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Abstract 

Endothelial cells (ECs) are widely used as donor cells in tissue engineering, organoid vascularization, and in vitro 
microvascular model development. ECs are invaluable tools for disease modeling and drug screening in fundamen-
tal research. When treating ischemic diseases, EC engraftment facilitates the restoration of damaged blood vessels, 
enhancing therapeutic outcomes. This article presents a comprehensive overview of the current sources of ECs, which 
encompass stem/progenitor cells, primary ECs, cell lineage conversion, and ECs derived from other cellular sources, 
provides insights into their characteristics, potential applications, discusses challenges, and explores strategies to miti-
gate these issues. The primary aim is to serve as a reference for selecting suitable EC sources for preclinical research 
and promote the translation of basic research into clinical applications.
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Graphical abstract

Background
Endothelial cells (ECs) form a monolayer of flattened epi-
thelial cells and are predominantly located on the inner 
luminal surface of blood vessels. ECs are widely distrib-
uted throughout the vascular system, which encompasses 
arteries, veins, and capillaries. ECs are pivotal as a hemo-
static barrier, mediating blood–tissue interactions and 
securely maintaining vascular permeability and integ-
rity through tight intercellular junctions. ECs actively 
secrete multifunctional bioactive molecules, including 
nitric oxide, angiotensin, prostaglandins, and thrombox-
anes, orchestrating processes such as vascular constric-
tion, dilation, coagulation factor regulation, and immune 
response modulation. Furthermore, ECs regulate the 
metabolic homeostasis of the body’s three major nutri-
ents—carbohydrates, proteins, and fats—thereby ensur-
ing metabolic balance (Fig. 1).

Researchers have extensively used the indispensable 
biological functions of ECs as seed cells for tissue-engi-
neered vascular graft (TEVG) endothelialization and 
organoid model vascularization in preclinical investiga-
tions. Vascular transplantation is an effective approach 
for treating vascular diseases. Graft failure is primarily 

caused by inadequate endothelialization within the 
implanted scaffold, leading to thrombus formation and 
luminal obstruction. Consequently, deliberately integrat-
ing ECs significantly enhances vascular graft patency 
through augmented endothelialization [1]. Clinically 
relevant organoids undergo increased apoptosis as their 
volume increases primarily due to hypoxia and the accu-
mulation of metabolic byproducts [2]. Introducing ECs 
to facilitate organoid vascularization improved blood 
perfusion and promoted more robust viability [2].

ECs are crucial in disease pathophysiology, including 
cardiovascular disorders, diabetes, chronic renal failure, 
and various tumors. These diseases can be influenced 
by specific pharmacological agents, such as antitumor 
agents, immunosuppressants, and growth factors, which 
modulate EC proliferation and migration. Consequently, 
they affect crucial processes such as angiogenesis and 
vascular repair. Harnessing the potential of ECs to estab-
lish in vitro disease models and drug screening platforms 
would enable the investigation of the underlying mecha-
nisms of these diseases, conduct drug toxicity assess-
ments, and foster the development of novel therapeutic 
agents in a controlled experimental environment. Several 
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therapeutic approaches using endothelial progenitor cells 
(EPCs), particularly those enriched for the CD34 + and 
CD133 + phenotypes, have progressed to clinical trials 
[3]. These cell-based interventions have demonstrated 
promising effects in ameliorating angina symptoms, 
enhancing exercise tolerance, improving left ventricu-
lar function, and augmenting myocardial perfusion in 
patients with refractory angina, highlighting their poten-
tial in regenerative cardiovascular therapies.

Numerous EC sources are available for in vitro vascu-
larization and laboratory research, and include stem cell-
derived and primary cells. Nonetheless, a comprehensive 
summary and comparison of these cell sources is lacking. 
In this review, we attempt to present a comprehensive 
overview of the diverse sources of ECs, considering their 

applications, advantages, and disadvantages (Table 1). We 
aim to provide a reference to aid researchers in selecting 
the most appropriate EC sources for preclinical investiga-
tions, considering their specific research contexts.

Stem‑cell derived ECs
Embryonic stem cells (ESCs)
A significant scientific milestone was achieved in 1998 
when researchers successfully isolated ESCs from human 
blastocyst-stage embryos. This groundbreaking discovery 
unveiled the remarkable capacity of ESCs to differentiate 
into a wide array of cell types, including ECs [4]. Years of 
rigorous investigation established methodologies for ESC 
differentiation into ECs and are now widely used in scien-
tific research.

Fig. 1  Brief summary of EC functions. The functions include vascular wall formation, regulation of vascular permeability, inflammatory response 
mediation, thrombus formation inhibition, chemical signal secretion, regulation of vascular dilation and constriction. Figure created using 
BioRender.com
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The prominent ESC lines in use are the H1 and H9 
lines. The induction strategies predominantly involve 
monolayer-directed differentiation into ECs and three-
dimensional (3D) cultivation using embryoid bodies 
(EBs). Additionally, certain laboratories co-culture ESCs 

with stromal cells such as S17 mouse bone marrow (BM) 
cells, OP9 cells, and M2-10B4 cells to induce EC differ-
entiation. Co-culture recreates a microenvironment that 
guides stem cell differentiation while avoiding the com-
plexity of EBs. Nevertheless, co-culture may introduce 

Table 1  Brief summarization of different sources of ECs and their advantages, disadvantages and applications

Source Advantages Disadvantages Main applications

ESCs High differentiation potential Limited sources Disease model establishment

Strong regenerative capacity Higher immunogenicity Drug screening platform

High plasticity High research cost Vascular graft endothelialization

Technical challenges Organoid vascularization

Tumorigenicity Cell therapy

hiPSCs Accessible in adults High research cost Patient-specific disease research

Ethical concern-free Significant technical challenges Disease model establishment

No or extremely low immunogenicity Potential tumorigenicity Drug screening platform

Patient-specific Vascular graft vascularization

Infinite sources Organoid vascularization

High plasticity Cell therapy

MSCs Readily accessible in adults Limited differentiation capacity Cell therapy

Wide range of sources Short In vitro survival time

Easy to isolate and expand Subject to individual health status

Low immunogenicity

EPSs Readily obtainable in adults Challenging to Isolate Cell therapy

Limited quantity Vascular graft endothelialization

Heterogeneity

Lack standardized culture conditions

Subject to individual health status

CPCs Readily obtainable in adults Difficult to isolate Cell therapy

Limited quantity

Heterogeneity

Inconsistent in vitro culture

Subject to individual health status

HUVECs Easy to isolate and culture Limited source Disease model establishment

Stable biological characteristics Poor plasticity Drug screening platform

Low immunogenicity Vascular graft endothelialization

Organoid vascularization

Other primary ECs Readily obtainable in adults Heterogeneity Patient-specific disease research

Widely sourced Limited plasticity Establishment of disease models

Finite lifespan Drug screening platform

Transplanted blood vessel vascularization

Organoid vascularization

Lineage conversion Readily obtainable in adults High research costs Disease model establishment

Low immunogenicity Significant technical challenges Drug screening platform

Strong plasticity Influenced by Individual health status Cell therapy

Low risk of tumorigenicity

Subpopulations of bone 
marrow stromal cells

Readily obtainable in adults Limited research Cell therapy

Abundant sources Unclear mechanisms of differentiation

Strong differentiation potential

Dental pulp Readily obtainable in adults Limited research Investigation of fate determination 
in dental tissue vascular formation
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xenogeneic elements, raising concerns about potential 
unknown biological contamination and immune rejec-
tion risk. Despite ongoing debates regarding the optimal 
method, each co-culture method successfully directed 
ESC differentiation into ECs with specific functional 
attributes. For example, human ESC-derived ECs (ESC-
ECs) cultured through monolayer-directed differen-
tiation produced nitric oxide, responded to chemical 
stimuli, and supported the development of new blood 
vessels, ultimately restarting blood flow in ischemic 
mouse limbs [5]. Shen et  al. illustrated the potential of 
mouse ESC-ECs derived from EB formation for engineer-
ing blood vessels. That seminal study marked the initial 
evidence of ESCs as viable seed cells in tissue-engineered 
vascularization [6]. Furthermore, ESC-ECs represent 
a valuable cellular source for inducing vascular regen-
eration in ischemic myocardium tissue. When ESC-ECs 
cultured on fibronectin-coated dishes were introduced 
into the hearts of mice with ligated left anterior descend-
ing coronary arteries, microcapillaries and small veins 
were notably increased within the infarcted region, lead-
ing to improved functionality of the infarcted heart [7]. 
Moreover, ESC-ECs have been used under specific chem-
ical conditions to construct versatile in  vitro 3D vascu-
lar models [8] and were pivotal in establishing intricate 
vasculature-like networks in organoid systems [9–11]. 
These advancements have contributed significantly to 
the important preclinical research foundation required 
for drug screening, disease modeling, and related in vitro 
studies.

While ESC-ECs hold great promise for research, 
several issues should be considered: (1) the use and 
destruction of human embryos in ESC research result in 
religious and ethical concerns [12]. Recent Chinese poli-
cies have reinforced the alignment of ethical principles 
with social development, broadening the scope of patent 
protection for human ESC (hESC) research outcomes. 
This reinforcement has greatly encouraged technological 
advancements in this domain, fostering a conducive envi-
ronment for innovation and discovery [13, 14]. (2) several 
readily available ESC lines are obtained through isola-
tion and subsequent in vitro proliferation, often involving 
exposure to animal-derived components. This approach 
carries potential risks associated with toxic substances, 
microorganisms, and unforeseen biological contami-
nants, which may elicit immune responses. The strategies 
to address this issue include developing serum substi-
tutes and culture medium free from harmful xenobiotics 
[15]. Additionally, implementing feeder-free culture sys-
tems is aimed at minimizing contamination from xeno-
geneic sources [16]; (3) transferring ESCs from embryos 
to culture dishes can lead to progressive adaptation 
to the new environmental conditions. This adaptation 

may result in alterations, including nuclear structure 
changes, DNA damage, double-strand DNA cleavage 
and fragmentation, loss of heterozygosity, increased 
cancer-related gene diversity [17], and the potential for 
mutations during extended cultivation periods [18]. Nev-
ertheless, ESCs maintain a higher degree of genomic 
stability than somatic cells [19]. Genetic instability dur-
ing ESC in vitro culture can be substantially reduced by 
optimizing cultivation conditions, following standardized 
protocols, minimizing passages, regular karyotyping, 
and vigilantly monitoring genomic stability. These strat-
egies collectively aid the preservation of ESC integrity 
and reliability for research and potential clinical applica-
tions. (4) Somatic cell nuclear transfer (SCNT)-derived 
cells present a promising solution to immune rejection in 
transplantation, as they can be customized to match the 
patient’s genetic composition. Transferring the nucleus of 
a patient’s somatic cell into an enucleated oocyte creates 
ESCs (NT-ESCs) genetically identical to the patient. This 
method was successful in primates and is being adapted 
for use with human cells to produce stem cells compat-
ible with the patient’s immune system for therapeutic 
purposes [20, 21].

Human induced pluripotent stem cells (hiPSCs)
The emergence of hiPSC technology has produced 
patient-specific hiPSCs free from ethical and immuno-
logical concerns [22]. hiPSC-derived ECs (hiPSC-ECs) 
that underwent CD144 antibody-conjugated magnetic 
bead sorting exhibited typical EC morphological and 
functional characteristics, including tubular structure 
formation, responsiveness to inflammatory signals, and 
nitric oxide production [23]. Notably, the hiPSC-ECs 
demonstrated an angiogenesis and endothelial differen-
tiation capacity comparable to that of their ESC-derived 
counterparts. This capacity positions hiPSC-ECs as a val-
uable platform for disease modeling and drug screening 
[24].

The primary application of hiPSC-ECs is their direct 
use as a substitute for injured or dysfunctional ECs to 
facilitate impaired vascular system restoration. Trans-
planting hiPSC-ECs into an animal model of ischemia 
promoted the repair of injured tissues and enhanced tis-
sue perfusion [25]. However, there is no definitive con-
clusion on the angiogenic capacity between hiPSC-ECs 
and human umbilical vein ECs (HUVECs). One study 
reported that hiPSC-ECs have a greater capacity to inte-
grate into the developing zebrafish vascular system than 
HUVECs [26]. Conversely, other studies indicated that 
while hiPSC-ECs formed perfused vessels on the dorsal 
side of mice, they exhibited a reduced density and quan-
tity of perfused vessels compared to HUVECs, resulting 
in diminished vessel maturation [27]. Nonetheless, these 
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results collectively confirm the capacity of hiPSC-ECs 
to directly promote blood vessel formation in  vivo and 
enhance blood perfusion for treating ischemic disorders.

hiPSC-ECs are pivotal in vascular engineering and 
organ transplantation. hiPSC-ECs are an abundant source 
of ECs and have wide-ranging applications in bioprinting 
[28], microfluidic devices [29], organ-on-chip technolo-
gies [30, 31], and organoid vascularization [32, 33]. Fur-
thermore, hiPSC-ECs are a simplified yet potent platform 
for developing therapeutic interventions, enabling the 
accurate replication of human physiology that facilitates 
precise disease modeling and tissue regeneration.

The blood vessel organoids produced from hiPSC-ECs 
exhibited an impressive resemblance to the structure and 
function of native human blood vessels [34]. hiPSC-ECs 
implanted into decellularized vascular scaffolds demon-
strated robust adhesion, stability, permeability, and sus-
tained vascular patency [35]. Recent breakthroughs have 
emerged in utilizing hiPSC-ECs for constructing small-
caliber TEVGs, where the implantation of these grafts in 
nude mice for 30 days revealed no noticeable thrombus 
formation, while non-endothelialized grafts exhibited 
significant thrombus formation [36]. These developments 
form a critical research foundation for developing inno-
vative allogeneic vascular grafts for patients with vascular 
diseases.

Disease-specific hiPSC-ECs are a promising avenue for 
investigating differential gene expression. Using disease-
specific hiPSCs avoids the constraints associated with 
gene editing and other requirements for disease mod-
eling linked to ESCs. Disease-specific hiPSC-ECs have 
been successfully derived from patients with diabetes 
[37], peripheral artery disease [38], end-stage renal dis-
ease [39], type A hemophilia [40], and pulmonary arte-
rial hypertension [41]. These disease-specific hiPSC-ECs 
facilitated the establishment of in  vitro disease models 
with impaired endothelial function, providing crucial 
insights for developing therapeutic strategies based on 
autologous cells. Additionally, hiPSC-ECs from patients 
with genetic disorders and rare diseases exhibit disease-
relevant phenotypic traits, providing vital preclinical data 
to clarify disease mechanisms and explore potential ther-
apeutic approaches [42–45].

hiPSCs exhibit exceptional pluripotency compared to 
other cell types. hiPSCs exposed to specific tissues gen-
erated tissue-specific microvascular ECs (MVECs). Nota-
bly, hiPSC-derived brain MVECs could be integrated 
with organ-on-chip technology to create sophisticated 
neurovascular units [46]. This innovation enables the 
study of the blood–brain barrier response to relevant dis-
eases and drug screening in the central nervous system 
[47, 48]. In a co-differentiation system involving hiPSC-
ECs and hiPSC-derived cardiomyocytes, the hiPSC-ECs 

demonstrated cardiac marker expression similar to that 
observed in primary cardiac microvasculature [49]. This 
distinct characteristic confers hiPSC-ECs with the capac-
ity to faithfully replicate the authentic biological state of 
ECs across multiple organs.

While reprogramming hiPSCs from patient or donor 
somatic cells is relatively straightforward, hiPSC-ECs 
have limited practical application in autologous cell ther-
apy for elderly people or patients with genetic diseases. 
Gene editing technologies such as CRISPR can cor-
rect gene diseases in hiPSCs and efficiently model gene 
mutations [50–52]. Furthermore, hiPSCs carry the risk 
of tumorigenicity during differentiation. Accordingly, 
the evaluation of hiPSC-EC safety and stability can be 
facilitated by extending the culture duration to mimic 
senescence and by conducting in  vivo tumorigenic-
ity tests. Notably, even autologous hiPSCs exhibit a low 
immunogenicity profile [53]. Nevertheless, this concern 
can be addressed using human-derived components 
[54] or serum-free cultivation strategies [55] to avoid 
the use of xenogeneic materials in generating xeno-free 
(XF)-hiPSC-ECs.

Mesenchymal stem cells (MSCs)
MSCs represent a diverse subset of stromal stem cells 
with multipotent differentiation capacity that can be iso-
lated from various human tissues, such as BM, adipose 
tissue (AT), umbilical cord (UC), UC blood, placenta, 
dental pulp (DP), and amniotic fluid [56]. MSCs from dif-
ferent anatomical sources exhibit a distinct potential for 
endothelial differentiation. For example, BM-MSCs iso-
lated through density gradient centrifugation and stim-
ulated with growth factors differentiated into ECs and 
formed capillary-like networks on matrix gels [57].

Laboratory research principally explores the thera-
peutic potential of MSC-ECs for ischemic diseases. For 
example, MSCs underwent differentiation into smooth 
muscle cells (SMCs) and ECs in a canine model of 
chronic ischemia, promoting angiogenesis and enhancing 
cardiac function [58]. Similarly, introducing MSCs into 
the endocardium in a porcine model of chronic myocar-
dial infarction led to SMC and EC differentiation in the 
infarcted and border regions, facilitating the formation of 
blood vessels of varying sizes [59].

While MSCs are ubiquitously sourced, they exhibit het-
erogenous cellular morphology, surface marker expres-
sion, and differentiation potential, resulting in diverse 
biological characteristics across varying origins and 
batches. Furthermore, endothelial differentiation is typi-
cally subject to inefficiency and impurity. Specific growth 
factor cocktails, small molecules, or biomaterial scaf-
folds can augment differentiation efficacy and cell purity. 
Complementarily, advanced cell sorting techniques and 
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functional assays ensure a homogenous and functional 
population of derived ECs.

Adult progenitor cell‑derived ECs
Endothelial progenitor cells (EPCs)
In 1997, Asahara et al. [60] discovered circulating EPCs 
in peripheral blood, which were subsequently found to 
contribute significantly to vessel formation in murine 
and rabbit hindlimb ischemia models. These EPCs were 
characterized as a specific population of progenitor cells 
expressing markers such as CD133, CD34, and KDR. 
EPCs are EC precursor cells and are critical in angiogen-
esis and vasculogenesis [61]. EPCs are present in periph-
eral blood and have been identified in UC and BM. It was 
widely accepted that circulating EPCs originate from the 
BM. However, recent research using advanced techniques 
such as single-cell RNA sequencing, in vivo genetic trac-
ing in murine models [62], and the analysis of ECs in the 
blood of allogeneic BM transplantation patients estab-
lished that circulating EPCs do not originate from the 
BM [63]. Instead, they reside within the blood vessel 
walls.

TEVGs constructed using EPCs exhibit prolonged 
patency and demonstrate vascular contractile and relax-
ation characteristics similar to natural arteries [64]. 
Additionally, EPCs can swiftly coat implanted artificial 
vascular scaffolds, offering crucial support for in  situ 
endothelialization induction [65]. Similar to MSCs, 
EPCs are also used in cell therapy for ischemic condi-
tions. In vitro expanded EPCs enhanced cardiac function 
recovery, increased capillary density, reduced left ventric-
ular scar formation, and facilitated vascular neogenesis in 
rat models of myocardial infarction [66]. Furthermore, 
the cells exhibited potential in ameliorating myocardial 
fibrosis, improving cardiac function in rat models with 
coronary microcirculatory disorders [67]. Combined 
transplantation is an alternative to the exclusive use of 
EPCs for therapeutic purposes. Co-transplanting EPCs 
and MSCs in laboratory settings, as opposed to EPCs 
alone, significantly enhanced organ function and fostered 
tissue regeneration and functional repair in ischemic dis-
eases, albeit without significant differences in angiogene-
sis [68]. Therefore, the combined transplantation of EPCs 
and other stem cells holds potential advantages in tissue 
engineering. However, there is a pressing need for thor-
ough foundational research to assess the feasibility of this 
approach before clinical trials can be initiated.

The isolation of EPCs from adult sources is hindered 
by their limited availability and challenges regarding iso-
lation. Moreover, the discernible heterogeneity of EPCs, 
stemming from inconsistent culture conditions and a 
lack of standardization, has contributed to inconsistent 
experimental outcomes. These factors impose significant 

limitations on the widespread applicability of EPCs. 
Using more efficient and specific markers with advanced 
sorting technologies such as flow cytometry with mul-
tiple surface antigens (CD34 + , CD133 + , VEGFR2 +) 
enhances the purity and yield of the isolated EPCs. Estab-
lishing a unified, validated culture system and charac-
terization criteria for EPCs fosters their self-renewal and 
preservation of characteristics, augmenting research out-
come consistency and comparability.

Cardiac progenitor cells (CPCs)
In 2001, Orlic et  al. successfully isolated c-Kit + cells 
from BM, which could differentiate into ECs and SMCs 
when exposed to cytokine mobilization. The CPCs subse-
quently migrated to the infarcted myocardium, contrib-
uting to myocardial cell regeneration [69]. Subsequent 
experiments validated the presence of CPCs in the heart. 
CPCs could differentiate into myocardial cells, SMCs, 
and ECs during cultivation. Additionally, CPCs were piv-
otal in promoting neovascularization within infarcted 
myocardium and facilitating cardiac function restoration. 
This groundbreaking discovery challenged the traditional 
notion that myocardial cells are terminally differentiated 
cells [70].

Various CPCs, including c-Kit + , Sca-1 + , Islet-1 + , 
cardiac side population, cardiospheres, and cardiosphere-
derived cells, have been identified and extensively stud-
ied after isolation from the adult heart. In vivo, injected 
CPCs targeted the myocardial injury site and under-
went in  situ differentiation into cardiomyocytes, ECs, 
and SMCs [71, 72]. The intracoronary administration of 
c-Kit + CPCs in a rat model of acute myocardial infarc-
tion resulted in their division and differentiation into ECs 
and SMCs, effectively reducing the extent of myocardial 
infarction and enhancing cardiac function [73]. CPCs can 
be obtained from donor heart biopsies and cryopreserved 
cardiac tissues, and expanded and differentiated into ECs 
in vitro [74]. Nevertheless, CPC-ECs demonstrate limited 
utility compared to ECs derived from alternative sources 
in disease modeling and vascular engineering, suggesting 
a lack of superiority.

However, CPC acquisition is challenging due to their 
restricted availability. Additionally, cellular senescence 
and genetic mutations may arise during expansion and 
cultivation, affecting CPC quality and functionality. The 
complex task of characterizing and identifying CPCs is 
complicated by their phenotypic heterogeneity, which 
hinders the definition of specific markers for their isola-
tion and purification. Hence, addressing these challenges 
and refining the procedures involved in CPC acquisition 
and cultivation are imperative to develop their therapeu-
tic potential in regenerative medicine [75].



Page 8 of 14Deng et al. Stem Cell Research & Therapy          (2024) 15:175 

Primary ECs
HUVECs
In 1973, Jaffe et al. successfully isolated ECs from human 
umbilical veins and characterized them using morpho-
logical, immunohistochemical, and serological criteria 
[76]. Since then, HUVECs have been widely used by the 
global vascular biology community as they are easily 
obtained, their supply is abundant, and they are cost-
effective. Importantly, the wealth of knowledge accumu-
lated over the past five decades has firmly established 
HUVECs as the preferred source of ECs for scientific 
research. Additionally, HUVECs are the benchmark for 
developing innovative approaches in vascular biology and 
angiogenesis.

In 2004, Koike et  al. [77] successfully co-cultured 
HUVECs with MSCs, constructing a vascular network 
in  vitro. Upon transplantation into mice, this construct 
demonstrated a sustained presence for up to 1  year. 
Subsequently, as tissue engineering gained prominence, 
HUVECs have been extensively used as a source of ECs 
for tissue-engineered construct endothelialization [78, 
79], vascular chip fabrication [80], bioink preparation 
[81], and various other applications. Data from 2013 to 
2018 indicate that 59% of studies used HUVECs as the 
primary cell source for ECs [82]. Furthermore, HUVECs 
are used in organoid vascularization, aiding the develop-
ment of functional blood vessel networks within these 
artificial organ-like structures. For example, Shi et  al. 
co-cultured HUVECs with hESCs or hiPSCs, leading 
to their directed differentiation into vascularized brain 
organoids. HUVECs interconnected within the brain 
organoids formed a complex, permeable vascular sys-
tem that persisted for > 200  days. Upon transplantation 
into animal models, HUVECs integrated with the host 
murine vascular ECs within the brain organoid, establish-
ing a functional vascular network system characterized 
by blood flow. This integrated vascular system demon-
strated the maturity and viability of the engrafted brain 
organoid [83]. Additionally, Takebe et  al. co-cultured 
hiPSC-derived hepatic endoderm cells with HUVECs 
and BM-BMCs, inducing the formation of liver buds 
(hiPSC-LBs) comprising 3D spherical tissues. The hiPSC-
LBs were transplanted into immunodeficient mice and 
generated intricate vascular networks within 48  h that 
integrated with the host vasculature. Real-time imag-
ing confirmed the perfusion of host blood, validating the 
establishment of a functional human vascular network 
[84].

However, the application of HUVECs is subject to 
shortcomings. First, the inherent heterogeneity and tis-
sue-specific nature of ECs in normal organs and tissues 
means that using HUVECs or other primary EC lines to 
generate vascular systems within organoids may not offer 

the same advantages as using PSC-derived ECs, which 
exhibit greater plasticity. Second, HUVECs have a lim-
ited lifespan, necessitating recurrent cell acquisition from 
fresh donors. Lastly, prolonged HUVEC culture may 
result in the loss of their native characteristics and func-
tionality. Co-culturing HUVECs with ECs from other 
sources, such as specific adult or fetal tissues, and using 
3D culture systems or bio-printing techniques to create 
microenvironments can better mimic in vivo conditions, 
enhancing the maintenance of HUVEC native morphol-
ogy and function.

Other primary ECs
No discernable distinctions have been observed in cell 
proliferation, metabolic activity, membrane integrity, and 
vasoactive substance production between human umbili-
cal artery-derived ECs (HUAECs) and HUVECs [85]. 
Consequently, some research laboratories use HUAECs 
as a source of ECs for in vitro investigations [86–88]. Pri-
mary ECs are also widely derived from various human 
tissues, extending beyond UC origins. MVECs isolated 
from the retina [89], AECs [90], coronary artery ECs 
[91], brain MVECs [92], and lung MVECs [93] have been 
used to promote vascularization in engineered tissues 
and organoids. Notably, several laboratories have devised 
methodologies for isolating MVECs from AT, which is 
abundant and accessible. However, differentiated MVECs 
constitute a heterogeneous amalgamation encompass-
ing subpopulations with arterial, venous, and lymphatic 
lineages. Consequently, additional research is warranted 
to clarify the phenotypic heterogeneity of MVECs [94, 
95]. These primary cells are a potential invaluable source 
for patient-specific cell therapies and in  vitro disease 
modeling. However, their limited lifespan and relatively 
restricted adaptability limit their application. Currently, 
no compelling evidence supports their distinct advantage 
over HUVECs.

Lineage conversion ECs
Recent cellular reprogramming advancements have 
introduced a novel approach for converting one somatic 
cell type into another, bypassing the pluripotent state. 
This method involves inducing functional cells from a 
specific lineage through the exclusive use of lineage-
restricted transcription factors, offering a promising 
means of generating functional ECs. Significantly, this 
strategy avoids the potential tumorigenic risks associated 
with PSC-derived ECs.

ETV2 is a pivotal factor in EC lineage regulation and 
reprogramming [96]. The transient expression of ETV2 
enables the reprogramming of amniotic cells [97, 98] 
and human fibroblasts [99–101] into functional ECs 
without undergoing a pluripotent transition. These 
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reprogrammed cells harbor the potential to establish 
mature and functional vascular systems in vivo, promot-
ing blood flow restoration in ischemic limbs. Palikuqi 
et al. [102] “reset” mature human ECs into adaptive angi-
ogenic cells through the transient expression of ETV2, 
which confers plasticity upon the ECs, allowing them to 
adapt to novel environments. Beyond ETV2, transduc-
ing Oct4, Klf4 [103] or Foxo1, Er71, Klf2, Tal1, and Lmo2 
[104] into human fibroblasts induced their differentia-
tion into functional ECs. Sayed et al. reported that innate 
immune signaling activation, achieved through the syn-
ergistic action of small molecules and Toll-like receptor 3 
agonists combined with endothelial growth factors, suc-
cessfully initiated human fibroblast transdifferentiation 
into ECs [105].

The donors’ age and health status can influence the 
state of reprogrammed ECs, encouraging efforts to lever-
age cell-regulating factors to enhance reprogramming.

Other cell‑derived ECs
BM stromal cell subpopulations
BM-derived multipotent adult progenitor cells (MAPCs) 
can differentiate into ECs. MAPCs promoted angiogen-
esis through endothelial activation in a murine hindlimb 
ischemia model [106, 107]. While MAPCs and MSCs can 
be extracted from BM, multiple studies have conclusively 
demonstrated that MAPCs have significantly greater dif-
ferentiation potential than MSCs [108, 109]. For example, 
MSC-like cells lacking Oct4 expression exhibit limited 
differentiation capabilities towards ECs and hepatocyte-
like cells.

D’Ippolito et  al. isolated a population of adult multi-
potent cells, termed marrow-isolated adult multilineage 
(MIAMI) cells, from the BM [110]. In vitro experiments 
established that the MIAMI cells could differentiate into 
CD31 + KDR + vWF + endothelial-like cells, which could 
form vascular network structures when cultured [111]. 
Furthermore, transplanting these cells into a murine 
hindlimb ischemia model facilitated the restoration of 
the ischemic region [112].

Kucia et al. [113] identified a population of very small 
embryonic-like stem cells (VSELs) in a subset of BM 
cells. Subsequently, at least 20 independent research 
groups confirmed the pluripotent differentiation poten-
tial of VSELs across germ layers. For example, transplant-
ing human VSELs into an ischemic model demonstrated 
the emergence of CD31 + endothelial phenotypes [114]. 
Additionally, VSEL-like stem cells have been discovered 
in UC tissues [115]. However, no studies have demon-
strated their capacity to regenerate 3D fully functional 
tissue structures or form teratomas in immunocompro-
mised mice. Therefore, further experimental investiga-
tions are required to explore VSEL pluripotency [116].

In 2010, Kuroda et  al. demonstrated that adult MSCs 
under in  vitro stress conditions can undergo transfor-
mation, exhibiting pluripotent-like characteristics. They 
referred to these cells as Muse (multilineage differen-
tiating stress-enduring) cells [117]. Following intrave-
nous injection into a murine model of aortic aneurysm, 
Muse cells spontaneously differentiate into vascular 
SMCs and ECs, preserving the elastic fibers and attenu-
ating aneurysm expansion [118]. Muse cells are believed 
to be abundantly distributed in the connective tissues of 
various human organs, demonstrating the capacity to dif-
ferentiate into all three germ layers. Upon transplanta-
tion, Muse cells preferentially home in to injury sites and 
spontaneously differentiate into tissue-compatible cells. 
Due to their non-tumorigenic properties and exceptional 
homing capabilities, Muse cells are considered to have 
superior therapeutic potential compared to other types of 
stem cells [119, 120]. Despite their promising attributes, 
scientific understanding of Muse cells and their biologi-
cal characteristics remains relatively limited, necessitat-
ing further exploration.

DP‑derived ECs
Marchionni et  al. successfully induced endothelial dif-
ferentiation in DP stem cells (DPSCs) through exposure 
to VEGF. The induced DPSCs expressed Flt-1 and KDR 
and created tubular structures on a matrix [121]. Sakai 
et  al. comprehensively investigated the differentiation 
potential of stem cells from human exfoliated decidu-
ous teeth (SHED). Their work highlighted the successful 
differentiation of SHED into odontoblasts and ECs. Fur-
thermore, SHED expressed key vascular markers through 
induction, including VEGFR2, CD31, and VE-cadherin, 
and effectively organized into functional capillary-like 
structures [122]. Nevertheless, the initial strategy for 
endothelial lineage differentiation exhibited remark-
ably low efficacy. To address this challenge, Gong et  al. 
introduced an innovative approach that used the decel-
lularized extracellular matrix from HUVECs. This bio-
active substrate provided a favorable microenvironment 
for promoting SHED endothelial differentiation. Conse-
quently, the mRNA expression levels of the endothelial-
specific markers, CD31 and VEGFR-2, were significantly 
upregulated within the SHED population [123].

Overexpressing ETV2 in DPSCs promoted EC differ-
entiation [124]. In the presence of small molecular com-
pounds within the culture system, stem cells from apical 
papilla differentiated into EC-like cells while maintain-
ing the tubular structure for a more extended period 
compared to the method proposed by Gong et al. [125]. 
However, the specific mechanisms underlying this phe-
nomenon remain unexplored.
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EC heterogeneity
Single-cell genomics and in  vivo genetic labeling tech-
niques have revealed the nuanced nature of ECs, which 
demonstrate organ specificity and heterogeneity during 
their developmental processes [126]. Different induction 
protocols or stages can yield diverse phenotypic traits 
within ECs. Consequently, each EC subgroup may be rel-
evant in distinct research endeavors. For example, stem 
cells promoting angiogenesis, exemplified by stalk cells 
and tip cells, are ideal for exploring microvasculariza-
tion in angiogenesis and tissue engineering. In contrast, 
phalanx ECs, characterized by weaker proliferative and 
migratory abilities, are more suitable for investigating 
arterial atherosclerosis and endothelialization in small-
diameter vascular grafts [127]. Meticulous selection of 
the appropriate culture protocols and specific EC phe-
notypes for foundational research would enable the close 
replication of physiological or pathological conditions 
and yield reliable preclinical data.

Comparative characterization of ECs from various sources
Stem cell-derived ECs, notably iPSC-ECs and ESCs-
ECs, exhibit robust proliferative capacity suitable for 
large-scale production and study, although iPSC-ECs 
demonstrate marginally reduced expression of key 
endothelial markers and shear-responsive genes com-
pared to primary ECs [128]. iPSC-EC, ESCs-EC, and 
MSC proliferation, migration, and angiogenesis signifi-
cantly outperform that of AECs [129, 130], yet the lim-
ited endothelial differentiation potential of MSCs renders 
them less ideal for vascular engineering. While iPSC-
ECs form vessels with lower density and maturity than 
HUVECs in vasculogenesis [27, 131], they demonstrate 
excellent endothelial barrier function and responsiveness 
to shear stress [132].

Adult progenitor-derived ECs are hampered by 
restricted proliferation and differentiation abilities that 
may deteriorate with age [133]. Consequently, they are 
less effective in constructing vessels than HUVECs [134], 
primarily used in ischemic therapies in animal models.

Directly converting adult cells into ECs bypasses the 
pluripotent stage, simplifying the process and potentially 
offering better genetic stability with reduced mutation 
risks. However, this approach is subject to low conver-
sion efficiency and functionality discrepancies with pri-
mary ECs, necessitating further conversion protocol 
optimization.

Conclusion and future perspectives
ECs are pivotal in the repair and regeneration of damaged 
tissues, demonstrating substantial potential in regenera-
tive medicine. Investigating the origin of ECs is extremely 

important. This review examined the diverse origins of 
ECs used in preclinical research for clinical applications. 
HUVECs remain the predominant choice for in vitro EC 
research. However, the limited lifespan of HUVECs and 
primary ECs during cultivation and the potential loss 
of their phenotypic characteristics, suggest that more 
adaptable ECs from PSCs or progenitor cells may gradu-
ally supplant HUVECs. Alternatively, HUVECs could act 
exclusively as a reference standard for innovative vascular 
construction methods.

hESC-EC research has increased annually, and their 
application in basic research will become even more 
widespread following policy and regulation maturation. 
Contrastingly, hiPSCs present an unlimited cell source 
without harming human embryos while preserving the 
patient’s original disease-specific characteristics. Recent 
substantial progress has been made in using hiPSC-ECs 
for disease modeling and engineering tissue vasculariza-
tion. Specifically, disease-specific iPSC-ECs can closely 
mimic vascular function and pathological features under 
disease conditions and will be predominantly used to 
provide innovative solutions to rare diseases or genetic 
vascular disorders, and used as drug screening platforms.

MSCs, EPCs, and CPCs exhibit immense potential in 
cell therapy for ischemic diseases. Their future applica-
tions will focus on providing effective support for recov-
ery post-myocardial infarction, reducing the risk of heart 
failure.

Notably, attention to specific BM stromal cell subpop-
ulations has increased. The capacity for differentiating 
into ECs and the broad clinical prospects thereof are cur-
rently in an intensive exploration phase. This field holds 
immense potential, heralding significant breakthroughs 
in regenerative medicine and disease therapeutics.

In summary, a comprehensive understanding of EC ori-
gins and characteristics is pivotal for the precise selection 
of regenerative medicine research models. This under-
standing would effectively facilitate the translation of 
research findings into clinical applications, expediting the 
development of personalized medicine and tissue repair 
technologies.
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