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Abstract 

Mesenchymal stem/stromal cells (MSCs) are not only capable of self-renewal, trans-differentiation, homing to dam-
aged tissue sites and immunomodulation by secretion of trophic factors but are also easy to isolate and expand. 
Because of these characteristics, they are used in numerous clinical trials for cell therapy including immune 
and neurological disorders, diabetes, bone and cartilage diseases and myocardial infarction. However, not all tri-
als have successful outcomes, due to unfavourable microenvironmental factors and the heterogenous nature 
of MSCs. Therefore, genetic manipulation of MSCs can increase their prospect. Currently, most studies focus on sin-
gle transfection with one gene. Even though the introduction of more than one gene increases the complexity, it 
also increases the effectivity as different mechanism are triggered, leading to a synergistic effect. In this review we 
focus on the methodology and efficiency of co-transfection, as well as the opportunities and pitfalls of these geneti-
cally engineered cells for therapy.
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Motivation
Co-transfection involves the introduction of multiple 
nucleic acids into the cell. Genetic manipulation of mes-
enchymal stem/stromal cells (MSCs) with more than one 
gene could be useful to multi-factor differentiate cells for 
tissue engineering or to make target genes sensitive to 
specific regulatory systems. Furthermore, genome edit-
ing by CRISPR/Cas9 is also fundamentally based on the 
parallel introduction of the nuclease Cas9 and a specific 
guide RNA.

MSCs are promising candidates for gene therapies, 
as they have immunomodulatory properties, colonize 
injured tissue sites, are less immunogenic and tumo-
rigenic than induced pluripotent stem cells, and are rela-
tively easy to isolate, expand and differentiate.

It is an urgent problem, that especially MSCs are not 
as susceptible to co-transfection as cell lines or primary 
cell types of lower complexity. Nevertheless, for clinical 
therapies, the low immunogenic and relatively undif-
ferentiated phenotype of MSCs is crucial in terms of 
immunogenic tolerance in the patients treated with MSC 
therapies. The review is therefore dedicated to giving 
comprehensive information on all issues of co-transfec-
tion and choice of MSC subtypes, to picture a feasible 
concept of MSC co-transfection possibilities.

Therefore, in this review, we will focus on the use of 
MSCs in co-transfection procedures. First, we introduce 
MSCs, and explain their origin and potency for therapy, 
before we discuss the challenge of MSC heterogene-
ity and donor variability with its impact on transfection 
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efficiency. Second, we, we provide an overview of the 
transfection methods and discuss the resulting transfec-
tion efficiencies. Finally, we show the applications fre-
quently found in the literature regarding co-transfection 
and discuss the implications of using genetically engi-
neered MSCs for gene therapy.

MSCs‑origin and cell sources
MSCs are multipotent adult stromal cells that originally 
form the mesenchyme, a part of the embryonic con-
nective tissue. However, they are found in almost all 
postnatal tissue types. Isolated cells consist of mixed 
populations of progenitor cells, multipotent stem cells 
and stem cells with varying degrees of differentiating 
capacity and differentiated cells [1]. According to the 
International Society for Cellular Therapy ISTC, MSCs 
must fulfil minimum criteria: (i) MSCs must be able to 
adhere to plastic, (ii) they must express the surface mark-
ers CD105, CD73 and CD90 but not CD45, CD34, CD14, 
CD19 and HLA-DR, (iii) MSCs must differentiate in vitro 
into adipocytes, chondrocytes and osteocytes [2].

The term mesenchymal stem cell, which was intro-
duced by Caplan in 1991, is still used widely in the lit-
erature, although these cells fail to regenerate tissues 
in vivo and only a small subset of isolated cells are bona 
fide stem cells. Because of this the ISTC termed the cells 
under multipotent mesenchymal stroma cells. How-
ever, to reflect the function of MSCs, Caplan introduced 
another term for MSCs as medicinal signal cells [3]. As 
the term is not commonly used, we think the combined 
definition of mesenchymal stem/stromal cells to be the 
most accurate.

Currently, 1448 clinical trials with MSCs are registered 
[4], however, some studies have divergent outcomes. 
Transplanted MSCs face unfavorable microenvironmen-
tal factors, especially in ischemic tissue. Additionally, 
some patients do not respond to MSC-based therapy. 
This could be due to the fact, that MSCs are very het-
erogeneous, mostly depending on their tissue origin and 
environment [5] as well as on the donor’s age [6], gen-
der and health status [7]. MSCs exhibit a high plasticity, 
and culture and experimental conditions as well as cryo-
preservation can alter the phenotype.

MSCs isolated from bone marrow (BMMSCs) are most 
used in clinical trials, followed by cells from the umbilical 
cord (UCMSCs) or umbilical cord blood (UCBMSCs) and 
from adipose tissue (ADMSCs). BMMSCs have a higher 
chondrogenic potential than ADMSCs or UCBMSCs, but 
a lower proliferation rate. ADMSCs and UCBMSCs can 
be kept in culture for longer, the onset of senescence is 
later and they remain genetically and morphologically 
stable. [8] In addition, ADMSCs and UCBMSCs have 
higher immunomodulatory capabilities [9]. However, 

UCBMSCs are more heterogeneous than BMMSCs and 
ADMSCs due to a higher divergence between donors [5]. 
The cells can be distinguished by their surface markers as 
seen in Fig. 1. However, it is difficult to establish general 
valid criteria, as exempt subpopulations are always found.

Genetic manipulation could overcome the unsatis-
factory performance by steering the cells to the desired 
phenotype and enhancing the desired traits or even 
introducing new factors and thus new cell functions. In 
general, co-transfection seems necessary for more com-
plex treatments. However, transfection of MSCs is more 
challenging compared to transfecting cell lines, espe-
cially with multiple plasmids.. Nucleic acids must over-
come several barriers, including the cell membrane, the 
endosomal escape and cytoplasmic transport, the escape 
from the vehicle, and the translocation into the nucleus. 
In addition, the transfection method may lead to cellu-
lar stress and may negatively affect cell metabolism and 
viability. As transfection efficiency is very high, viral 
vectors are most commonly used in clinical trials for 
gene therapy. However, the production of viral vectors 
on a commercial scale is relatively expensive and time-
consuming, and there is still a small risk of triggering an 
immunogenic response or of mutagenesis, which needs 
to be monitored long-term. The use of non-viral methods 
circumvents these problems, but transfection efficiency 
and cell specificity are often insufficient.

Heterogeneity and donor variability of MSCs
It is noticeable that only a few studies indicate transfec-
tion efficiencies for co-transfection as most studies focus 
on the application instead of the methodology (Tables 3 
and 4). Furthermore, there are hardly any comparisons 
of transfection efficiencies between different donors or 
tissue sources. Especially comparisons of different stud-
ies and different laboratories are difficult due to the high 
plasticity of MSCs. Calcat-I-Cervera et  al. [10] demon-
strated, that MSCs derived from the same donor source 
and cultivated with the same protocol still showed differ-
ences in proliferation and differentiation when analyzed 
in different laboratories.

In general, transfection methods where the nuclear 
internalization of the nucleic acids is a limiting fac-
tor, such as lipofection and electroporation, should be 
more efficient on rapidly proliferating cells. However, 
some studies observed a better transfection efficiency 
of BMMSCS than of ADMSCs [11–13]. The donor vari-
ability therefore appears to have a more prominent influ-
ence on transfection efficiency than the tissue source and 
the question arises as to how many donors are needed to 
achieve a statistical representation.

For better overall performance, it therefore would be 
helpful to screen and sort MSCS populations for the 
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presence of desired characteristics such as proliferation 
and differentiation potential, especially since co-trans-
fection methods in particular are stressful for MSCs. 
Cells that have a high expression level of CD271 (low-
affinity nerve growth factor receptor) and CD146 (mel-
anoma cell adhesion molecule, MCAM, or cell surface 
glycoprotein, MUC18) show increased proliferation 
and a more pronounced trilineage differentiation, as 

do the markers CD49f (Integrin α-6) and Stro-1 (Stro-1 
antigen) [14–18]. Furthermore, Kuci et al. [19] demon-
strate that in selected and expanded CD271 + -cells, the 
expression levels for genes of the extracellular matrix 
and adhesion are increased, while they are decreased 
for genes of immunoregulatory processes. It is impor-
tant to note that the markers were only observed in 
isolation.

Fig. 1  Surface markers of mesenchymal stem/stromal cells and the differences from various tissues and for different cell lineage commitments. + : 
high expression, o: moderate expression, -: low expression



Page 5 of 17Christoffers et al. Stem Cell Research & Therapy          (2024) 15:150 	

However, since high cell numbers are required for clini-
cal applicability, the feasibility depends on the frequency 
of CD-specific MSC subtypes within the mixed popula-
tions after isolation from a given cell niche (Table  1). 
Although there are some differences between the individ-
ual studies, it appears that BMMSCs are best enriched via 
the markers CD146 and CD49f and UCMSC via CD146 
and Stro-1. ADMSCs only show a moderate expression 
level for all markers, so a combined enrichment would be 
best.

Co‑transfection
In contrast to transfection with one nucleic acid, trans-
fection with several plasmids and/or large plasmids poses 
a major challenge, as not all plasmids are taken up with 
the same efficiency. Primary stem cells, such as MSCs, 
are particularly difficult to transfect. Plasmid DNA 
uptake has a greater effect on MSC viability than on cell 
lines [28]. Vesicle escape and cytoplasmatic diffusion are 
more difficult, probably due to larger and more stable 
vesicles and a more rigid network in the hydrogel-like 
cytoplasm of MSCs [29]. In clinical applications, trans-
fection with viral vectors is the most used method. MSCs 
express many amphotropic receptors and are therefore 
susceptible to viral transfection [30]. However, viral vec-
tors are limited by the size of their cargo, so multiple 

vectors need to be transfected. Theoretically, non-viral 
vectors do not have this limitation, but the transfection 
efficiency is still much lower. Furthermore, transfection 
efficiency is in general determined by reporter expression 
with a single plasmid of about 5 kb, instead of using mul-
tiple or larger plasmids [31].

Viral transfection methods
Most vectors for clinical application are based on adeno-
viruses, followed by retroviruses, lentiviruses and adeno-
associated viruses (AAVs). Relevant characteristics are 
summarized in Table 2.

Retroviruses have a diploid single-stranded RNA 
genome of 7–12 kb in length, which is transcribed 
into a DNA intermediate (provirus) via a reverse tran-
scriptase and randomly integrated into the host cell 
genome. Commonly used retroviruses are based on 
gamma retroviruses (often abbreviated as retrovirus) 
or lentiviruses, which are somewhat more complex in 
structure and have additional regulatory and accessory 
genes. Klicken oder tippen Sie hier, um Text einzuge-
ben.Therefore, lentiviruses can also infect non-dividing 
cells. Since human cells do not have receptors for the 
envelope glycoprotein, they must be pseudotyped with 
the vesicular stomatitis virus glycoprotein G (VSV-G). 
This allows the virus to infect virtually any mammalian 

Table 1  Expression level of surface markers known for increased proliferation and differentiation potential from different MSC sources

Surface marker Tissue Donor Passage Expression References

CD271 BMMSCs n = 12, female, 31–40 y n.i 6 ± 11% [20]

n = 8, 33 ± 20 y 3 3.7 ± 2.2% [15]

n.i n.i 29.13 ± 8.18 [14]

ADMSCs n = 12, female, 27–35 y n.i 5 ± 2 [20]

n = 8, 55 ± 5 y n.i 8.4 ± 4.6% [15]

n.i n.i 89.20 ± 5.66% [14]

UCMSCs n = 8 n.i  < 0.5% [15]

CD146 BMMSCs n = 12, female, 31–40 y n.i 99 ± 0% [20]

n = 8, 36.5 + -9.8 n.i 50.14 ± 15.50% [21]

n.i 3 16.36% [22]

ADMSCs n = 12, female, 27–35 y n.i 38 ± 24% [20]

n = 2, 25–45 y 2 32.6% [16]

UCMSCs n = 3 n.i 66% [23]

n.i n.i 43.25% [24]

CD49f BMMSCs n = 12, female, 31–40 y n.i 85 ± 10% [20]

n = 3 1–2 11% [17]

ADMSCs n = 12, female, 27–35 y n.i 6 ± 3% [20]

UCBMSCs n.i n.i 13% [25]

n.i 3 15% [26]

Stro-1 BMMSCs n = 9, 8–14 y n.i  ~ 50% [27]

ADMSCs n = 9, 8–14 y n.i  ~ 30% [27]

UCMSCs n.i n.i 44.08% [24]
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cell. In addition, VSV-G pseudotyped retroviruses have 
a higher particle stability, which allows concentration 
by ultracentrifugation [35]. Nevertheless, the titer is 
lower than with other viruses, especially for the third 
generation, where the probability of recombination 
between the transfer and packaging plasmids to form a 
replicable virus is very low [36] In addition, integrase-
deficient lentiviral vectors for transient gene expression 
have also been developed. The target cells are usually 
transfected in  vitro and implanted afterwards. Single 
or co-transfection efficiencies of MSCs are generally 
about 80% [42]. However, Lin et al. [43] report that the 
transfection efficiency of BMMSCs was highly donor 
dependent, with efficiencies ranging from 39 to 89% at 
passage 1 with a multiplicity of infection (MOI) of 5. 
Integrating lentiviruses are the most used viral vectors 
for co-transfection.

Adenoviruses are widespread and over 50 different 
serotypes have been classified. Most vectors are based 
on adenovirus type 5 (Ad5). Adenoviruses transfect both 
dividing and non-dividing cells and do not integrate into 
the host genome (transient gene expression) [38]. For 
gene transfer, replication incompetent vectors are pro-
duced with a packaging capacity of up to 12 kb and a 
high titer of 1 × 1013 can be produced. In clinical appli-
cations, adenoviruses are mainly used for vaccination 
and oncolysis, as they induce a strong immune response, 
which can lead to inflammation and a shortened expres-
sion time [39]. Single transfection efficiencies of 80% are 
reported for BMMSCs [44, 45]. No transfection efficiency 
is reported for co-transfection, although they are used for 
this purpose (Table  3). However, it seems unlikely that 
the transfection efficiency will drop significantly.

The adeno-associated virus requires helper viruses 
(originally adenoviruses, hence the name), which pro-
vide the proteins for replication in the host cell. Inte-
gration of the wild type occurs specifically at the AAvS1 
site on chromosome 19, but the DNA is usually present 
extrachromosomal in the replication-incompetent vec-
tors [41]. The packaging capacity is limited to 4–5 kb 
[38].Yao et al. [46] report a single transfection efficiency 
of roughly 70% with serotype 2 and an MOI of 10,000 
for BMMSCS 15  days after infection, which could be 
further increased with increasing MOI. In addition, the 
differences between donors had a significant impact 
on transfection efficiency as long as the MOI remained 
below 50,000. Donor variability was also demonstrated 
for ADMSCs with transfection efficiencies ranging from 
roughly 48% -72% 3 days after infection with an MOI of 
10,000 [47]. For co-transfection, no potential clinically 
relevant cases were found. However, just as with the 
adenoviruses it seems unlikely that the transfection effi-
ciency will drop significantly.

Overall, transfection efficiency is mostly dependent on 
the MOI, i.e. the number of infectious particles relative 
to the number of host cells. Donor variance only plays a 
role with low MOIs. Therefore, co-transfection regardless 
of tissue source is most efficient with viral vectors. Lenti-
viruses are the most suitable for the clinical applications 
mentioned here since they are less immunogenic than 
adenoviruses and have a higher packing capacity than 
AAVs. However, in some studies, transfection efficiency 
is enhanced by adding polybrene, a cationic polymer that 
neutralizes the charge repulsion between the virus parti-
cle and the host cell surface. There is some controversy 
about polybrene, as it could inhibit cell proliferation at 

Table 2  Overview of the most commonly used viral vectors in gene therapy

Retrovirus (commonly 
based on γ-retroviruses)

Lentivirus (based on HIV1) Adenovirus Adeno-associated virus (AAV)

Type/Description ssRNA of 7–12 kb ssRNA of 7–12 kb linear dsDNA of 36 kb ssDNA of 8 kb

Genome Genome Genome Genome

gag (structural proteins), gol 
(enzymes for replication & 
integration), env (envelope 
proteins), flanked by LTR

gag, gol, env, tat (transactivator 
of transcription), rev (nuclear 
export of unspliced or partially 
spliced transcripts) and other 
accessory genes flanked 
by LTR

Packaging signal, early (E1-4) 
genes, late (L1-5) genes, 
flanked by ITRs

rep (coding for replication 
and integration), cap (proteins 
of the icosahedral nucleocap-
sid), flanked by ITRs

Host Dividing cells Dividing and non-dividing 
cells

Dividing and non-dividing 
cells

Dividing and non-dividing cells

Integration Chromosomal Chromosomal, but: episomal 
with integrase-deficient 
vectors

Episomal Episomal (only WT chromo-
somal)

Packaging Capacity  < 9 kb  < 9 kb  < 12 kb  < 5 KB

Immunresponse Low Low High Moderate

References [32–35] [32, 36, 37] [38, 39] [38, 40, 41]
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low concentrations of 1 µg/ml and exposure time of 6 h 
[48, 49].

Non‑viral transfection methods
Nanocarriers
Nanocarriers form complexes with nucleic acids by elec-
trostatic interactions and are taken up by cells via endo-
cytosis or direct membrane fusion. They are very reactive 
due to their large surface area in relation to their volume 
and can be manufactured in a wide range of organic and 
inorganic materials. Common organic materials for MSC 
transfection are lipids, polymers (PEI [50], PLGA [51]), 
polysaccharides (dextran, chitosan [52]), and peptides 
(RALA [50]), while silicium oxide [53] and iron oxide 
[54] are mostly used for inorganic materials. Currently, 
co-transfection is mainly carried out using lipids as nano-
particles in the literature, therefore only lipofection is 
described in more detail here.

Cationic lipids consist of a hydrophilic head group 
connected by a linker to a hydrophobic tail group. Each 
domain contributes to transfection efficiency and, in the-
ory, can be specifically selected and modified depending 
on the application and cell type. However, since the effi-
ciency is more than the sum of the individual domains, 
an optimal formulation and systematic comparison turns 
out to be very complex and still leaves much room for 
improvement [55]. Depending on the formulation of the 
lipids, liposomes, micelles, or densely packed lipid nano-
particles are formed.

For liposome formation, mainly synthetically pro-
duced, cationic lipids are used, whose hydrophilic head 
group consists monovalent of quaternary ammonium 
salts (e.g., DOTMA, DOTAP) or multivalent of primary 
and secondary amines (e.g., DOSPA, DOGS). The hydro-
phobic tail consists of saturated or unsaturated hydrocar-
bon chains [56]. However, the permanent positive charge 
of the head group can lead to interference with signaling 
pathways and enzymes, so many lipoplexes show dose-
dependent toxicity [57].

Boura et  al. [11] reported transfection efficiencies of 
58 ± 7.1%, 54 ± 3.8% and 33 ± 4.7% for BMMSCs, UCM-
SCS and ADMSCs, respectively, however using only one 
single donor. Bakhshandeh et al. [58] achieved a transfec-
tion efficiency of 47% for UCBMSCs, while for BMMSCS 
only 3.67% of the cells were transfected. Cheung et  al. 
[59] achieved transfection efficiencies of BMMSCS with 
5 different donors of 24–36% by lipofection with Tran-
sIT-2020. For single transfection of MSCs Kozisek et al. 
[12] had transfection efficiencies around 30–45%, with 
different transfection efficiencies across two different 
donors per tissue source and overall higher transfection 
efficiencies of BMMSCS compared to ADMSCs. How-
ever, transfection with more than one plasmid reduces 

transfection efficiency by at least 10%. Therefore, lipofec-
tion is not yet suitable for co-transfection.

Electroporation
During electroporation, the cells are exposed to a tem-
porary electric field, which leads to a short-term depo-
larization of the membrane and thus to permeabilization 
through pore formation and other structural changes 
[60]. The critical voltage that must be reached depends 
on the cell type and therefore the cell size and membrane 
curvature, as well as the size and charge of the molecule 
to be transported. The efficiency depends on the pulse 
shape, the pulse length, the field strength, the number 
of pulses, the buffer, the temperature, and the number of 
cells [61]. Due to the large number of parameters, very 
variable transfection efficiencies are specified in the lit-
erature. Liew et  al. [13] achieved a single transfection 
efficiency for BMMSCs with five different donors of 
79% with low donor variance and for ADMSCs of 69%, 
with higher donor variability of around 15% difference 
between two donors. No–co transfection efficiencies are 
reported.

Two advanced procedures that promise greater trans-
fection efficiency are Nucleofection and Microporation. 
Nucleofection was developed and patented by Lonza 
Cologne AG in 2001. Optimized electrical parameters 
and cell type-specific buffers allow the plasmid DNA to 
enter the cell nucleus directly. As a result, the transfec-
tion efficiency is independent of cell division and ena-
bles transfection even of non-dividing primary cells. 
For MSCs, a transfection efficiency of around 70% is 
reported 72  h after transfection with a GFP reporter 
plasmid for BMMSCS and ADMSCs [62, 63]. However, 
Haleem-Smith et  al. [64] reported differences in trans-
fection efficiencies from different donors of BMMSCs 
with a maximal difference of 20%. No transfection effi-
ciencies are reported for the transfer of two plasmids, 
but the technology is successfully used for CRISPR/Cas9 
applications.

For microporation, a pipette tip is used as the elec-
troporation chamber and a capillary electrochamber 
instead of an electroporation cuvette. This avoids vari-
ations in temperature and pH value as well as the for-
mation of metal ions. Comparing electroporation, 
nucleofection and microporation of UCBMSCs, Yeon 
Lim et  al. [65] reported a single transfection efficiency 
of around 40%, 50% and 80% respectively. Micropora-
tion seems to be the most efficient non-viral method 
for co-transfection with an efficiency of 78% (Table  3). 
However, the method needs to be scaled up for clinical 
applicability.

Overall, non-viral methods are more dependent on 
donor variability and tissue source than viral methods 
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and therefore have a lower potential for co-transfection. 
Probably because the transfection efficiency is dependent 
on many more parameters like plasmid size and amount, 
cell source, cell passage, density, proliferation rate and 
media components and therefore transfection efficiencies 
vary greatly in the literature. There is ongoing research 
to improve the non-viral transfection efficiency. Besides 
the improvement of the transfection reagent itself, is to 
prime the MSCs beforehand with hypoxia or with glu-
cocorticoids like dexamethasone [66] or to stimulate 
the cells with interferon-gamma for an enhanced immu-
nomodulatory ability. Another way is to reduce the plas-
mid size by deleting the bacterial backbone, which results 
in minicircles [67]. For a detailed discussion the reader is 
referred to [68, 69].

Preclinical applications of co‑transfected MSCs
The preclinical applications of co-transfected MSCs are 
summarized for viral methods (Table  3) and non-viral 
methods (Table 4). 

Maintenance of stemness and differentiation potential
For clinical applications high cell numbers are required. 
However, during in  vitro expansion MSCs lose their 
stemness properties and differentiation potential pro-
gressively [86]. Co-expression of pluripotent specific 
factors can attenuate the progress. Co-expression of 
Oct4 and Sox2 promotes cell proliferation and increases 
the differentiation potential [73, 87]. Moreover, anti-
inflammatory effects were enhanced compared to non-
transfected MSCs. Expression of the anti-inflammatory 
cytokine IL-10 was up-regulated, while TNF-α was 
downregulated.

Another aspect to overcome is the low survival rate of 
transplanted cells. Overexpression of VEGF and Bcl-2 
reduced apoptosis, decreased autophagy and enhanced 
the paracrine effect [75].

Neuronal protection and regeneration
MSCs provide neurotrophic factors and cytokines to pro-
mote the repair and regeneration of impaired neurons as 
well as decreasing apoptosis and regulating inflamma-
tion. Overexpression of neurotrophic factors like BDNF 
and VEGF enhance the neuroprotective efficacy. Zhou 
et  al. [70] co-transfected BDNF and VEGF in BMMSCs 
and injected them in a cardiac arrest mouse model. 
Overexpression leads to enhanced protection of neurons 
and enhanced angiogenesis associated with neurofunc-
tional improvement after seven days compared to naive 
BMSCs.

A synergistic effect of BDNF and GDNF on nerve 
repair efficiency of the damaged sciatic nerve of SD rats 
was demonstrated by Zhang et al. [72]. They suggest that, 

combinations of neurotrophic factors are more effective 
than single neurotrophic factors. Different mechanisms 
of action are triggered, although doses are generally 
lower compared to single neurotrophic expression.

Instead of transfecting recombinant genes, Hsu et  al. 
[88] use CRISPR/Cas9 technology to activate and 
enhance endogenous BDNF, GDNF, and NGF levels in 
ADMSCs for the repair of sciatic nerve injury.

Co-expression of BDNF with BCLXL improved resist-
ance to apoptosis-inducing toxicants, thereby increas-
ing survival rates after transplantation [89]. Other 
studies focus on differentiating MSCs into neuron-like 
cells before transplantation to enhance their paracrine 
effects [90, 91]. Co-transfection of BMMSCs with NGF 
and bFGF (also known as FGF2) promotes neural differ-
entiation indicated by the expression of neuronal mark-
ers like nestin, NSE, GFAP and ß-tubulin III [76].

Cavernosum nerves
Radical prostatectomy to remove cancerous tissue can 
lead to cavernous nerve damage which is the cause of 
erectile dysfunction due to fibrosis. Injection of MSCs 
promotes repair of the damaged cavernosum to a cer-
tain extent. However, genetic manipulation of MSCs to 
overexpress VEGF and Smad7 has a significantly stronger 
effect on improving erectile function than untransfected 
or single-transfected MSCs [74]. Similar results could be 
achieved with VEGF and GDNF overexpression [71].

Bone and cartilage repair
An already successful application of MSCs is the site-
directed transplantation for bone and cartilage repair 
of bony defects caused by trauma, infection, or cancer. 
MSCs are often transfected with bone morphogenetic 
protein 2 (BMP-2) to differentiate MSCs into chondro 
-or osteocytes in  vitro beforehand [92]. However, pro-
moting vascularization enhances bone regeneration. Hu 
et  al. [52] demonstrate that co-transfection of BMP2 
and FGF2 results in a synergistic effect on osteogenesis. 
Expression of the osteogenesis markers BSP and OCN 
were at least 1.6-folds higher compared with single-gene 
transfection. Co-transfection increases angiogenesis and 
calcium deposition [48]. Similar results were shown with 
Angiopoietin-1 instead of FGF2 [49]. Another strategy is 
the co-overexpression of interleukin-4 (IL-4) and plate-
let-derived growth factor (PDGF)-BB [42]. While IL-4 
decreases inflammation, it can also inhibit the osteogen-
esis of MSCs. Therefore, co-expression with PDGF-BB 
reduces the inhibitory effect leading to increased cell via-
bility, proliferation and osteogenesis in the acute inflam-
matory phase.
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Treatment of diabetes
Type 1 diabetes is caused by T-cell mediated destruction 
of pancreatic beta-cells and the resulting insulin-defi-
ciency. Cell replacement is limited by a lack of pancreas 
donors, therefore genetic manipulation of MSCs into 
insulin-producing cells seems to be a promising 
approach. Qing-Song et  al. [44] transiently transfected 
murine BMMSCS by adenoviral transfection with a com-
bination of PDX-1, NeuroD1, and MafA and could show 
that the amount of produced insulin is threefold higher 
when all genes are transfected together compared to 
one or two transfected genes. Blood glucose levels after 
transplantation of the transfected cells into streptozo-
tocin-induced diabetic mice showed nearly the same lev-
els as the control with transplanted beta-cells. However, 
the effect is reduced after 14 days because of transient 
transfection.

Mycoardical infarction
Cardiovascular diseases, including myocardial infarc-
tion (MI) are the leading cause of death worldwide. Gene 
therapy seems promising for promoting myocardial 
regeneration and reducing fibrosis after acute myocardial 
infarction. Meng et al. [66] use CRISPR/Cas9 to overex-
press Interleukin 10 in BMMSCs and transplant these 
cells afterwards in diabetic MI mice. They could demon-
strate that IL-10 overexpression suppressed inflamma-
tory cell infiltration and reduced inflammatory cytokine 
expression at least threefold, thereby improving cardiac 
performance. To improve the homing to the inflamed 
area, Hervas-Salcedo et al. [67] co-transfect IL-10 mRNA 
together with CXCR4 mRNA. CXCR4, a chemokine 
receptor binding to SDF-1, promotes migration to the 
injury sites [68]. After injection in a mouse model with 
an induced inflammation of the right pad, twice as many 
MSCs could be observed after 24 h compared to untrans-
fected MSCs. Similar results could be shown in vitro by 
co-expressing CXCR4 with IL-35 [69]. Tang et al. [45] co-
transfected VEGF and SDF-1 in BMMSCs. Transplanted 
cells show not only a synergistically increased expression 
and an improved survival rate in comparison to untrans-
fected and single transfected cells, but also a reduction in 
infarct size and fibrosis.

Optogenetics
Optogenetic systems originated in the manipulation of 
light-activated ion channels, but have also progressed to 
a spatiotemporal control of gene expression. The system 
is based on a photoreceptor that can only interact with 
a specific binding partner when activated by light of a 
specific wavelength. Each of these proteins are associ-
ated with a transcription factor, which combine to form 
a functional unit to activate the promoter of a specific 

target sequence [93]. Potentially, this allows for a simu-
lation of naturally occurring changes in gene expression, 
which is demonstrated by Wang et al. [79]. They use the 
optogenetic FKF1/GI system to control the expression of 
BMP2 and Lhx8 in the early and late stages. The expres-
sion of Lhx8 promotes BMMSC proliferation in the early 
stages, while upon light illumination the expression is 
inhibited and the expression of BMP2 for cell differen-
tiation is started. Zhao et  al. [80] use the EXPLOR sys-
tem to enrich UCMSC-derived exosomes with eNOS for 
improved diabetic wound repair. In a high-glucose envi-
ronment, the enriched exosomes promote survival and 
migration of HUVECs and Fibroblast.

Evaluation/risks of genetically manipulated MSCs 
in clinical therapies
For unmodified cells, Thompson et  al. [93] conclude 
in a meta-analysis of 55 randomized controlled tri-
als that there is no correlation between MSC therapy 
and infection, malignancy, development of thrombotic 
or thrombo-embolic events, and non-fever acute infu-
sion toxicity. On the contrary, after MSC treatment the 
probability of dying is lower compared to the control 
group. Only seven patients suffered severe adverse effects 
related to MSCs treatment, e.g., acute in-stent throm-
bosis and acute coronary artery occlusion due to MSC 
diameter. However, there is a significantly higher risk 
of fever after MSC treatment compared to the control 
group. In addition, only a few studies provide informa-
tion on the viability and analysis of surface markers in 
terms of potency and functionality.

Precise causal research is proving difficult due to the 
many variable parameters affecting the efficacy of MSC 
transplants like MSC origin, donor (autologous or allo-
geneic, matched or unmatched), administration route, 
dosing, different culture media with partly xenogeneic 
compounds, using freshly isolated cells or cryopreserved 
cells and expansion time. It is therefore not surpris-
ing that a lack of standardized methods leads to diverse 
results in clinical trials. The culture period to obtain suf-
ficient MSC numbers, especially BMMSCs, may invoke 
genetic changes with a change in the polyclonal compo-
sition [94] and may lead to increased senescence with 
an impairment of their functionality and/or increased 
production of pro-inflammatory cytokines [95]. There 
is also a discussion about the influence of cryopreser-
vation on efficacy. While marker expression and dif-
ferentiation potential remain unchanged, some studies 
report that thawed BMMSCs exhibit lower inhibition of 
T cells [96]. However, other studies could not demon-
strate this effect. Therefore, limited efficacy could not 
only be because of low retention time in the bodies but 
also because of insufficient cultivation and functionality 
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assays beforehand. Indeed, senescence is often over-
looked and should be evaluated extensively. For example 
Bertolo et  al. [97] developed a score set to quantify the 
senescent state of BMMSCs correlated to the differentiat-
ing capacity based on colony-forming unit (CFU) assay, 
population doubling time (PDT), senescence-associated 
β-galactosidase (SA-β-Gal) activity, cell size, telomere 
length and gene expression of MSCs cultured in  vitro 
over 11 passages. Such a set could also be extended for 
other desirable functions like a T cell proliferation test 
for immunosuppression activity and would likely be tis-
sue source-specific.

On top of that, for genetically engineered MSCs, it 
must be proven that the overexpression of transgenes 
does not result in unwanted side effects. In addition, the 
transfection method and the plasmid backbone could 
also impact gene expression undesirably.

Comparing the four non-viral and transient delivery 
methods polyethyleneimine (PEI), cationic liposome, 
calcium phosphatase nanoparticles, and microinjection, 
Guan et al. [98] show that the methods affect the differ-
entiation potential of MSCs to varying degrees in  vitro. 
While transfection with calcium phosphate promotes 
osteogenesis and reduces adipogenesis, transfection with 
PEI greatly reduces osteogenesis and promotes adipogen-
esis. Microinjection and lipofection show no influence on 
osteogenic or adipogenic potential. Furthermore, Gonza-
les-Fernandez et  al. [50] demonstrate that the choice of 
transfection method has a greater effect on differentiat-
ing capability than the expression level of osteogenesis or 
chondrogenesis promoting transgenes BMP-2 and TGF-
β3. This is mostly due to the morphological changes dur-
ing transfection, which regulate lineage commitment in 
addition to cytoskeletal tension and focal adhesion [99].

A lot of studies demonstrate no negative effects on the 
differentiating capacity of MSCs after viral transfection, 
although a round morphology is often observed after 
transfection [44, 100–102]. However, only a few studies 
investigate the gene expression profiles after transfection. 
Wang et al. [103] have found a lot of genes that are differ-
ently expressed in BMMSCs after lentiviral transfection 
(second generation) with a fused reporter gene contain-
ing functional domains from firefly luciferase, mono-
meric red fluorescent protein and a truncated mutant 
herpes simplex virus 1 thymidine kinase compared to 
non-transfected cells or transfected cells with an empty 
vector, e.g. genes associated with stem cell development, 
immune response, protein expression and metabolism. 
While transfected cells show no differences in the com-
mon marker expression for cell differentiation compared 
to transfected cells with an empty vector or non-trans-
fected cells, some genes regulating lipid metabolism 
or ossification and cartilage formation were differently 

expressed. This could be the reason for an enhanced adi-
pogenic and osteogenic differentiation potential after 
transfection with the fused reporter. In addition, cells 
with high reporter expression have a decreased pro-
liferation rate, which could also be shown at the gene 
level. Interestingly, cells that were only transfected with 
the backbone share only a few genes that were similarly 
expressed to the transfected cells with the reporter gene. 
It may be reasonable to assume that changes in gene 
expression are dependent on the introduced transgenes 
and not on the viral vector.

Overall, MSCs need to be evaluated before and after 
transfection to see whether differences can have a nega-
tive effect.

Conclusion
Pre-clinical studies show the relevancy of genetically 
engineered MSCs in  vitro to enhance cellular functions 
and improve future clinical outcomes. Expression of mul-
tiple genes not only promotes the differentiating capacity, 
anti-inflammatory properties or angiogenesis, but also 
promotes survival rate after transplantation and homing 
to the inflamed area. Furthermore, there is often a syn-
ergistic effect on gene expression, and different mecha-
nisms can be triggered. The transfection method of 
choice is still by viral vectors. With the development of 
3rd generation vectors and self-inactivating vectors the 
risk of mutagenesis is very low and mostly dependent 
on the transgene. Microporation and nucleofection are 
promising non-viral methods, however a high-through-
put needs to be developed. Transfection alone and the 
introduction of a recombinant gene exerts stress on the 
cell and influences gene expression levels for many path-
ways. However, no relevant negative effects have been 
observed to date. Still, to exclude insertional mutagenesis 
after transfection, cancer-related mutations and chro-
mosomal aberrations should be analyzed beforehand by 
gene expression analysis. Furthermore, long-term moni-
toring of patients receiving genetically engineered cells is 
very important.

To increase the success of a clinical trial and make it 
more comparable to each other, it is also important to 
reduce the variable parameters. Like many researchers 
said before, culture conditions and transfection methods 
should be standardized. On top of that, MSCs should be 
carefully screened beforehand, and used subpopulations 
need to be characterized.
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