate stem cells, engineering 
materials, and bioactive molecules. Researchers have 
engineered and delivered cells with regenerative capacity 
to damaged tissues, which represents the basis for diverse 

bioengineering approaches for musculoskeletal regenera-
tion [3].

Adipose tissue, derived from the embryonic meso-
derm, is a valuable cell source for tissue engineering. Adi-
pose-derived stem cells (ADSCs) were first characterized 
in 2001 [4]. As an important subpopulation of mesen-
chymal stem cells (MSCs), ADSCs have the potential for 
multidirectional differentiation, regeneration, and mul-
tiple cytokine secretions. Compared with MSCs derived 
from bone marrow (BM) or other sources, ADSCs have 
the advantages of accessibility, abundance, and reduced 
donor site morbidity [5]. Adipose tissue yields approxi-
mately 500 times more stem cells compared to an equiva-
lent amount of BM, with approximately 5000 ADSCs 
obtained per 1  g of adipose tissue [6]. Hence, large 
amounts of ADSCs can be obtained from adipose tissue 
via minimally invasive procedures. Moreover, ADSCs 
exhibit a higher proliferation rate and better colony-form-
ing potency than BM-MSCs under similar culture condi-
tions [7]. Single-cell RNA sequencing analysis indicates 
that ADSCs exhibit lower transcriptomic heterogeneity, 
lower human leukocyte antigen (HLA) class I expres-
sion, and higher immunosuppressive capacity than BM-
MSCs [8]. In addition, ADSCs have low immunogenicity 
and immune-privileged potential owing to the absence 
or low expression of HLA and co-stimulatory molecules 
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[9, 10]. Moreover, unlike embryonic stem cells, there are 
no ethical issues surrounding the acquisition of ADSCs. 
All these properties indicate that ADSCs represent an 
interesting and feasible alternative to BM-MSCs or other 
types of MSCs. Therefore, they are considered prominent 
candidates for cellular bioengineering and hold promis-
ing prospects in tissue repair and regeneration.

In recent decades, ADSCs have been increasingly 
explored for their regenerative potential in various con-
ditions, including wound healing, neurodegenerative 
diseases, cardiovascular diseases, and liver cirrhosis 
[11–16]. Furthermore, ADSC-based and related tissue 
engineering strategies are being investigated for bone, 
cartilage, and tendon repair and regeneration [3, 17–21]. 
Hence, in this study, we review ADSCs and novel optimi-
zation strategies for improving their regenerative poten-
tial, including ADSC-derived exosomes (ADSC-Exos), 
biomaterials, and genetically engineered modifications. 
Next, we discuss the preclinical and clinical applications 
of ADSCs and ADSC-Exos, either alone or in combina-
tion with growth factors or biomaterials or in a geneti-
cally modified form, in bone, cartilage, and tendon 
regeneration in various musculoskeletal disorders. With 
this review, we hope to provide further insights into the 
vital roles and applications of ADSCs in musculoskeletal 
tissue engineering and regenerative medicine. To achieve 
this, we searched PubMed, Web of Science, and EMBASE 
using “adipose-derived stem cells” or “ADSCs” and the 
three related topics mentioned above as keywords to 
retrieve the relevant orthopedic studies published over 
the past 5 years. We focused on studies involving cell and 
animal experiments or clinical trials, particularly original 
articles related to the topic.

ADSC characteristics
Apart from being an energy reservoir for the body, adi-
pose tissue acts as an endocrine organ that regulates the 
body’s metabolism and immunity [22]. There are two 
types of adipose tissues, i.e., white and brown, and they 
differ in terms of their distribution, function, and meta-
bolic activity. White adipose tissue is predominantly 
involved in lipid storage and serves as a source of ADSCs. 
Brown adipose tissue, a key regulator of thermogenesis, 
is predominantly present in fetuses and newborns and 
declines with age [23]. Stromal vascular fraction (SVF) 
is conventionally isolated from the enzymatic digestion 
of white adipose tissue and represents a heterogeneous 
cell group consisting of preadipocytes, vascular smooth 
muscle cells, endothelial cells, monocytes/macrophages, 
lymphocytes, fibroblasts, pericytes, and ADSCs. ADSCs 
account for 15–30% of the SVF [24]. Owing to their plas-
tic adherence capacity, ADSCs can be easily harvested 
from the SVF in a culture system.

However, ADSCs are not completely homogeneous, 
and there is no single biomarker to explicitly characterize 
them. In 2013, the International Federation for Adipose 
Therapeutics and Science (IFATS) and the International 
Society for Cellular Therapy (ISCT) described the phe-
notypic and functional criteria for ADSCs [24]. Pheno-
typic identification includes primary positive markers, 
such as cluster of differentiation (CD)13, CD29, CD44, 
CD73, CD90, and CD105, and primary negative markers, 
such as CD31, CD45, and CD235a. Additional second-
ary positive markers include CD10, CD26, CD36, CD49d, 
and CD49e, whereas secondary low or negative markers 
include CD3, CD11b, CD49f, CD106, and podocalyxin-
like protein. CD34 is the primary unstable marker pre-
sent at various levels in ADSCs. It is generally expressed 
during the early culture phase (within 8–12 population 
doublings after SVF culture); however, its expression 
decreases with continued cell division [24, 25]. Moreover, 
the IFATS and ISCT provided recommendations for the 
functional assessment of ADSCs. The fibroblastoid col-
ony-forming unit assay is generally used to calculate the 
population-doubling capacity of ADSCs. Chondroblastic, 
osteoblastic, and adipocytic differentiation assays have 
been employed to assess the differentiation potential of 
ADSCs. Furthermore, quantitative evaluations of lineage-
specific gene or protein biomarkers using biochemical 
methods (western blotting, enzyme-linked immunosorb-
ent assay) or reverse transcription polymerase chain 
reaction have been proposed to characterize the differ-
entiation potential of ADSCs. The following biomarkers 
have been proposed: aggrecan, collagen type II, and Sox9 
for chondrogenesis; alkaline phosphatase, bone sialopro-
tein, osteocalcin, osterix, and Runx2 for osteogenesis; and 
collagen III, tenomodulin, and tenascin C for tenogenesis 
[24, 26–28]. Recent advances in single-cell technology 
provide new methods of identifying the multidirectional 
differentiation potential of ADSCs [29, 30].

ADSCs can differentiate in vitro and in vivo into osteo-
genic, chondrogenic, myogenic, epithelial, endothelial, 
and neuron-like cells in the presence of lineage-specific 
induction factors [31]. In addition, mechanical or elec-
tromagnetic stimulation, pharmaceuticals, and genetic 
reprogramming have been widely explored to promote 
the differentiation of ADSCs into specific cell lineages 
[32, 33]. However, the therapeutic potential of ADSCs is 
not limited to the specific differentiation and replacement 
of defective cells. The “secretome” theory is based on the 
ability of ADSCs to secrete multiple cytokines, growth 
factors, chemokines, and antioxidant factors [e.g., vascu-
lar endothelial growth factor (VEGF), insulin-like growth 
factor-1 (IGF-1), nerve growth factor (NGF), hepatocyte 
growth factor, and multiple interleukins (ILs)] alone or 
as cell-free extracellular vesicles (EVs) [34–36] (Fig.  1), 
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while the “building block” or “host replacement” theories 
indicate that ADSCs can differentiate and replace dam-
aged cells. Studies on the secretome profile have also 
indicated that the paracrine activity of the secretome may 
regulate various biological effects, including angiogen-
esis, apoptosis suppression, and immunoregulation [16, 
17, 36–38]. Thus, the ADSC secretome may be an impor-
tant therapeutic mediator necessary in tissue repair and 
regeneration.

Optimization of ADSC‑based therapeutic strategies
ADSC secretome
As mentioned above, ADSCs exert regenerative effects 
not only by direct cell replacement but also via the 
secretome, including EVs and other bioactive mol-
ecules. Considering the numerous limitations associ-
ated with the direct transplantation of ADSCs, such as 
the need for strict monitoring during production and 

storage and the potential risks of tumorigenicity and 
immune rejection, the “cell-based but cell-free” therapy 
approach utilizing the ADSC secretome has recently 
gained considerable attention as an alternative strategy. 
During cell culture, ADSCs typically release various 
bioactive molecules into the medium, which is known 
as the conditioned medium (CM). ADSC-CM consists 
of a complex cocktail of proteins, nucleic acids, and 
lipids released as active factors and/or conveyed to EVs, 
collectively constituting the entire ADSC secretome 
and contributing to the paracrine effects of ADSCs 
[39]. Studies have demonstrated the beneficial effects 
of ADSC-CM on wound healing [40], skin photoaging 
[41], and cardioprotection [16]. EVs are a heterogene-
ous group of cell-derived lipid bilayer membranes that 
can be categorized into various subclasses, including 
exosomes, microvesicles, and apoptotic bodies [42]. In 
recent years, ADSC-Exos extracted from ADSC-CM 

Fig. 1 Differentiation potential and paracrine activity of ADSCs. ADSCs can be harvested as part of the SVF, which is traditionally isolated 
from the enzymatic digestion of the adipose tissues. ADSCs exhibit regenerative abilities and can differentiate into specific cell types 
in the presence of lineage-specific induction factors and secrete multiple bioactive molecules, which constitute the “secretome” profile. ADSCs: 
adipose-derived stem cells; IGF-1: insulin-like growth factor 1; NGF: nerve growth factor; SVF: stromal vascular fraction; TGF-β: transforming growth 
factor-β; VEGF: vascular endothelial growth factor
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has emerged as the focus of ongoing investigations in 
regenerative medicine.

ADSC‑Exos
Exosomes are the most abundant and well-character-
ized type of EVs and have diameters ranging between 
40 and 160  nm [43]. They originate within endoso-
mal compartments and encapsulate specific proteins, 
nucleic acids (mRNAs, miRNAs, and long noncoding 
RNAs [lncRNAs]), lipids, amino acids, and metabo-
lites within their lipid bilayer membranes. Upon release 
into the extracellular space, they are transported to 
target cells and participate in intercellular communica-
tion [43]. ADSC-Exos, which are naturally secreted by 
ADSCs, can promote angiogenesis, regulate immune 
and inflammatory responses, affect collagen remod-
eling, inhibit cell apoptosis, and promote tissue repair 
and regeneration. These functions stem from the 
diverse proteins and genetic materials encapsulated 
within them [44–46]. Compared with ADSCs, ADSC-
Exos are smaller and less complex than their parent 
cells, and they are also more stable and convenient to 
store. Additionally, their dosage can be easily controlled 
[47]. Functionally, ADSC-Exos have low immunogenic-
ity and can reduce immune recognition to maintain cell 
membrane integrity [48].

Several methods are available for harvesting exosomes. 
Among them, ultracentrifugation is the most commonly 
used and considered the gold standard for isolation. 
Ultrafiltration can be used both as a standalone isolation 
approach and as a complement to ultracentrifugation. In 
addition to these traditional approaches, innovative tech-
nologies and new platforms, such as a magnetic bead-
based adsorption strategy, have emerged for exosome 
isolation [49]. During the biosynthesis of ADSC-Exos, 
a range of proteins are enriched, among which tetras-
panins (CD9, CD63, and CD81), vesicle-forming pro-
teins (Alix and tumor suppressor gene 101 [TSG101]), 
and heat shock proteins (HSP70 and HSP90) are gener-
ally recognized as characteristic biomarkers [50] (Fig. 2). 
Furthermore, electron microscopy and nanoparticle 
tracking analysis can be used to identify ADSC-Exos. 
Multiomics has recently been used to identify specific 
marker proteins in exosomes [51, 52]. This advancement 
may provide a novel method to elucidate the functions of 
ADSC-Exos in the future. Thus far, the therapeutic effects 
of ADSC-Exos have been demonstrated in the field of 
regenerative medicine [53, 54]. ADSC-Exos combined 
with optimization strategies, including exosome incorpo-
ration into biomaterials [55] or genetic modification [56], 
represents a feasible strategy for further application of 
ADSC-Exos.

Biomaterial scaffolds
An ideal biomaterial scaffold can mimic the natural 
extracellular environment and provide mechanical sup-
port to facilitate the delivery, proliferation, migration, 
and differentiation of ADSCs [3]. Moreover, incorpo-
rating ADSC-Exos into suitable biomaterials can help 
control their release, distribution, and retention in vivo, 
thereby enhancing their therapeutic function [57]. Thus, 
the combination of ADSCs or exosomes with novel scaf-
fold materials is a promising alternative administration 
method.

In musculoskeletal tissue engineering, scaffold materi-
als include organic and inorganic sources, such as natural 
polymers (e.g., fibrin, hyaluronic acid, chitosan, colla-
gen, alginate, and silk fibroin), inorganic materials (e.g., 
hydroxyapatite, tricalcium phosphate, glass ceramics, and 
titanium), and synthetic biodegradable polymers [e.g., 
polycaprolactone, polylactic acid (PLA), polyglycolic 
acid, and polylactic-co-glycolic acid (PLGA)] [58, 59]. 
Novel synthetic scaffolds can be fabricated from different 
biomaterials, such as natural and synthetic polymers or 
inorganic ceramics and polymers, thereby eliminating the 
disadvantages of conventional scaffolds while enhancing 
their properties, including mechanical strength, porosity, 
wettability, angiogenic potential, and cell-material inter-
actions required for tissue regeneration [60, 61]. Decel-
lularized extracellular matrix (ECM)-based biomaterials, 
such as injectable hydrogels and electrospun scaffolds, 
have also been developed to provide structural support, 
act as local reservoirs of growth factors, and provide bio-
chemical cues to guide ADSC differentiation and regen-
eration [62, 63]. Three-dimensional (3D) bioprinting is an 
advanced strategy for replicating the functional organi-
zation of human tissues and simulating 3D micro-tissue 
environments. Through 3D bioprinting, various biomate-
rials can be built layer-by-layer to fabricate bioengineered 
constructs with predefined dimensions and spatial dis-
tributions. Combination of 3D-printed scaffolds with 
ADSCs or ADSC-Exos can be used to generate zonal dis-
tributions of cells/exosomes, matrix proteins, and bioac-
tive cues; construct an optimal biomimetic environment; 
and promote the simultaneous regeneration of different 
musculoskeletal tissues [55, 64, 65] (Fig. 3).

Genetically engineered ADSCs
Genetic modification of ADSCs can enable the sustained 
localized expression of specific genes, thereby avoid-
ing the off-target effects associated with systemic deliv-
ery or burst release and subsequently enhancing their 
therapeutic potential, including proliferation, lineage-
specific differentiation, or immunoregulation. Most 
studies using genetically modified ADSCs have involved 



Page 6 of 24Yuan et al. Stem Cell Research & Therapy           (2024) 15:91 

osteoinductive bone morphogenetic proteins (BMPs), 
which are members of the transforming growth factor-β 
(TGF-β) family and represent the most effective factors 
in regulating bone induction, maintenance, and repair 
[66]. TGF-β [67], IGF-1 [68], and the transcription factor 
SOX [69] have been genetically engineered with ADSCs 
for the stimulation of chondrogenic differentiation and 
synthesis of cartilage-specific matrix components and 
VEGF for triggering angiogenesis [70]. Furthermore, 
genetically modified ADSCs can be embedded within 
biomaterial scaffolds to increase cell survival and reten-
tion at implantation sites [71].

In addition to genetic transformation to express spe-
cific protein-coding genes, epigenetic regulation plays an 

important role in the induction of ADSC differentiation. 
MicroRNAs (miRNAs) are a class of small noncoding 
RNAs (ncRNAs) that act as post-transcriptional regula-
tors of gene expression, and they are associated with the 
regulation of several cellular processes, including prolif-
eration, migration, and differentiation [72]. Thus, miRNA 
mimics, anti-/antago-miRNAs, or vectors that overex-
press or suppress miRNA levels have been used to mod-
ulate ADSCs for osteochondral regeneration [73–75]. 
Moreover, another class of ncRNAs called lncRNAs has 
been explored as a mediator for inducing osteogenesis in 
ADSCs [76, 77].

In general, the abovementioned genetically engineered 
ADSC-based therapies represent promising approaches 

Fig. 2 Characteristics and therapeutic potential of ADSC-Exos. ADSC-Exos contain tetraspanins (CD9, CD63, and CD81), vesicle-forming proteins 
(Alix and TSG101), heat shock proteins (HSP70 and HSP90), nucleic acids (mRNAs, miRNAs, and lncRNAs), lipids, and amino acids. ADSC-Exos exert 
their therapeutic potential by enhancing cell proliferation, angiogenesis, and ECM synthesis, participating in immunoregulation, and inhibiting 
apoptosis or pyroptosis. ADSC-Exos: adipose-derived stem cell-derived exosomes; ECM: extracellular matrix; HSP: heat shock protein; TSG: tumor 
suppressor gene
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for enhancing the therapeutic potential of ADSCs. How-
ever, the consistent activation of specific genes may be a 
risk factor for stem cell-derived tumors. Hence, in clinical 
practice, the application of genetic modifications must be 
approached cautiously and needs further validation.

ADSCs and ADSC‑based therapies 
for musculoskeletal regeneration
Based on the potential of ADSCs for multidirectional dif-
ferentiation, regeneration, and paracrine activity, they 
can be applied in novel bioengineering approaches to 
address the requirement for musculoskeletal regenera-
tion in various musculoskeletal disorders, including bone 
defects, non-union fractures, osteoarthritis, tendon inju-
ries, and intervertebral disk degeneration (IDD).

Bone regeneration
Bone tissue has inherent repair and regeneration capaci-
ties. However, defective bone tissue cannot recover its 

integrity when extensive or chronic injuries occur, such 
as critical-sized bone defects and bone non-unions, 
which may be caused by heavy trauma, osteomyelitis, 
bone tumor resection, congenital malformations, and 
prosthesis revision, or when the regenerative process 
is impaired owing to factors such as age, comorbidities, 
and genetic factors [78]. The reconstruction of bone 
defects or bone non-unions usually requires invasive 
bone transfer or foreign body implants, which may result 
in secondary donor site morbidity and an increased risk 
of infection and extrusion. Bone tissue engineering can 
promote bone healing without encountering these dis-
advantages. Notably, ADSC-based therapies represent a 
promising alternative for bone regeneration (Table 1).

ADSCs can differentiate into the osteogenic lineage 
when exposed to differentiation media containing BMPs 
[79], platelet-rich plasma [80], vitamin D3 [81], and 
human platelet lysates [82]. BMPs are the most effec-
tive osteoinductive factors. They interact with pathways 

Fig. 3 ADSCs or ADSC-Exos combined with biomaterial scaffolds for musculoskeletal regeneration. ADSCs: adipose-derived stem cells; ADSC-Exos: 
adipose-derived stem cell-derived exosomes
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such as the Smad, mitogen-activated protein kinase, 
Wnt, and Sonic Hedgehog pathways to regulate osteo-
genesis [83]. The abovementioned agents may serve as 
potential candidates to accelerate the osteogenic dif-
ferentiation of ADSCs. The bone regenerative effects 
of ADSCs were explored in a murine model with large 
bony defects resulting from osteomyelitis, and ADSCs 
were locally administered to the damaged area after suf-
ficient debridement of the infected bones. ADSCs pro-
moted bone healing by increasing osteoblastogenesis 
and decreasing osteoclast and B cell numbers, thereby 
highlighting the bone regeneration potential of ADSCs in 
post-infectious inflammatory states [84].

One strategy to enhance the osteogenic potential of 
ADSCs involves the use of biomaterials and/or matrix 
proteins to recreate a precursor cell niche that promotes 
cell adhesion, proliferation, and differentiation [85, 86]. 
ADSCs have been successfully combined with biomate-
rials such as bioactive glass [87], tricalcium phosphate, 
fibronectin [88], and heterogeneous deproteinized bone 
[89] to improve bone regeneration in animal models. Du 
et  al. designed a composite that utilized the multiline-
age differentiation capacity of ADSCs into osteogenic 
and vascular cells and seeded the endothelial-induced 
ADSCs into a mesoporous bioactive glass (MBG) scaffold 
[90]. This prevascularized MBG scaffold was combined 
with osteogenically induced ADSCs to repair critical-size 
bone defects in a rat model. The time-phased sequential 
application of ADSCs promoted better angiogenesis and 
mineral deposition compared to nonvascularized MBG-
carrying osteogenically induced ADSCs, attributed to 
the rapid angiogenesis and improved survival of seeded 
ADSCs [90]. Recently, engineered stem cell spheroids 
have demonstrated great potential for bone regeneration. 
For example, Lee et  al. assembled ADSCs with platelet-
derived growth factor (PDGF) and biomineral-coated fib-
ers to build ASDC spheroids that exhibited high mRNA 
expression associated with the endothelial lineage and 
vascularized bone regeneration [91]. Similarly, Ahmad 
et  al. assembled ADSCs with adenosine and polydopa-
mine-coated fibers to engineer ADSC spheroids, which 
enabled adenosine delivery and promoted bone regen-
eration by enhancing osteogenic differentiation [92]. In 
summary, engineered ADSC spheroids are promising 
alternatives for bone regeneration.

Genetic modifications of ADSCs to promote angiogen-
esis and osteogenic differentiation have been verified in 
a mouse model of femoral fracture [93]. Furthermore, 
genetically engineered ADSCs combined with bioscaf-
folds have been explored as an optimization strategy. 
Hixon et  al. seeded murine ADSCs onto biofabricated 
cryogel scaffolds after the lentiviral transduction of 
BMP-2 and surgically implanted the seeded scaffolds 

around the non-union site in a 3.6Col1A1-tk (Col1-tk) 
mouse model. The ADSC-seeded cryogel scaffolds pro-
moted bone formation while enhancing healing [94]. 
miRNAs play synergistic or antagonistic roles in regu-
lating cell differentiation. Recently, Wang et  al. demon-
strated that miR-150-5p inhibition can increase ADSC 
osteogenesis by regulating Notch3 and that the combina-
tion of ADSCs, miR-150-5p inhibitors, and hydroxyapa-
tite/tricalcium phosphate ceramic powders can enhance 
bone regeneration and bone damage repair [95].

The therapeutic effects of the ADSC secretome on 
bone repair and regeneration have been validated in sev-
eral preclinical studies. In  vitro, ADSC-Exos effectively 
antagonizes osteocyte apoptosis by promoting anti-apop-
totic Bcl-2 expression and suppressing pro-apoptotic 
Bax expression [46]. The combination of ADSC-Exos 
with novel biomaterials can enhance bone regeneration. 
ADSC-Exos modified with efficient biocompatible carri-
ers, such as polydopamine (pDA)-coated PLGA [96], alg-
inate-cobalt ferrite [97], mineral-doped porous scaffolds 
constructed with PLA, calcium silicates, and dicalcium 
phosphate dihydrate [98], and gelatin sponge/polydopa-
mine scaffolds [99], can improve osteogenesis and repair 
bone defects. Kang et  al. synthesized a metal–organic 
framework (MOF) using human ADSC-Exos, PLGA, 
 Mg2+, and gallic acid (PLGA/Exo-Mg-GA MOF) to create 
unique nanostructural interfaces that could enhance the 
osteogenic, angiogenic, and anti-inflammatory capabili-
ties of ADSC-Exos [57]. Furthermore, the bone formation 
enhancement effect of ADSC-Exos loaded with effective 
osteogenic agents has been assessed. Lu et  al. demon-
strated that exosomes derived from tumor necrosis factor 
(TNF)-α-pre-conditioned ADSCs could enhance human 
osteoblastic proliferation and differentiation in  vitro by 
activating Wnt signaling, achieved by increasing Wnt-
3a levels within the exosomes [100]. Exosomes derived 
from miR-375-overexpressing human ADSCs embedded 
in hydrogels could deliver miRNAs to human BMSCs. 
This composite inhibited the expression of IGF-binding 
protein 3 and subsequently promoted bone regeneration 
[56]. Overall, these studies suggest that ADSC-Exos have 
considerable potential for use in bone tissue engineering.

Encouraging results from preclinical studies on ADSCs 
have prompted multiple clinical trials. The majority of 
these trials focused on treating craniomaxillofacial bone 
injuries or defects and achieved generally meaningful 
clinical effects. Defects were reconstructed using either 
bioactive glass or β-tricalcium phosphate (β-TCP) scaf-
folds seeded with ADSCs and, in some cases, combined 
with recombinant human BMP-2 [101]. The transplanta-
tion of autologous human ADSCs did not result in major 
adverse events, the focal bone formation was good, and a 
few patients achieved excellent clinical results. However, 
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problems surrounding graft loosening, infection, and 
tumor recurrence were observed [102]. A 6-year follow-
up study of cranioplasty based on ADSCs, β-TCP, and 
a supporting mesh illustrated unsatisfactory results, 
such as marked graft resorption, late infection (7.3 years 
postoperatively), or meningioma recurrence (2.2  years 
postoperatively). These observations indicate that ADSC-
based treatment is not superior to conventional cranial 
repair methods [103]. Despite the potential of ADSCs 
in bone repair and regeneration, difficulties and barriers 
remain in clinical trials. Hence, the clinical application of 
ADSCs for bone defects requires further investigation.

Cartilage regeneration
Cartilage damage caused by acute trauma or chronic 
degeneration predominantly presents as joint lesions. 
Owing to the poor intrinsic regenerative potential of 
human cartilage tissue, these damages can progress to 
osteoarthritis or necessitate arthroplasty [104]. Current 
management of cartilage defects, particularly osteoar-
thritis, only provides symptom relief rather than a cure. 
Recently, cartilage tissue engineering, which integrates 
engineering and biological approaches to promote car-
tilage regeneration and damaged tissue replacement, has 
become an important research area. Stem cell therapies, 
including ADSCs and ADSC-based optimization strate-
gies, provide promising new alternatives for treating car-
tilage defects (Table 2).

ADSCs have the potential for chondrogenic differentia-
tion. The most characterized chondrogenic-inducing fac-
tors include TGF-β, fibroblast growth factor (FGF), IGF, 
and BMPs. These factors can be applied alone or in com-
bination in the culture medium to promote the chondro-
genesis of ADSCs [105, 106]. Moreover, SOX proteins are 
involved in chondrogenesis. The overexpression of SOX 
proteins enhances the chondrogenic differentiation of 
ADSCs and promotes cartilage healing [69]. In addition 
to chondrogenic differentiation, ADSCs contribute to 
cartilage regeneration via various mechanisms, including 
inhibiting chondrocyte pyroptosis [107], reducing chon-
drocyte reactive oxygen species production, suppressing 
inflammatory responses [108], and promoting ECM syn-
thesis [21].

ADSCs exert cytoprotective, anti-inflammatory, and 
ECM synthetic effects on cartilage regeneration through 
paracrine mechanisms. The ADSC secretome can rec-
tify abnormal osteoblast metabolism by suppressing 
the production of inflammatory mediators, such as IL-6 
and prostaglandin E2 (PGE2) [109]. In an in vitro study, 
ADSC-EVs reduced the expression of pro-inflammatory 
cytokines and chemokines while inhibiting fibroblast-
like synoviocyte-induced inflammation by interacting 
with the hyaluronan (HA) matrix and releasing miRNAs 

[110]. Another study confirmed that ADSCs-EVs inhib-
ited chondrocyte matrix degradation and slowed osteo-
arthritis progression in a rat model by increasing and 
decreasing the expression of type II collagen and matrix 
metalloproteinases (MMPs), respectively [21]. Addition-
ally, ADSC-derived microvesicles can suppress inflam-
mation and modulate the metabolism of osteoarthritic 
synoviocytes [111]. In recent years, there has been a 
growing research interest in the use of ADSC-Exos for 
cartilage regeneration. Zhao et al. found that ADSC-Exos 
protected articular chondrocytes from  H2O2-induced 
apoptosis and promoted chondrogenesis by upregu-
lating miR-145 and miR-221 and downregulating pro-
inflammatory cytokines, including IL-6 and TNF-α [53]. 
Another study demonstrated that ADSC-Exos could 
promote chondrocyte proliferation by miR-429 targeting 
FEZ2 and promoting autophagy [112]. Notably, hypoxic 
preconditioning of human ADSCs enhances their poten-
tial for chondrogenic differentiation [113]. Chang et  al. 
demonstrated that hypoxia-cultured ADSC-secreted 
exosomes (hypoxia-ADSC-Exos) could enhance the syn-
thesis of cartilaginous matrix and suppress the expres-
sion of inflammatory cytokines (TNF-α and IL-6) and 
degradation enzymes (MMP13 and ADAMT5) in  vitro. 
Moreover, intra-articular treatment with hypoxia-ADSC-
Exos exerted a chondroprotective effect by suppressing 
cartilage erosion, thereby slowing osteoarthritis progres-
sion [114]. Meng et al. harvested exosomes from tropoe-
lastin-pretreated ADSCs and found that these exosomes 
effectively enhanced the matrix synthesis of chondro-
cytes in vitro and promoted cartilage repair in vivo [115]. 
These in vitro and in vivo experiments indicated that the 
ADSC secretome, particularly ADSC-Exos, is a promis-
ing option for treating cartilage lesions and osteoarthritis.

The combination of ADSCs with novel biomaterials or 
matrix proteins is being investigated as potential optimi-
zation strategies for cartilage regeneration. Biomaterials 
and matrix proteins can create a niche microenviron-
ment that enhances the delivery, migration, proliferation, 
and differentiation of ADSCs [59]. As natural polymers, 
hyaluronic acid combined with allogeneic ADSCs effi-
ciently promoted cartilage regeneration and prevented 
osteoarthritis progression in sheep [116, 117]. The 
amnion membrane (AM) from the human placenta was 
used to fabricate a minimally invasive injectable hydro-
gel as an ADSC carrier. Intra-articular injections of AM 
hydrogels with or without ADSCs alleviated inflamma-
tion and cartilage degeneration in a collagenase-induced 
osteoarthritis rat model, thus demonstrating the syner-
gistic anti-inflammatory and chondroprotective effects 
of AM and ADSCs on cartilage tissues [18]. Najafi et al. 
fabricated a composite scaffold containing ECM powder 
and several layers of hydrogel and nanofibers to mimic 
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the structure and characteristics of cartilage and subse-
quently encapsulated human ADSCs within this scaffold 
[118]. The composite scaffold improved cell proliferation 
and enhanced the chondrogenic-like differentiation of 
ADSCs. In addition, studies have revealed the beneficial 
effects of an injectable hydrogel consisting of glycol chi-
tosan/dibenzaldehyde-terminated polyethylene glycol 
[119] or acellular cartilage ECM scaffolds [120] combined 
with ADSCs on cartilage tissue repair and regeneration.

Notably, severe cartilage lesions can also compromise 
the subchondral bone. Subsequently, osteochondral 
regeneration strategies must be employed to restore both 
the zonal articular cartilage and the subchondral bone 
using three elements: scaffolds, cells, and bioactive fac-
tors. These components are being employed for struc-
tural reconstruction and tissue activity remodeling [121]. 
Zhang et  al. fabricated a composite scaffold consisting 
of hyaluronic acid, chitosan, and PLGA with two differ-
ent sites: one designed to support hyaline chondrogen-
esis and the other designed to support osteogenesis by 
binding to BMP-2. These osteochondral scaffolds were 
seeded with ADSCs, resulting in the regeneration of rab-
bit osteochondral defects [122]. Cho et  al. fabricated a 
coacervate-embedded gelatin-SH/PEGDA IPN hydrogel 
for the co-delivery of ADSCs and chondrogenic factor 
IGF-1 and demonstrated that this dual delivery system 
could induce chondrogenic differentiation of the embed-
ded ADSCs and effectively augment osteochondral tissue 
regeneration [123]. Furthermore, 3D printing is advan-
tageous for producing scaffolds with customized shapes 
and structures/composition gradients. Seeding multipha-
sic 3D-bioprinted scaffolds with human ADSCs could 
facilitate the site-specific chondrogenic and osteogenic 
differentiation of ADSCs in  vitro [124]. However, this 
advanced bioengineering strategy for cartilage regenera-
tion requires further in vivo validation.

Genetic modifications have been used to optimize 
ADSC-based therapies for cartilage regeneration. Wu 
et  al. transfected ADSCs with IGF-1-modified mRNA 
(termed IGF-1-ADSCs) to enhance chondrogenesis and 
found that IGF-1-ADSCs increased anabolic marker 
expression in chondrocytes in  vitro, decreased cartilage 
ECM loss, and promoted cartilage repair in  vivo [68]. 
Additionally, Yu et  al. applied genetically engineered 
ADSCs overexpressing TGF-β1 (termed T-ADSCs) 
to exert anti-inflammatory and pro-anabolic effects 
on chondrocytes and confirmed that T-ADSC-loaded 
hydrogels markedly reduced cartilage degeneration, joint 
inflammation, and subchondral bone loss in  vivo [67]. 
In another study, miR-486-5p-modified ADSC-Exos 
modulated endoplasmic reticulum stress, attenuated 
chondrocyte apoptosis in  vitro, and alleviated osteoar-
thritis in  vivo [125]. The overexpression of mir-99 b-3p 

in exosomes extracted from subcutaneous adipose tis-
sue-derived stem cells (Sc-ADSCs-Exos) could enhance 
the therapeutic effect of inhibiting cartilage ECM deg-
radation and promoting cartilage repair. Moreover, the 
encapsulation of these genetically engineered Sc-ADSCs-
Exos in an HA-based hydrogel microparticle scaffold 
provided for sustained local drug release and simultane-
ously strengthened the chondroprotective effects [126].

The efficacy and safety of intra-articular ADSC injec-
tion for patients with knee osteoarthritis have been 
confirmed clinically, with this treatment leading to func-
tional improvement, pain relief, cartilage restoration, and 
retardation of disease progression, as measured via mag-
netic resonance imaging (MRI), with no serious adverse 
events [127–132]. In addition, the intra-articular injec-
tion of autologous adipose-derived SVFs (ADSVFs) in 
patients with knee osteoarthritis has yielded good results 
[133–136]. Although the evidence is limited, the conclu-
sions of these studies suggest that ADSCs or ADSVFs, 
which are rich in ADSCs, exert promising effects and are 
considered safe as an alternative treatment option for 
osteoarthritis. However, further large-scale randomized 
controlled trials and long-term follow-up studies are 
warranted to validate their clinical use.

Unlike articular cartilage, which is a smooth elastic 
tissue covered with hyaline cartilage on the joint sur-
face, the intervertebral disk (IVD) is a fibrocartilagi-
nous tissue that consists of inner soft nucleus pulposus 
(NP) cells, the surrounding annulus fibrosus, and carti-
laginous endplates. IDD is the most common muscu-
loskeletal disorder in the elderly and involves several 
endogenous molecular processes, including ECM degen-
eration, senescence, apoptosis, oxidative stress, inflam-
mation, and reduced autophagy, which is similar to the 
effects of osteoarthritis on the facet joint of the spine 
[137]. Current evidence indicates that ADSC-based 
strategies have promising effects on IDD. Yu et  al. used 
a genipin-crosslinked decellularized NP hydrogel (GDH) 
as a novel system to load ADSCs and observed that GDH 
could promote the differentiation of ADSCs into NP cells 
while enhancing the intervertebral height, MRI index, 
and histological grading scores in vivo [138]. In addition, 
Xing et al. demonstrated that the injection of ECM acel-
lular biological scaffolds loaded with ADSC-Exos could 
regulate IVD microenvironment homeostasis and ame-
liorate IDD [139]. However, additional studies are war-
ranted to explore and verify the effects of ADSC-based 
strategies on human IDD.

Tendon regeneration
The tendon is a well-organized, dense connective tis-
sue that connects the muscle to the bone and transmits 
force, thereby enabling motion and posture maintenance. 
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Tendon injuries are the most common injuries of the 
musculoskeletal system, and they are frequently caused 
by overloading and characterized by tendon swell-
ing, local pain, and disability. No current therapeutic 
approach for tendon injuries provides a successful, long-
term solution. Furthermore, owing to the inferior regen-
erative capacity of tendons, repaired tendons cannot 
restore their pre-injury strength and function, leading to 
degenerative changes and a high risk of re-injury. Tendon 
tissue engineering involving ADSCs is expected to pro-
mote tendon regeneration and reconstruction (Table 3).

ADSCs can differentiate into tenocytes to repair the 
injured tendon. Several growth factors have been utilized 
to differentiate stem cells into tendon-like cells in  vitro, 
including IGF-1, TGF-β, FGF, PDGF, growth differen-
tiation factor (GDF)-5, and connective tissue growth 
factor [140–142]. Hypoxic preconditioning can enhance 
the expression of tendon-related markers and has been 
proposed to stimulate the tenogenic differentiation of 
ADSCs [143]. In addition, ECM-based approaches can 
be utilized for tendon regeneration. Rao et  al. prepared 
a soluble, DNA-free, bovine tendon-derived ECM using 
a urea-based method, and it showed a strong pro-teno-
genic capacity on human ADSCs [20].

Behfar et  al. confirmed that the intratendinous injec-
tion of ADSVFs enriched with ADSCs improved the 
mechanical properties of the injured tendon, thereby 
increasing yield loads and energy absorption [144]. Local 
injection of ADSCs improved muscle function and ten-
don healing and decreased fatty infiltration in a chronic 
rotator cuff tear rabbit model [145], and it also increased 
the expression of collagen I and collagen III following 
Achilles tendon rupture in rabbits [146]. Norelli et  al. 
explored the efficacy of ADSCs with or without teno-
genic differentiation induced by GDFs and PDGF-BB 
in vivo and found that ADSCs improved the biomechani-
cal properties of repaired tendons, and tenogenically 
differentiated ADSCs could enhance the mean histologi-
cal score and collagen fiber dispersion range closest to 
the normal tendon [147]. Another study demonstrated 
that pre-conditioned ADSCs with GDF-5 and PDGF 
increased the expression of the protenogenesis gene 
SOX9 and promoted cell–cell connections and cellular 
proliferation, thereby accelerating the remodeling pro-
cess of the injured tendon [142].

Cell sheet technology is an innovative tool for tissue 
regeneration that preserves intact cell–cell connections 
and the ECM. Shin et al. confirmed the efficacy of ADSC 
sheets as a viable cell delivery tool for tendon reconstruc-
tion [148]. In their study, ADSC sheets were fabricated 
using a temperature-responsive dish and transplanted 
into the defective area during repair procedures in a rat 
rotator cuff tear model. The ADSC sheets significantly 

enhanced the biomechanical properties of the repaired 
rotator cuff. In another study, Chen et al. observed that 
GDF-5-induced ADSC sheets combined with nanoyarn 
scaffolds could stimulate higher expression of tenogen-
esis-related markers and promote functional tendon 
regeneration [28]. These findings suggest that engi-
neered ADSC sheets can be used in tendon repair and 
regeneration.

Novel scaffold materials could facilitate the engraft-
ment and differentiation of ADSCs while promoting 
tendon healing. Chiou et al. confirmed that supplement-
ing a biocompatible tendon hydrogel with platelet-rich 
plasma and ADSCs could promote early mechanical 
strength and functional restoration, thereby accelerat-
ing injured tendon repair [149]. Rothrauff et al. reported 
that fibrin- or gelatin methacrylate-seeded ADSCs could 
decrease bone loss and promote surgical repair efficacy 
in rats with massive rotator cuff tears [150]. Injectable 
porous gelatin microcryogels (GMs) promoted ADSC 
proliferation and facilitated ECM secretion, and ADSC-
GM matrices exhibited regeneration and repair potential 
for Achilles tendon ruptures in rats [151]. Guo et al. used 
the small intestinal submucosa (SIS) as a scaffold to seed 
ADSCs and repair Achilles tendon defects in a rat model. 
Engineered tendon grafts created by seeding ADSCs on 
SIS could significantly improve ECM production and 
collagen fiber compactness, thus allowing for a higher 
peak tensile load of the restored Achilles tendon [143]. 
Recently, a functionally graded 3D scaffold was fabricated 
by incorporating platelet lysate within an electrospun 
fiber core. These 3D functional scaffolds featuring gradi-
ents in composition and topography promoted the pro-
liferation and differentiation of ADSCs and induced the 
regeneration of different elements, which exhibited the 
hierarchical structure of the tendon-bone interface [152]. 
However, in  vivo studies using clinical tendon injury 
models are warranted to evaluate the regenerative per-
formance of these 3D functional gradient scaffolds.

Exosomes, as a kind of cell-free therapeutic strategy, 
may provide new perspectives for tendon-bone heal-
ing [153]. ADSC-Exos could decrease the expression 
of pro-inflammatory cytokines, maintain metabolic 
homeostasis, and improve the histological properties of 
injured tendons in vitro [154]. Wang et al. [155] demon-
strated that ADSC-Exos effectively decreased atrophy 
and degeneration while improving the myofiber regen-
eration and biomechanical properties of torn rotator 
cuff muscles. The ADSC-Exos could also prevent fatty 
infiltration, promote tendon-bone healing, and improve 
biomechanical properties in a rabbit model of chronic 
rotator cuff tears [54]. Hydrogels can provide mechani-
cal support and promote the sustained release of ADSC-
Exos. Fu et al. injected an ADSC-Exos-hydrogel complex 
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into the shoulders of rats in a rotator cuff injury model 
and observed enhanced rotator cuff repair and tendon-
bone healing attributed to ADSC-Exos promoting the 
differentiation of tendon-derived stem cells [156]. Wang 
et  al. [157] demonstrated that the local administration 
of a fibrin gel containing ADSC-Exos could significantly 
prevent tear progression, enhance the biomechanical 
properties of the injured tendon, and promote high-qual-
ity tendon healing in a rabbit model of partial-thickness 
rotator cuff tears.

To date, only a few clinical trials have been con-
ducted using ADSCs to treat tendon injuries. One study 
confirmed the beneficial effect of injecting ADSCs 
loaded with fibrin glue during arthroscopic rotator cuff 
repair on structural integrity, as assessed by MRI [158]. 
Although no clinical differences were observed during 
the 28-month follow-up period, the results indicated that 
ADSCs provided an adequate biological environment 
around the tendon repair site. Furthermore, Jo et al. dem-
onstrated that the intra-tendinous injection of autolo-
gous ADSCs in patients with rotator cuff injuries could 
significantly reduce shoulder pain, increase muscle 
strength, improve shoulder function, and reduce bursal-
sided defect volumes without treatment-related adverse 
events at a minimum follow-up of 2 years [159, 160]. In 
addition, Hurd et  al. observed that fresh, uncultured, 
unmodified, autologous adipose-derived regenerative 
cells isolated from lipoaspirate were more effective than 
corticosteroid injection and could improve shoulder 
function without adverse effects [161]. Recently, Randelli 
et  al. applied autologous microfragmented lipoaspirate 
tissue containing ADSCs to treat patients with degen-
erative posterosuperior rotator cuff tears and observed 
that the intraoperative injection of autologous microf-
ragmented adipose tissue could effectively improve the 
function of rotator cuff repair [162]. Collectively, the 
abovementioned clinical findings indicate the beneficial 
effects of ADSCs on rotator cuff tears. However, larger 
samples and long-term follow-up studies are required to 
validate these findings.

Conclusions and perspectives
ADSCs and ADSC-based optimization strategies rep-
resent promising therapeutic tools in the fields of 
tissue engineering and regenerative medicine. Preclini-
cal studies have revealed the therapeutic function of 
ADSC-based strategies in bone, cartilage, and tendon 
regeneration. Furthermore, other properties of ADSCs, 
such as pro-angiogenic, anti-inflammatory, anti-apop-
totic, and pro-ECM synthesis, have been demonstrated 
both in  vitro and in  vivo. Finally, the findings of pre-
liminary clinical trials indicate the beneficial effects of 

ADSCs in promoting musculoskeletal tissue repair and 
reconstruction (Table 4).

However, concerns such as limited cell survival, senes-
cence-induced genetic instability, functional inactivation, 
the possibility of unfavorable ADSC differentiation, and 
the relatively low purity and yield of ADSC-Exos must 
be addressed before applying ADSCs and their cell-
free derivatives. The intrinsic characteristics of donors 
(e.g., age, sex, and obesity), differences in adipose tis-
sue sources, and differences in the isolation procedures 
can affect the properties of ADSCs or ADSC-Exos. 
These limitations indicate the need for quality control of 
ADSCs and ADSC-Exos. In addition, further exploration 
of appropriate scaffolds, potent bioactive factors, and 
genetically modified approaches is required to provide 
more optimized conditions for the proliferation and dif-
ferentiation of ADSCs and verify their efficacy and safety 
in humans. Considering the differences between preclini-
cal studies and clinical trials, the oncogenicity of ADSC 
differentiation should be further investigated. ADSC-
Exos can avoid many of the shortcomings associated with 
administering ADSCs, including potential tumorigenicity 
and storage problems, and thus may represent an effec-
tive regenerative agent for musculoskeletal regeneration. 
However, limited cellular and animal experiments have 
been performed. Therefore, large-scale clinical trials are 
urgently warranted.

Despite the current challenges, the significant progress 
achieved in this field suggests that ADSC-based thera-
pies will play increasingly crucial roles in tissue regen-
eration. Technological improvements and additional 
investigations may help gradually tackle these problems. 
Researchers can harvest suitable ADSC subpopula-
tions using standardized isolation procedures and then 
enhance the therapeutic potential of these cells by pre-
conditioning them with bioactive factors or combining 
them with biomaterials before transplantation. Never-
theless, larger prospective, blinded, randomized clinical 
trials are warranted to further establish the long-term 
effectiveness and safety of ADSC-based therapies in 
humans. Such work may result in a paradigm shift in the 
treatment of musculoskeletal disorders.
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