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Abstract
Fibrosis is a pathological process, that could result in permanent scarring and impairment of the physiological 
function of the affected organ; this condition which is categorized under the term organ failure could affect 
various organs in different situations. The involvement of the major organs, such as the lungs, liver, kidney, heart, 
and skin, is associated with a high rate of morbidity and mortality across the world. Fibrotic disorders encompass 
a broad range of complications and could be traced to various illnesses and impairments; these could range from 
simple skin scars with beauty issues to severe rheumatologic or inflammatory disorders such as systemic sclerosis 
as well as idiopathic pulmonary fibrosis. Besides, the overactivation of immune responses during any inflammatory 
condition causing tissue damage could contribute to the pathogenic fibrotic events accompanying the healing 
response; for instance, the inflammation resulting from tissue engraftment could cause the formation of fibrotic 
scars in the grafted tissue, even in cases where the immune system deals with hard to clear infections, fibrotic 
scars could follow and cause severe adverse effects. A good example of such a complication is post-Covid19 lung 
fibrosis which could impair the life of the affected individuals with extensive lung involvement. However, effective 
therapies that halt or slow down the progression of fibrosis are missing in the current clinical settings. Considering 
the immunomodulatory and regenerative potential of distinct stem cell types, their application as an anti-fibrotic 
agent, capable of attenuating tissue fibrosis has been investigated by many researchers. Although the majority 
of the studies addressing the anti-fibrotic effects of stem cells indicated their potent capabilities, the underlying 
mechanisms, and pathways by which these cells could impact fibrotic processes remain poorly understood. Here, 
we first, review the properties of various stem cell types utilized so far as anti-fibrotic treatments and discuss 
the challenges and limitations associated with their applications in clinical settings; then, we will summarize the 
general and organ-specific mechanisms and pathways contributing to tissue fibrosis; finally, we will describe the 
mechanisms and pathways considered to be employed by distinct stem cell types for exerting anti-fibrotic events.
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Background
Fibrosis results from chronic organ injury and is typically 
characterized by tissue hardening and scarring caused by 
the excessive synthesis and deposition of disorganized 
extracellular matrix (ECM) components. Although ECM 
deposition is an inevitable and reversible part of normal 
wound healing, this process can become dysregulated if 
tissue irritant is severe enough or repetitive to sustain 
the production of pro-fibrotic factors, including cyto-
kines, growth factors, angiogenic factors, and proteolytic 
enzymes. These factors contribute to the formation of 
excess fibrous connective tissue and progressive archi-
tectural remodeling that destroys organ structure [1–3]. 
Fibrotic disorders can eventually lead to death due to 
organ malfunction and failure, as seen in the end-stage of 
idiopathic pulmonary fibrosis (IPF), liver cirrhosis, car-
diovascular disease, and progressive kidney disease [4–
8]. Furthermore, fibrosis is implicated in tumorigenesis 
and tumor progression through excessive ECM accumu-
lation that provokes cellular proliferation and alters cell 
polarity allowing cancer development and growth [9, 10].

The fundamental cellular mediators of fibroprolifera-
tive diseases are myofibroblasts with a particular con-
tractile/synthetic phenotype, which is defined as strongly 
activated collagen-secreting, alpha-smooth muscle 
actin-positive (α-SMA+) fibroblasts. Myofibroblasts are 
responsible for excess production, remodeling, and con-
traction of ECM [2]. Myofibroblast differentiation can 
occur following tissue damage by multiple stimuli like 
various infections, chemical insults, autoimmune reac-
tions, allergic responses, and mechanical injuries. The 
origin of myofibroblasts comprises resident fibroblasts, 
mesenchymal cells, and epithelial and endothelial cells 
in a trans-differentiation process known as epithelial 
to mesenchymal transition (EMT), and from circulat-
ing fibrocytes and bone-marrow-derived stem cells [11]. 
This process is normally limited to tissue healing. How-
ever, repetitive injuries and repair lead to uncontrolled 
myofibroblast activity and dysregulated ECM synthesis, 
and the eventual formation of a permanent fibrotic scar. 
Damaged epithelial and/or endothelial cells and matrix 
metalloproteinases (MMPs) produced by myofibroblasts, 
increase blood vessel permeability by disrupting the basal 
membrane, allowing macrophages, lymphocytes, and 
other immune cells to infiltrate [12]. Thereby, a chronic 
inflammatory environment is created, in which a large 
amount of pro-fibrotic cytokines and growth factors like 
transforming growth factor-beta (TGF-β), Wingless/
Int-1 (Wnt1), IL-13, and platelet-derived growth fac-
tor are secreted (PDGF) [2, 13]. Several pathways such 
as TGF-β/ Smad2/3 and WNT/ CBP/β-catenin signal 
transduction, strongly are linked to the pathophysiology 
of fibrosis [14]. TGF-β, as the master regulator of myofi-
broblast differentiation in fibrosis, acts via a well-known 

canonical signaling pathway, in which binding of TGF-β 
to TGF-β receptor 1 (TGFR1, also known as ALK5) 
promotes downstream signaling that leads to phos-
phorylation and activation of Smad2/3 and eventually 
translocation of this complex to the nucleus associated 
with Smad4 [15]. TGF-β through TGFR1 further acti-
vates several non-Smad pathways (also described as non-
canonical pathways) including MAP kinase pathways, 
phosphatidylinositol-3-kinase/AKT pathways, and Rho-
like GTPase signaling pathways, which have been dem-
onstrated to play role in fibrosis [16]. TGF-β1-induced 
transcription factors and WNT-stabilized β-catenin ulti-
mately result in the expression of specific genes involved 
in further myofibroblast activation and production of 
ECM components such as collagen, fibronectin, and 
laminin. Moreover, yes-associated protein 1 (YAP)/tran-
scriptional coactivator with PDZ-binding motif (TAZ) 
signaling, downstream of the Hippo signaling pathway, is 
involved in the expression of pro-fibrotic genes, such as 
connective tissue growth factor (CTGF) and PDGF that 
contribute in proliferation and activation of myofibro-
blasts through PI3K/AKT/mTOR pathway [14]. Target-
ing the fibrotic process in the involved organs remains 
a challenging prospect. Recently, the transplantation of 
various stem cell types has emerged as a promising thera-
peutic approach for fibrotic disease.

Current stem cell applications in the field of fibrotic 
disorders
Stem cells (SCs) are undifferentiated precursor cells with 
two essential characteristics; First, unlimited self-renewal 
capacity, and second, the ability to give rise to various 
specialized cell types [17]. According to the last men-
tioned characteristic, stem cells are classified into two 
major categories; pluripotent which can differentiate into 
any cells in the adult body, and multipotent which differ-
entiates into more limited cell types [18].

Pluripotent stem cells are primarily used in fibrotic 
therapy isolated from the inner cell mass of a blastocyst-
stage embryo, hence named, embryonic stem cells (ESCs) 
[19, 20]. More recently, induced pluripotent stem cells 
(iPSCs), which are obtained by turning fully differenti-
ated adult somatic cells back into an embryonic-like state 
[21–23], have been applied for the treatment of fibrosis 
[24, 25].

Multipotent stem cells are typically found in adult 
tissues or organs and have a restricted differentiation 
capacity depending on their location, where they aid in 
maintaining tissue integrity by replenishing the aging or 
damaged cells [26–28]. Mesenchymal stem cells (MSCs), 
also known as mesenchymal stromal cells, are multipo-
tent SCs widely used to treat diverse fibrotic diseases 
[11]. Adult MSCs, for the first time harvested from bone 
marrow stroma via plastic adhesion, also can be isolated 
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from other tissues, such as placenta, umbilical cord, 
amniotic fluid, adipose tissue, skeletal muscle, heart, 
lung, liver, kidney, Wharton’s jelly [29–31].

Over the past decade, many efforts have been made 
to examine the applicability of stem cell-based therapy 
for diverse diseases that scarcely respond to available 
treatments. To date, MSCs, regardless of the originat-
ing sources, are the most widely stem cell type studied 
in stem cell-based therapy of fibrosis. MSCs exert immu-
nomodulatory, anti-inflammatory, anti-proliferative, and 
anti-apoptotic properties. Despite the clinical applica-
tion of MSCs for nearly ten years, about 75% of studies 
remained in phase II or earlier [32]. In fibrotic disor-
ders, administration of ESCs or iPSCs is the promising 
approach to suppressing noxious pro-inflammatory and 
pro-fibrotic mechanisms and/or replacing the dysfunc-
tional fibrotic tissues. In the following sections, we dis-
cuss the properties of various types of SCs and their 
advantages and challenges associated with every type 
of these SCs used in stem cell-based approaches. Fig.  1 
schematically represents these cells and summarizes 
their application across different organ fibrosis as well as 
a brief description of their mechanism of action (Fig. 1).

Mesenchymal stem cells
MSCs have become an attractive therapeutic option for 
treating chronic inflammatory disorders, autoimmune 
diseases, and fibrosis based on their ability in immuno-
modulation and anti-inflammatory characteristics. MSCs 
possess advantages, including ease of culture and avail-
ability, low immunogenicity, and fewer ethical debates 
[33]. Therefore, MSCs can be safely administered in 
either an autogenic or allogeneic manner to recipients 
due to a lack of host immune reactivity [34]. A wide range 
of clinical trials demonstrated that systemic administra-
tion of MSCs was well tolerated and not associated with 
significant short-term adverse events [35].

Despite these promising features, several concerns sur-
rounding the efficiency and availability of MSCs due to 
their limited life span and undergoing senescence dur-
ing in vitro expansion challenge their applicability [36]. 
The bulk of MSCs harvested from primary tissues is 
insufficient for any following application in clinical set-
tings. Unlike ESCs and iPSCs, MSCs have a limited 
lifespan leading to significant changes in their pheno-
type and gene expression due to cell culture adaptation 
[37]. In addition, notable heterogeneity was demon-
strated between separate subpopulations of MSCs when 
observed at the resolution of a single cell, even from a 
single source. Hence, another challenge involved a proper 
method to purify MSCs and ensure their homogeneity 
[38].

However, MSCs assumed to be a safer source than 
ESCs; their immunogenic and immunomodulatory 

properties need further elucidation. It is indicated that 
as opposed to mesenchymal progenitor cells separated 
from non-fibrotic lungs, the mesenchymal progenitor cell 
isolated from the lungs of IPF patients generate daughter 
cells that exert a transcriptional profile similar to that of 
IPF fibroblasts and fibrogenic activity to develop fibrotic 
lesions [39]. The other study by Waterman and colleagues 
challenged the widely accepted dogma that supposes 
MSCs are only immunosuppressive. This study revealed 
the polarization of two distinct phenotypes of MSCs fol-
lowing the involvement of specific TLRs. TLR3 activa-
tion led to upregulated fibronectin deposition, expression 
of immune-dampening mediators, and sustained T-cell 
inhibition. Conversely, TLR4 activation led to collagen 
deposition, expression of pro-inflammatory mediators, 
and reverse of the MSC-established suppressive mecha-
nisms of T-cell activation [40]. These findings suggest 
that the immune-modulating activity of MSCs is more 
complex.

MSCs can be used in an allogeneic manner due to the 
low expression of MHC class I and II antigens allow-
ing them to escape immune recognition. However, allo-
immune response and immune rejection of allogeneic 
MSCs have been reported [41–43]. A few ischemic 
and non-ischemic heart failure patients have produced 
donor-specific antibodies against the MHC class I anti-
gen, persisting for more than one month following the 
allogeneic MSC infusion. The expression of MHC anti-
gens may be upregulated on the MSC surface in vivo [35]. 
Pro-inflammatory cytokines such as IFN-γ can upregu-
late the expression of MHC class I and II on MSCs [44, 
45]. The finding can explain the cause of these conflicting 
results that MSCs enable to fluctuate the surface MHC 
class I and II profiles. A phenotype with high MHC class 
I and low or negative MHC class II expression was ini-
tially identified in MSCs from many species; however, 
MSCs from mice, humans, and horses with high levels 
of MHC class II were also described [41, 46, 47]. These 
findings collectively suggest that MSCs have a dynamic 
immune phenotype that can change their immune status.

Mesenchymal stem cells for the treatment of fibrotic diseases
After in vitro expansion and systemic administration by 
intravenous (IV) or intraperitoneal (IP) injection, MSCs 
tend to target sites of injury [48, 49]. Where they pro-
mote tissue repair, modulate immune responses, inhibit 
inflammation, and modify the microenvironment [48, 
50]. MSCs also exert anti-apoptotic and anti-scarring 
properties favoring regression of fibrosis. MSCs medi-
ate these effects directly or in a paracrine manner via 
secretome.

Since, MSCs exert different immunomodulatory capac-
ities, proliferation properties, and therapeutic functions 
depending on their origin, we distinctly describe the 
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Fig. 1 Schematic representation of preparing 3 distinct types of stem cells and the corresponding mechanisms exploited by each type to resolve various 
organ fibrosis in summary.  Mesenchymal stem cells (MSCs), possible sources for isolating them, and their major anti-fibrotic effects are summarized in the 
first row. Induced pluripotent stem cells (iPSCs), and a brief schematic representation of their preparation basis, as well as their major anti-fibrotic func-
tions, are summarized in the second row. Embryonic stem cells (ESCs), their in-vitro generation process, and their major anti-fibrotic effects are defined 
in the third row
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anti-fibrotic properties associated with the MSCs derived 
from different sources.

Bone marrow-derived MSCs (BM-MSCs)
BM-MSCs were the first type of isolated MSCs and the 
vast majority of studies on stem cell-based therapy have 
examined their role in fibrosis, particularly fibrotic lung 
diseases [51]. BM-MSCs may have a more significant 
immunomodulatory potential than MSCs from other 
sources. BM-MSCs more effectively modulated the phe-
notypic transition of macrophages in several models of 
lung injury, compared with adipose-derived MSCs (AD-
MSCs) [52, 53]. In co-culture with spleen mononuclear 
cells, BM-MSCs enabled suppression of the CD4 and 
CD8 expression, whereas AD-MSCs only suppressed 
the expression of CD4 [54]. A recent study showed that 
BM-MSCs displayed a higher immunomodulatory activ-
ity compared with AD-MSCs and Wharton’s jelly MSCs 
(WJ-MSCs). This study assessed the immunomodula-
tory activity based on the MSCs’ potency to inhibit the 
phytohemagglutinin-induced proliferation of peripheral 
blood mononuclear cells [55]. Collectively, BM-MSCs 
seem to be the best type of MSCs for immune-regulatory 
purposes.

However, there are several concerns regarding the 
administration of MSCs in some fibrotic diseases, such as 
idiopathic pulmonary fibrosis (IPF). The subpopulations 
of BM-MSCs are reported to have a fibrogenic nature and 
contribute to fibrosis progression. While delivered at the 
established fibrotic phase, they can acquire fibroblast or 
myofibroblast phenotype undergoing the local micro-
environment in injured lungs [39, 49, 56]. According to 
this evidence supporting the potential improving effect 
of MSCs only by early intervention, MSC therapy for 
patients who have already developed pulmonary fibro-
sis is impractical. Recent studies found that although the 
administration of MSCs in the early stage during active 
inflammation might be more effective, fortunately, late 
administration of MSCs also has a therapeutic effect 
on established lung fibrosis [57]. By delayed injection, 
amniotic membrane MSCs (AM-MSCs), compared with 
BM-MSCs, were more effective in reducing inflamma-
tion and collagen deposition, and amelioration of estab-
lished fibrosis in a repeated bleomycin (BLM) model of 
lung injury [58]. Thus, the therapeutic effect of MSCs 
impacted by the intervention time of administration.

As a therapeutic effect of MSCs is also impacted by 
donor-related factors such as allogeneic or autologous 
manner of transplantation, allogeneic BM-MSCs admin-
istration showed more efficacy in the treatment of lung 
injury than autologous BM-MSCs, which could be asso-
ciated with the restricted auto-immunoregulatory capac-
ity of autologous MSCs [59].

Although BM-MSCs exert great immunomodulatory 
properties, they showed a lower proliferation capacity 
and highest sensitivity to the stress microenvironment 
(oxygen and nutrient limitations) compared to AD-MSCs 
and WJ-MSCs. BM-MSCs exhibit a longer population 
doubling time (DT) and enter senescence after two pas-
sages. Whereas, the DT of WJ-MSCs is shorter than 24 h 
and stable for at least five passages [55]. Similarly, another 
study demonstrated the lowest proliferation capacity of 
BM-MSCs compared to that of AD-MSCs or umbilical 
cord MSCs (UC-MSCs) [60]. UC-MSCs showed a shorter 
DT than AD-MSCs [61], thus possessing the highest pro-
liferation capacity among the MSCs mentioned above.

The in vivo therapeutic effects of BM-MSCs have been 
shown in various models and clinical trials. BM-MSCs 
augmented by granulocyte colony-stimulating factor 
(G-CSF) exert remarkable anti-fibrotic effects in animal 
models of lung injury [62]. Different studies have shown 
that the administration of BM-MSCs reverses the BLM-
induced fibrotic effects; BM-MSCs play an influential 
role in improving lung fibrosis and ameliorating fibrosis 
symptoms [63–66]. However, extra-pulmonary altera-
tions and senescence have been indicated in BM-MSCs 
from IPF patients, promoting inflammation and senes-
cence in the local microenvironment [67]. A more recent 
study reported the clinical and functional progression in 
IPF patients who received an endobronchial infusion of 
BM-MSCs during a phase I clinical trial. This study also 
found some genomic instability in BM-MSCs cultured, 
which may be unfavorable using autologous MSCs [68].

The anti-fibrotic activity of BM-MSCs has also been 
shown in several investigations of renal fibrosis. BM-
MSCs or their conditional medium mitigated disease in 
adenine, cisplatin, adriamycin-induced animal models, 
unilateral ureteral obstruction (UUO), and ischemia-
reperfusion injury model [69–72]. Moreover, the ability 
of BM-MSCs to differentiate into hepatocyte-like cells 
(HLCs) in vitro [73] and liver restoration in hepatic fail-
ure have been shown [74]. However, the results from 
clinical trials regarding the therapeutic effect of BM-
MSCs in improving histologic fibrosis remained contro-
versial [75, 76].

Umbilical cord MSCs-derived (UC-MSCs) and placenta-
derived MSCs (P-MSCs) and amnion-derived MSCs (AM-MSCs)
Some challenges regarding BM-MSCs, such as the low 
proliferation capacity, painfulness, and invasive isolation 
procedure, derived attention toward alternative sources. 
The alternative sources include the umbilical cord, amni-
otic membrane, and discarded test-tube human embryos, 
which are treated as biological waste and exhibit great 
proliferation activity, low immunogenicity, and high 
stem cell plasticity/phenotype [61, 77]. UC-MSCs were 
indicated to preserve proliferation capacity for greater 
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than 90 population doublings without senescence while 
maintaining MSC properties and functions [78]. Numer-
ous studies have addressed the safety, anti-inflammatory, 
and anti-fibrotic activity in different diseases with inflam-
matory and fibrotic etiology, including lung fibrosis [38, 
58, 79, 80], liver fibrosis [81–83], heart failure [84, 85] 
and COVID-19 [86, 87]. The immunosuppressive func-
tions of UC-MSCs have been reported to mediate by 
recruiting regulatory T cells, via their interaction with 
macrophages during the repair process of BLM-induced 
lung fibrosis [38]. The in vivo anti-fibrotic activity of 
UC-MSCs has also been linked to the downregulation 
of the IL-6/IL-10/TGFβ axis involving lung M2 macro-
phages [79]. Human UC-MSCs and their exosomes could 
attenuate liver fibrosis induced by CCl4 in mice [81, 82]. 
UC-MSC transplantation showed to be effective in both 
regression of liver fibrosis and reducing related ascites in 
patients [83]. Because of these potent immunomodula-
tory and anti-inflammatory effects, UC-MSCs have been 
recently suggested to be useful for dampening the exces-
sive inflammatory response in the lungs, leading to acute 
lung injury, acute respiratory distress syndrome (ARDS), 
organ failure, and death in the severe COVID-19 patients 
[86–88].

Compared with ESCs, UC-MSCs are less readily avail-
able, whereas P-MSCs can engraft in solid organs after 
xenotransplantation [89]. The administration of P-MSCs 
effectively mitigated BLM-induced lung fibrosis along 
with the inhibition of neutrophil infiltration [90], and 
suppression of pro-fibrotic cytokines [91]. P-MSC infu-
sion was feasible and safe in IPF patients and associated 
only with stable disease function and severity [92].

AM-MSC transplantation reduced inflammation and 
alleviated BLM-induced lung fibrosis in mice [93]. Extra-
cellular vesicles derived from AM-MSCs ameliorated 
hepatic inflammation and fibrogenesis [94], oxidative 
stress, inflammatory cytokines, TGF-β, and α-SMA, as 
well as improving the microvascular dysfunction and 
portal hypertension in the CCl4-induced liver fibrosis rat 
model [95].

Adipose tissue-derived mesenchymal stem cells (AD-MSCs)
AD-MSCs are considered an acceptable alternative for 
BM-MSCs because of their advantages, including ease 
of isolation via liposuction with minimal discomfort to 
patients, more abundance, potentially higher stemness, 
and more in vitro proliferation and expansion capacity 
without entering senescence, producing a higher amount 
of bioactive mediators such as hepatocyte growth factor 
(HGF) and cytokine (IL-1, IL-6, IL-8) receptor antago-
nists [96–98].

A large body of evidence showed the anti-fibrotic effi-
cacy of AD-MSCs in the improvement of lung fibro-
sis [99–102], liver fibrosis [103, 104], renal fibrosis [98], 

and dermal fibrosis [105–107]. Chen and colleagues 
indicated that the AD-MSCs-mediated anti-pulmonary 
fibrosis effect involved the anti-inflammatory and anti-
apoptosis activities, which are promoted by reducing the 
pulmonary inflammatory response (downregulation of 
TNF-α, IL-1β, IL-6, and IL-10) and inhibition of mito-
chondrial apoptosis-related protein (Caspase-3) expres-
sion. Thereby, diminished pulmonary fibrosis of silicosis 
in rats [102]. Consistently, another study demonstrated 
the therapeutic effect of AD-MSCs in both inflamma-
tory and fibrotic phases of BLM-induced interstitial lung 
disease in mice. AD-MSCs achieved that by inhibiting 
pro-inflammatory cytokines (TNF-α and IL-12) in acti-
vated macrophages, inducing the apoptosis of activated 
macrophages, suppressing the differentiation/prolifera-
tion of Th2 cells, and promoting the differentiation/pro-
liferation of regulatory T cells [100]. Although the vast 
majority of studies comply with these, the controversial 
findings obtained by Uji and colleagues demonstrated 
that intravenous injection of AD-MSCs was inefficient 
for the amelioration of BLM-induced lung injury in rats 
[108]. In another study, they further examined the intra-
tracheal route of administration and showed that AD-
MSCs did not affect the severity of lung damage at the 
onset of disease, but prevented the ongoing aggravation 
of lung injury in the long term [109]. Although the intra-
venous administration of AD-MSCs and their lack of 
homing capacity are suggested as the probable reason for 
observed treatment failure, previous research provided 
evidence of the protective effect of intravenously admin-
istrated AD-MSCs against BLM-induced lung fibrosis, 
particularly in early-stage [100, 101, 110]. The older ani-
mal’s age and stage of the fibrotic disease are likely the 
other reasons. Notably, the anti-fibrotic activity of AD-
MSCs was shown to be age-dependent, as young-donor-
derived AD-MSCs, in contrast to old-donor-derived 
AD-MSCs, inhibit fibrosis in the aged animal [110].

Moreover, the intravenously administrated autologous 
AD-MSCs in COVID-19 patients were evaluated for 
safety and prophylactic efficacy in a phase II study and 
received FDA approval [111]. The comparative study on 
BM-MSCs and AD-MSCs in the treatment of rat model 
of CCl4-induced liver fibrosis indicated that although 
both of them are similarly effective at attenuating liver 
fibrosis by promoting the apoptosis and suppressing 
the activation and proliferation of hepatic stellate cells 
(HSCs), AD-MSCs were relatively more effective in 
anti-inflammatory and anti-liver fibrotic activities [103]. 
Injected AD-MSCs into UUO model rats via tail vein, or 
intraperitoneally into ischemia-reperfusion injury (IRI) 
mice resulted to reduce EMT, α-SMA, fibroblast-specific 
protein 1 (FSP-1), and ameliorate inflammatory response 
and renal interstitial fibrosis [112, 113].
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Taken together, the anti-fibrotic efficacy of MSCs 
affected by; (i) source-related factors, including immu-
nomodulatory potency, stemness characteristics, the 
potential of multi-linage differentiation, proliferation 
properties, n, (ii) donor-related factors, including immu-
nogenicity (allogeneic or autogenic transplantation), 
age, sex and health status (such as obesity) [114, 115], 
(iii) intervention related parameters, such as time, infu-
sion manner, dose, and experimental model. Considering 
these variables, definitive comparisons between inves-
tigations are obscured, although more frequent of them 
endorsed that MSCs can attenuate fibrosis. .

Embryonic stem cells
To date, ESCs used to cure different degenerative and/
or inflammatory diseases. Theoretically, the pluripotent 
nature of ESC makes them an ideal candidate to regen-
erate and replenish damaged tissues [116]. In the case of 
fibrosis, cell populations derived from ESCs have been 
shown to display immunomodulatory, anti-inflammatory, 
and anti-fibrotic functions.

However, several impediments make ESC-based ther-
apy a challenging effort. Since the isolation of ESCs leads 
to the destruction of embryos, many ethical and legal 
obstacles restrict the clinical application of these cells. 
Moreover, their strong proliferative potential and multi-
lineage differentiation capacity may result in teratoma 
formation when ESCs injected in vivo before commit-
ment [117]. ESCs present foreign antigens and immune 
rejection can occur following transplantation [118]. 
Propagation of ESCs, preserving their undifferentiated 
state, and differentiation into desirable cell lines in cell 
culture are complex technical challenges [119].

Embryonic stem cells for the treatment of fibrotic diseases
Intramyocardial injection of mouse ESCs inhibits car-
diac fibrosis in the infarcted heart of C57BL/6 mice 
[120]. Pneumocytes derived from in vitro differentiation 
of ESCs reduced inflammation and fibrosis markers and 
recovered lung injury in the pulmonary fibrosis model 
[121]. Furthermore, amelioration of pulmonary fibrosis 
was observed after the transplantation of differentiated 
human ESCs (into lung epithelial lineage-specific cells) in 
the bleomycin mouse model of IPF. Interestingly, amelio-
ration of lung injury was also revealed in regions that did 
not harbor engrafted cells, suggesting that differentiated 
human ESCs promoted anti-fibrotic effects via direct 
and indirect (paracrine) mechanisms [122]. In a recent 
study, Wu and colleagues reported the generation of clin-
ical-grade human embryonic stem cells (hESCs)-derived 
immunity- and matrix-regulatory cells (IMRCs), which 
avoid the ethical controversy of ESCs and heterogeneity 
among subpopulations of MSCs. IMRCs mimicked the 
MSCs in their ability of self-renewal and multi-lineage 

differentiation and exhibited a higher immunomodula-
tory capacity and anti-fibrotic activity compared with 
UC-MSCs. In addition, they were superior to UC-MSCs 
and pirfenidone in treating lung injury and fibrosis, with 
excellent efficacy and safety profiles in mice and mon-
keys [123]. In a study by Liu et al. (2023) they adminis-
tered human embryonic stem cell exosomes (hESC-exo) 
to bleomycin-induced mouse model of IPF from the first 
day after treatment. Their findings revealed that hESC-
exo notably alleviated inflammation, removed collagen 
deposition, and restored alveolar architecture in the 
lungs. They have further shown that miR-17-5p within 
hESC-exo directly targeted thrombospondin-2 (Thbs2), 
which modulates inflammation and fibrosis, thereby pro-
tecting against bleomycin-induced lung toxicity through 
the miR-17-5p/Thbs2 axis [124].

Induced pluripotent stem cells (iPSCs)
iPSCs are promising candidates superior to the pre-exist-
ing stem cells for regenerative therapy. iPSCs generated 
by reprogramming somatic cells with ectopic expression 
of specific pluripotency genes to acquire self-renewal 
ability and the potential for differentiation into all cell 
types of the body [21–23]. iPSCs; first, closely resemble 
ESCs, thus providing the opportunity to bypass poten-
tial issues of allogeneic immune rejection and ethical 
concerns about isolation and use of human ESCs [125]; 
second, possess the capacity of unlimited replication to 
produce quasi-identical genetic and functional proper-
ties, thus can bypass several concerns surrounding prolif-
eration characteristics, different genetic background, and 
heterogeneity of MSCs [126].

Furthermore, iPSCs can be generated directly from 
patient-specific somatic cells and transplanted in an 
autologous manner despite ESCs [127]. Derivative cells 
from iPSCs are unlikely to cause immune rejection upon 
transplantation [128]. Like ESCs, iPSCs present low or 
absent levels of MHC class I and are negative for MHC 
class II. Unlike MSCs, the expression of MHC class II on 
iPSCs is not upregulated during differentiation and IFN-γ 
stimulation. The results obtained thus far regarding the 
alteration in MHC class I expression upon differen-
tiation or stimulation with pro-inflammatory cytokines, 
and immunogenicity of iPSCs are conflicting [129–131], 
presumably, due to a variety of reprogramming methods 
[132]. More notably, iPSCs have been found to possess 
more potent immunomodulatory effects in vitro, than 
BM-MSCs [133]. These characteristics offer iPSCs as an 
ideal candidate for anti-fibrotic therapy.

The pluripotency genes used for the generation of 
iPSCs include four reprogramming factors; Oct3/4 
and Sox2 with either Klf4 and c-Myc or Lin28 and 
Nanog, which were initially introduced into the mouse 
and human somatic cell by viral transfection system 
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(retroviruses, lentiviruses or adenoviruses) [21–23, 134]. 
However, neither the expression of oncogenic transcrip-
tion factor c-Myc nor the viral delivery method is likely 
to be approved for human therapy. Subsequently, c-Myc-
free iPSCs were generated using only three reprogram-
ming genes, Oct-4/Sox2/Klf4, excluding c-Myc, to reduce 
tumorigenicity [135]. An integrated viral genome could 
raise the incidence of mutations and subsequent tumor 
formation after iPSC grafts. To resolve this problem, 
integration-free vectors have been designed, includ-
ing expression plasmids [136], episomal plasmids [137], 
and Sendai virus-based vectors [138]. The generation of 
c-Myc- virus-free iPSCs, addresses a critical safety con-
cern for the potential use of iPSCs for clinical application. 
To increase the transfection efficacy and safety, several 
approaches for generating the human iPSC free of repro-
gramming factors have also been developed, including 
Cre-recombinase excisable viruses [139], protein- [140], 
and mRNA-based methods [141].

Despite these advances in iPSCs technology, genomic 
instability and emerging genetic variations have 
remained a safety concern regarding tumorigenicity. Pre-
existing variations in parental somatic cells, reprogram-
ming-induced mutations during the reprogramming 
process, and passage-induced mutations during the pro-
longed culture, have been considered the major origins of 
genetic variations of iPSCs. Several variables of genera-
tion methods including the source of somatic cells, deliv-
ery method, reprogramming factors, and cell passage can 
affect genomic instability [142]. Towards clinical applica-
tions, it is essential to modulate these variables properly 
to produce iPSCs more efficiently and safely.

Further genomic, epigenomic, and functional assess-
ment of the iPSCs produced by these new methods is 
crucial to understand whether there is an appropri-
ate method that may allow a safer clinical application of 
iPSCs [143].

iPSCs for the treatment of fibrotic diseases
To date, most endeavors in cell-based therapy for organ-
specific disorders have focused on two main areas; to 
make unlimited numbers of patient-specific tissue cells 
to regenerate the damaged organ, or to provide autolo-
gous genetically corrected cells for permanent corrective 
therapy of incurable and hereditary diseases of the liver 
[144], heart [145], kidney [146, 147], and skin [148–150]. 
Furthermore, some studies utilized a limitless cell sup-
ply obtained from patient somatic cell-derived iPSCs for 
iPSC-based disease modeling, which is used to examine 
pathologic mechanisms and pharmacological interven-
tions in various diseases such as organ fibrosis and failure 
[151–155]. The studies in all the above-mentioned scopes 
have been excluded from this review.

Fortunately, intravenous administration of mouse 
c-Myc-free iPSCs, as well as their conditioned medium, 
has been indicated to attenuate BLM-induced pulmonary 
fibrosis. The protective mechanism includes the early 
amelioration of inflammation, reduced pro-inflammatory 
and pro-fibrotic cytokines and chemokine, and increased 
production of anti-fibrotic chemokine interferon-γ-
induced protein 10 (IP-10) in the injured lungs. In addi-
tion, tumorigenesis was not detected within the 2-month 
follow-up after the transplantation of c-Myc-free iPSCs 
[24]. Similarly, another study confirmed the inhibitory 
effects of these cells in BLM-induced lung injury, via the 
reduction in lung wet/dry weight ratio, collagen depo-
sition, body weight loss, and inflammatory mediators 
[156]. In the acute hepatic failure (AHF) murine model, 
intravenously transplanted mouse c-Myc-free iPSCs or 
iPSC-derived hepatocytes (iPSC-Heps) tended to migrate 
into the injured liver area, where they improved liver 
functions and rescued animals from lethal AHF. Notably, 
no tumor formation was reported in the c-Myc-free iPSC 
and c-Myc-free iPSC-Hep grafts six months after trans-
plantation, despite of iPSCs with c-Myc [135]. Consis-
tently, Caldas and colleagues reported that rat c-Myc-free 
iPSCs can retard chronic kidney disease (CKD) progres-
sion, but also develop Wilms’ tumors in rats [157]. So, 
they blocked the proliferative capacity of human iPSCs 
with mitomycin C and also differentiated human iPSCs 
into renal progenitor cells (RPCs) prior to the infusion to 
avoid tumor formation in their next study. They observed 
the beneficial effects of both cell types in attenuating 
CKD progression, which was indicated by improvement 
of clinical and histological CKD parameters, including 
decreased tubulointerstitial damage (interstitial fibrosis 
and tubular atrophy), glomerulosclerosis and α-SMA. 
However, human iPSCs, compared with RPCs, were 
shown to be more efficient, presumably as a consequence 
of their paracrine effect [158]. According to their evi-
dence, tumor formation promoted by the iPSCs seems 
to remain a limitation, although the technology allow-
ing the production of c-Myc-free iPSCs avoids oncogen-
esis. Thus, this observation has been linked to genomic 
instability and the incidence of mutation [158]. However, 
it is not clear that these mutations could lead to adverse 
events. Further investigations are required to charac-
terize genetic variations and to find which mutations 
in iPSCs can confer adverse effects such as malignant 
outgrowth.

Although these investigations underlying the use of 
iPSCs in organ fibrosis showed promising results, there 
are only a few publications regarding the anti-fibrotic 
function and possible mechanism of iPSCs, when admin-
istered before differentiation. Other studies instead 
examined the effect of iPSCs-derived cell lineages or the 
iPSCs-conditioned medium on fibrosis.
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iPSC-derivative cell lines for the treatment of fibrotic diseases
A new approach to exploring the applications of iPSCs 
in organ fibrosis is using derivative cell lines obtained by 
in vitro differentiation of mouse or human iPSCs. Deri-
vation of endoderm and then distal alveolar epithelial 
type II cells (AEC2)-like, alveolar epithelial type I cells 
(AEC1)-like, and proximal lung cells from iPSCs have 
been well characterized in vitro [159–161], and promis-
ing results with the transplantation of iPSC-derived epi-
thelial cell progenitors reported in vivo.

The intratracheal administration of mouse iPSC-
derived AEC2 inhibited lung inflammation and collagen 
deposition, and abrogate lung injury in the BLM-induced 
mouse acute lung injury model [162]. Another study 
recently showed that intratracheal transplantation of 
human iPSC-AEC2 in the rat model of BLM-induced 
lung fibrosis 15 days after BLM challenge, was able to 
reduce disease severity, when fibrosis has already devel-
oped, by suppressing both TGF-β and α-SMA expression 
and decreasing the collagen deposition [163]. Impor-
tantly, it was the first report of the effectiveness of this 
approach during the fibrotic stage of the disease, when 
fibrosis had been fully developed. Hence, address the 
issue regarding the feasibility of iPSC-based therapy in 
patients who already developed fibrosis.

Consistently, intravenously injected human iPSC-
derived lung epithelial cell progenitors (LECs) enriched 
by magnetic-activated cell sorting (MACS) for CD166 (a 
selective marker for early lung progenitor cell) integrate 
into the lung alveoli of BLM-injured NOD/SCID mice, 
increased the survivability of mice, reduced the lung 
damage and reactive fibrosis and improved pulmonary 
function. However, these protective effects of iPSC-LECs 
supposedly were less signified in the survival rates, com-
pared to those observed with LECs derived from hESs 
[164]. The cause of this observation has been linked to 
epigenetic profiles, as a principal difference between 
ESCs and iPSCs described by several studies. iPSCs 
exert the epigenetic memory and retain the transcrip-
tional memory of the original cells [165, 166]. Moreover, 
iPSCs express a unique signature, which could be related 
to ineffective silencing of the gene expression pattern of 
original cells [167]. The inherent genetic and epigenetic 
hallmarks of iPSCs may lead to less efficient diffraction 
into various somatic cell types aside from their origi-
nating cell type [164]. This information emphasizes the 
significance of comprehensive profiling of iPSC lines 
to determine those relevant for a convenient and safe 
application.

iPSC secretome for the treatment of fibrotic diseases
Because of its acellular nature, the use of iPSCs-con-
ditioned medium and secretome, containing the para-
crine-secreted products, is considered an alternative to 

circumvent the safety concerns and long-term effects of 
iPSCs [168]. The intratracheally instilled human iPSCs-
conditioned medium was shown to reverse fibrosis in the 
bleomycin-injured rat lungs [169]. This anti-pulmonary 
fibrosis of intratracheal iPSCs-conditioned medium was 
subsequently reported to be partially mediated by hepa-
tocyte growth factor (HGF), accompanied by reduction 
of the collagen deposition, TGFβ1, and α-SMA expres-
sion in rat lungs [170]. Another report confirmed the 
protective effects of the iPSCs-conditioned medium on 
BLM-induced lung fibrosis in mice, in part through the 
TGF-β1-related pathway [171]. Further investigation to 
indicate the anti-fibrotic mechanism of iPSC secretome 
highlighted the alteration in phenotype and gene expres-
sion pattern of interstitial macrophages. The iPSCs-
conditioned medium reduced fibrosis and the total 
number of macrophages (M1 and M2 phenotypes) in 
the BLM injured rat lungs, and microarray data showed 
involvement of three essential pathways; (a) branching 
morphogenesis, (b) immune regulation, and (c) tissue 
regeneration after injury [172]. In a more recent report, 
the anti-fibrotic and regenerative potential of the iPSCs-
conditioned medium have been related to Amyloid pre-
cursor protein (APP) and ELAV-like protein 1 (ELAVL-1) 
as essential components of the iPSC secretome that that 
contributes to change the secretory pattern and gene 
expression of macrophages towards anti-fibrotic pheno-
types in vitro [173].

Moreover, the anti-fibrotic effect of human iPSC- 
extracellular vesicles (EVs) showed at protein and gene 
levels to reverse liver fibrosis in two murine models of 
liver injury by CCl4 and bile duct ligation. These EVs 
enabled the reduction of pro-fibrogenic markers such as 
α-SMA, CollagenIα1, and fibronectin in the hepatic stel-
late cell (HSC) and hepatic collagen deposition [174].

In the following highlights, the major points in utiliz-
ing each type of stem cell for antifibrotic purposes are 
summarized:

Mesenchymal stem cells (MSCs)

  • MSCs are a promising cell-based therapy for chronic 
diseases due to their immunomodulatory and anti-
inflammatory properties.

  • They can be obtained from various sources like bone 
marrow, adipose tissue, and umbilical cord.

  • MSCs have limitations like low proliferation capacity 
and potential for becoming fibrotic themselves.

  • Studies show conflicting results on the effectiveness 
of MSCs depending on the source, timing of 
administration, and disease model.
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Mesenchymal stem cells for the treatment of fibrotic diseases

  • MSCs target injured sites and promote tissue 
repair, modulate immune responses, and inhibit 
inflammation.

  • Bone marrow-derived MSCs (BM-MSCs) have been 
most studied for treating fibrotic lung diseases.

  • BM-MSCs may have a stronger immunomodulatory 
effect than MSCs from other sources.

  • However, BM-MSCs from IPF patients may worsen 
fibrosis and allogeneic BM-MSCs might be more 
effective than autologous ones.

  • Adipose tissue-derived MSCs (AD-MSCs) are an 
alternative to BM-MSCs due to easier isolation and 
higher proliferation capacity.

  • Studies show the effectiveness of AD-MSCs in 
improving lung, liver, and kidney fibrosis.

  • Umbilical cord MSCs (UC-MSCs) and Placenta-
derived MSCs (P-MSCs) are gaining attention due 
to their ease of availability and immunomodulatory 
properties.

  • Studies suggest their effectiveness in various fibrotic 
diseases, including lung fibrosis and COVID-19.

Embryonic stem cells (ESCs)

  • ESCs are attractive for treating fibrosis due to their 
ability to differentiate into various cell types and their 
immunomodulatory properties.

  • However, ethical concerns regarding embryo 
destruction and safety risks limit their clinical 
application.

  • ESCs can form tumors (teratomas) if not properly 
managed before transplantation.

  • The body may reject transplanted ESCs due to their 
foreign antigens.

  • Maintaining ESCs in an undifferentiated state 
and differentiating them into desired cell lines is 
challenging.

ESCs for treating fibrotic diseases

  • Studies show that ESC-derived cells can reduce 
inflammation and fibrosis in animal models of lung 
disease.

  • Transplanted ESCs can improve lung function 
through direct and indirect (paracrine) mechanisms.

  • Recent studies have developed human ESC-derived 
immunity- and matrix-regulatory cells (IMRCs) that 
avoid ethical concerns and show promise in treating 
lung fibrosis.

  • ESC-derived exosomes containing microRNAs may 
also be a therapeutic approach for fibrosis.

Induced pluripotent stem cells (iPSCs)

  • iPSCs are reprogrammed adult cells that hold 
promise for regenerative medicine due to their 
pluripotency and ability to be patient-specific, 
avoiding immune rejection.

  • Safety concerns exist due to the risk of tumor 
formation from residual reprogramming factors and 
genetic variations.

  • c-Myc-free iPSCs and integration-free vectors for 
reprogramming are being developed to improve 
safety.

iPSCs for treating fibrotic diseases

  • Studies using c-Myc-free iPSCs show promising 
results in reducing fibrosis in animal models of lung 
and liver diseases.

  • iPSCs can be used for disease modeling to 
understand the mechanisms of fibrosis.

  • Tumor formation remains a concern, although 
c-Myc-free iPSCs mitigate this risk.

  • Further research is needed to understand the long-
term effects of iPSCs.

iPSC-derived cell lines for treating fibrosis

  • Transplantation of iPSC-derived epithelial cells 
shows promise in treating lung fibrosis in animal 
models.

  • iPSC-derived cells may be less efficient than ESC-
derived cells due to epigenetic differences.

  • Careful selection and profiling of iPSC lines is crucial 
for optimal therapeutic effects.

iPSC secretome for treating fibrotic diseases

  • iPSC-conditioned medium containing paracrine 
factors offers a safer alternative to cell therapy for 
fibrosis.

  • Studies suggest that iPSC secretome promotes an 
anti-fibrotic phenotype in macrophages and reduces 
fibrosis.

  • Specific components of the iPSC secretome, like 
Amyloid precursor protein (APP) and ELAV-like 
protein 1 (ELAVL-1), may be key players in its anti-
fibrotic effects.
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  • iPSC-derived extracellular vesicles (EVs) have also 
shown promise in reversing liver fibrosis.

Overall, MSCs currently appear to be the most promising 
option for treating fibrosis due to their safety, feasibility, 
and anti-fibrotic properties. However, research on iPSCs 
and ESCs is ongoing, and they hold future potential 
with advancements in technology and overcoming ethi-
cal concerns. Also, it should be noted that the optimal 
stem cell type for treating fibrosis might vary depend-
ing on the specific organ affected and the severity of the 
condition. Further research is needed to determine the 
most effective delivery methods and dosing regimens 
for each type of stem cell therapy as well. Table 1 sum-
marizes the advantages and disadvantages of using each 
stem cell type as well as their application in ongoing clini-
cal studies.

Pathogenic insights of organ fibrosis affected by 
stem cells
Fibrosis can occur in almost all tissues and organs in the 
body. Extensive tissue remodeling and aberrant wound 
healing in some diseases, such as systemic sclerosis, idio-
pathic pulmonary fibrosis, liver cirrhosis, cardiovascular 
fibrosis, and chronic kidney disease (CKD) cause a dev-
astating fibrotic process, which can lead to organ failure 
and death. Here, we describe the pathogenesis underlying 

organ-specific fibrosis, with a focus on pathological 
mechanisms affected by stem cell therapy.

Pulmonary fibrosis (PF)
The fibrotic process is shared with numerous lung dis-
eases, including sarcoidosis, hypersensitivity pneumoni-
tis, and pneumoconiosis. It is also observed as an adverse 
effect of some drugs. Pulmonary fibrosis is further 
accompanied by systemic inflammatory and autoimmune 
diseases or connective tissue disorders such as rheuma-
toid arthritis and systemic sclerosis [25]. This complica-
tion can also be secondary to lung infection, as a current 
example of COVID-19. A more frequent and progressive 
form of pulmonary fibrosis with unknown etiology and 
poor prognosis is idiopathic pulmonary fibrosis (IPF), 
which is also considered the most common type of inter-
stitial lung disease (ILD) [175].

Pathogenesis of IPF is complex, but the chronic inflam-
matory process and persistently epithelial-dependent 
fibroblast-activation, and overproduction of collagen 
within the lung tissue are central events [176]. Repetitive 
injury and dysfunction of alveolar epithelial cells (AECs), 
as an initial step in IPF, form the inflammatory early stage 
[177]. The alveolar-capillary membrane disrupts and 
alveolar epithelial and endothelial cells undergo apopto-
sis. Apoptotic cells recruit a variety of inflammatory cells 
and lead to lung tissue regeneration. Damaged epithelial 

Table 1 Comparison of Stem Cell Types for Fibrosis Treatment. This table compares three major stem cell types (MSCs, iPSCs, ESCs) for 
their potential in treating fibrosis. It highlights their advantages, disadvantages, and ongoing clinical trial focuses
Stem 
Cell 
Type

Pros Cons Ongoing Clinical Trials (Focus)

MSCs 
(Mesen-
chymal 
Stem 
Cells)

Immunomodulatory: Suppress inflammation, a 
key driver of fibrosis. Paracrine effects: Secrete 
factors promoting tissue repair, inhibiting 
fibroblast activity, and stimulating angiogenesis. 
Feasibility: Readily isolated and expanded from 
adult sources (bone marrow, adipose tissue). 
Safety: Good safety profile with minimal risk of 
rejection due to low immunogenicity.

Variability: Effectiveness may vary depending 
on source, isolation method, and expansion 
procedures. Mechanism: Exact mechanisms of 
combating fibrosis are still being explored, mak-
ing it challenging to optimize therapy. Limited 
differentiation: Promote tissue repair but have 
limited ability to directly differentiate into mature 
organ-specific cells.

There are numerous ongoing 
clinical trials using MSCs for various 
types of fibrosis. Examples include: 
Idiopathic Pulmonary Fibrosis 
(IPF), Liver Fibrosis, Cardiac Fibrosis 
(post-myocardial infarction), Kid-
ney Fibrosis

iPSCs 
(Induced 
Plu-
ripotent 
Stem 
Cells)

Immunomodulatory: Suppress inflammation, a 
key driver of fibrosis. Paracrine effects: Secrete 
factors promoting tissue repair, inhibiting 
fibroblast activity, and stimulating angiogenesis. 
Versatility: Theoretically differentiate into any 
cell type, offering the potential to replace dam-
aged cells and directly address fibrosis. Patient-
specific cells: Can be derived from a patient’s 
own cells, reducing rejection risk.

Tumorigenesis: Risk of uncontrolled cell growth 
and tumor formation if not fully differentiated or 
reprogrammed properly. Technical challenges: 
Technology for generating and manipulating 
iPSCs is still under development and expensive.

Clinical trials using iPSCs for fibrosis 
are less common than MSCs due 
to technical challenges. However, 
some early-stage trials are explor-
ing their potential for treating Liver 
and Kidney Fibrosis

ESCs 
(Em-
bryonic 
Stem 
Cells)

Pluripotency: Can differentiate into any cell 
type, offering high potential for tissue repair and 
regeneration.

Ethical concerns: Obtaining ESCs involves 
destroying a blastocyst (early-stage embryo), 
raising ethical concerns. Immune rejection: 
ESCs derived from another person are highly 
immunogenic, increasing rejection risk. Limited 
availability: Strict regulations surrounding ESC 
use limit their availability for research and therapy.

Owing to ethical considerations 
and practical constraints, the use of 
embryonic stem cells (ESCs) in cur-
rent clinical trials targeting fibrosis 
remains limited. However, their 
secretory byproducts, particularly 
exosomes, have been investigated 
in preclinical research settings
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cells and recruited inflammatory cells to produce TGF-
β, PDGF, CTGF, fibroblast growth factor (FGF), vascular 
endothelial growth factor (VEGF), and other pro-fibrotic 
mediators. These mediators promote epithelial cell 
apoptosis, EMT, the proliferation of fibroblasts, and the 
differentiation and activation of collagen-producing myo-
fibroblasts (Fig.  2A) [178]. Other pro-fibrotic growth 
factors such as insulin-like growth factor-1 (IGF-1), and 
cytokines such as IL-4, which favor eliciting a type 2 
immune response, also increase IPF [179], along with a 
reduction in anti-fibrotic factors such as IFN-γ inducible 
protein-10 (IP-10) [180]. AEC2s not only release a large 
amount of pro-fibrotic mediators but also lose the ability 
to produce anti-fibrotic mediators, such as prostaglandin 
E2 (PGE2) [25]. As the most potent pro-fibrotic media-
tor, TGF-β promotes these functions in IPF through vari-
ous signaling pathways, which mainly include the Smad, 
MAPK, PI3K, ERK, and Wnt/β-catenin [181].

Moreover, immune dysregulation plays a critical role 
in the development of IPF [182]. Different cell types from 
both innate and adaptive immune systems, often with 
conflicting findings, have been related to IPF pathogen-
esis. The disturbed balance in wound healing processes 
implicating IPF is supposed to be mainly orchestrated 
by alveolar macrophages [183]. The number of macro-
phages increases in the lungs of IPF patients and they 
are involved in IPF pathogenesis in either a pro- (previ-
ously known as M1) or anti-fibrotic (previously known 
as M2) manner. Macrophages, through interplay with 
T cells, can disturb the balance of the Th1/Th2 immune 
response in the lung [184]. Macrophages further con-
tribute to ECM shaping by secretion of MMPs and tis-
sue inhibitor of metalloproteinase (TIMPs), among other 
secreted factors, such as collagen and fibronectin [183, 
185]. The imbalance between MMPs and their inhibitors 
(TIMPs), through the upregulation of TIMPs within the 
lung parenchyma and reducing the MMP-induced deg-
radation of the ECM, is involved in fibrogenesis [186]. 
Ultimately, these pathological changes and destruction of 
alveolar architecture cause a progressive decline in lung 
function, leading to end-stage respiratory failure and 
serious comorbidities, such as lung cancer [187].

Despite this, there is presently no curative for IPF. 
Although, Corticosteroids, anti-inflammatory agents, 
and immune-suppressive drugs, are used experimentally 
to treat IPF for many years, have no beneficial effects on 
survival or disease progression [188–190], and occasion-
ally worsen disease outcomes during clinical IPF trials 
[191]. Two new FDA-approved anti-fibrotic agents, pir-
fenidone and nintedanib, retarded disease progression in 
phase III studies, however, did not improve survival and 
quality of life [192]. Meanwhile, they exhibited marked 
adverse effects [193]. Lung transplantation, with many 
inconveniences and restrictions, is the only available 

curative intervention [194]. Hence, more effective, safe, 
and convenient treatment strategies remained a criti-
cal need. Stem cells offer a new strategy for IPF therapy 
owing to immunomodulatory, anti-inflammatory and 
anti-fibrotic characteristics.

Transplanted MSCs enter damaged lungs and contrib-
ute to the improvement of pulmonary fibrosis through 
direct intercellular interactions, or in a paracrine man-
ner by secretome (secreted soluble bioactive products 
and extracellular vesicles). Thereby, MSCs mediate their 
tissue-repairing and immunomodulatory effects [50]. 
For tissue repairing, MSCs suppress apoptosis of the 
alveolar epithelial cells and endothelial cells, and pro-
mote re-epithelialization and angiogenesis, via secre-
tion of anti-apoptotic mediators and growth factors, 
such as keratinocyte growth factor (KGF), epidermal 
growth factor (EGF), hepatocyte growth factor (HGF), 
and angiopoietin-1 (Ang1) [195]. Some stress signals 
within involved lung tissue, such as hypoxia, further can 
stimulate MSCs to enhance these therapeutic effects 
[196]. Hypoxic preconditioning of MSCs prior to trans-
plantation showed to result in improved protection from 
pulmonary fibrosis [197], at least partially, via increased 
production of VEGF and HGF [198]. However, it has 
been shown that MSCs downregulate VEGF, along with 
nitric oxide metabolites and pro-inflammatory cytokines 
[199].

For immunomodulation, MSCs produce a series of 
anti-inflammatory mediators, including IL-10, IL-4, IL-
1RA, soluble TNFR1, IFN-γ, PGE2, and IDO-1 [50]. 
MSCs also exert immunomodulatory activities via secre-
tion of stanniocalcin-1 (STC1) and − 2 (STC2) under 
stress conditions, which are involved in anti-oxidative 
and anti-inflammation properties promoting the benefi-
cial effects of MSCs in IPF. It has been shown that MSCs 
enhance STC1 secretion via PI3/AKT/mTORC1 path-
way, and decreased oxidative stress and endoplasmic 
reticulum (ER)-stress, thereby downregulating TGF-β1 in 
AECs and macrophages [200, 201]. Furthermore, MSCs 
via secretome or cellular contact interact with innate 
and adaptive immune cells to suppress the T-cell prolif-
eration, induce the regulatory lymphocytes, reduce the 
B cell activation and proliferation, apoptosis of the CD8+ 
T cells, inhibit the NK cell cytotoxicity, alteration of DC 
maturation [202], and downregulate the pro-fibrotic lung 
macrophages [203]. Moreover, MSCs directly exert an 
anti-scarring effect by collagen degradation and inhibit-
ing lung remodeling via regulation of the MMPs/TIMPs 
balance [204].

iPSCs and secretomes obtained from iPSCs, contrib-
ute to alveolar epithelial repair, suppress inflammatory 
responses, and improve IPF. Transplanted iPSCs trapped 
in damaged lungs secrete HGF that reduces AEC apop-
tosis and improve epithelial growth [170]. Another factor 
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Fig. 2 The main contributing factors in the pathogenesis of fibrotic lesions in various organs. (A, C, D, E and F) Schematic illustrations of the normal and 
fibrotic states of various organs, including the heart, liver, kidney, and skin. (B) Schematic illustration of the acute respiratory distress syndrome (ARDS) and 
pulmonary fibrosis associated with the SARS-CoV-2 infection. The fibrotic events and involved cells are outlined. For more details, please refer to the text
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that mediates anti-pulmonary fibrosis effects of iPSC is 
IP-10, which plays a role in the modulation of lympho-
cyte and neutrophil infiltrations, and inhibition of fibro-
blast accumulation [24]. iPSCs regulate the macrophages’ 
phenotype and their secretions toward lung repair and 
regeneration [172, 173].

iPSCs also, can downregulate the pro-fibrotic growth 
factors IGF-1,2 [205], and repress several inflammatory 
mediators during pulmonary fibrosis, including TNF-α, 
IL-1β, IL-6, inducible nitric oxide synthase (iNOS) and 
nitric oxide (NO), but also PGE2. They also suppress 
the EMT process in lung tissues through upregulation 
of epithelial marker E-cadherin and downregulation of 
mesenchymal markers such as fibronectin, vimentin, 
and α-SMA. Importantly, iPSCs promote these effects 
by mitigating of TGF-β1/Smad2/3 pathway. In addition, 
iPSCs modulate MMPs/TIMPs ratios, preventing colla-
gen deposition in pulmonary tissues [156, 171].

COVID-19
SARS-CoV-2 is a newly worldwide-distributed coronavi-
rus, which mainly involves the respiratory system besides 
other affecting organs. Although the infection with this 
virus mostly is self-limited, some patients manifest acute 
respiratory distress syndrome (ARDS), lung fibrosis, and 
subsequent multi-organ failure and death [206]. These 
pathologic manifestations have been indicated to be 
caused by cytokine storm, which is created by uncon-
trolled levels of pro-inflammatory cytokines released in 
the lungs, due to the immune hyper-reaction provoked 
by the SARS-CoV-2 virus [207, 208]. The excessive pro-
inflammatory cytokines and chemokines, including 
IL-1β, IL-2, IL-6, IL-7, IL-8, IL-33, TNFα, granulocyte 
colony-stimulating factor (GSCF), IP-10, monocyte che-
moattractant protein 1 (MCP1), macrophage inflamma-
tory protein 1(MIP1), and TGF-β, extremely secreted by 
a massive inflammatory cell infiltration, and recruit to 
the further immune cells, promoting a pro-inflammatory 
feedback loop [209]. These inflammatory events dam-
age the architecture of the lungs, which subsequently 
undergo repair and remodeling via fibroproliferation. 
Thereby, can lead to pulmonary fibrosis as the COVID-19 
outcome (Fig. 2B) [210].

MSCs have recently emerged potential approach to 
hamper the excessive inflammatory responses and cyto-
kine storm in the lungs, as well as to regenerate and 
restore the functional lung tissue in COVID-19 patients. 
The mechanisms of MSCs that researchers relied on 
which for repairing, counteracting fibrosis, and improve-
ment of lung function in COVID-19 respiratory disease, 
are similar to those employed by MSCs in IPF [88, 211]. 
MSCs could remediate immune-pathological cyto-
kine storm through the secretion of anti-inflammatory 
mediators and increase Treg cells, Th22 cells, and M2 

macrophage phenotype [210]. Although it needs strong 
evidence to be confirmed, one of the possible pathways 
underlying this anti-inflammatory function of MSCs can 
be involved in the suppression of myeloid differentiation 
factor 88 (MyD88) adaptor protein. MyD88 is utilized by 
TLR7 on macrophages upon recognizing single-stranded 
RNA from viruses such as SARS-CoV-2. This can lead 
to activating nuclear factor-kB (NF-kB), which is a tran-
scription factor inducing the expression of pro-inflamma-
tory factors mediating lung damage in COVID-19 [212]. 
MSCs were shown to mitigate the MyD88 signaling axis, 
which is suggested to play a key role in the inflammation 
and pathogenesis of pulmonary fibrosis [91].

Liver fibrosis
Liver fibrosis developed as an intrinsic response to 
chronic persistent liver damage caused by multiple nox-
ious factors such as viral infection, drugs, alcoholism, 
non-alcoholic fatty liver disorder, and autoimmune dis-
eases, which trigger the cycles of hepatocytes apoptosis, 
inflammation, and repetitive wound healing process, 
leading to ECM deposition and fibrous scar formation 
[6]. EMT is an essential contributor to liver fibrosis. 
Epithelial-derived mesenchymal cells that are generated 
during EMT, undergo a subsequent mesenchymal-to-
epithelial transition (MET) to convert into hepatocytes 
or cholangiocytes for repairing damaged liver. This repair 
becomes fibrogenic in the chronically injured liver, where 
EMT activity surpasses MET [213, 214]. Hepatic stellate 
cells (HSCs) play a crucial role in this process, upon the 
activation, and subsequent proliferation and transfor-
mation into myofibroblasts with increased expression of 
TGF-β, PDGF, CTGF, VEGF, TIMP1, α-SMA, and type I 
collagen [215]. The activation of kupffer cells, liver resi-
dent macrophages, is considered an important contribut-
ing factor in the activation of HSCs, via the secreting the 
various mediators, including oxidants, cytokines (TGF-β, 
TNF-α, IL-1, and IL-6) and proteinases (Fig.  2C) [216]. 
. Several signaling pathways were known to be involved 
in HSC activation, such as TGF-β/Smad, Wnt/β-catenin, 
Ras/ERK, and Notch [217]. These fibrotic events can 
progress to liver cirrhosis, referred to as end-stage liver 
fibrosis with no effective treatment that requires ortho-
topic liver transplantation as the only therapeutic option 
[218].

Transplanted MSCs contribute to liver regeneration 
directly through differentiation into hepatocyte-like cells, 
and indirectly by releasing factors for immune regu-
lation. Anti-liver fibrosis effects of MSCs are exerted 
majorly in a paracrine manner. MSCs stimulate liver cell 
proliferation and inhibit apoptosis of hepatocytes and 
sinusoidal endothelial cells (SECs), via anti-apoptotic 
factors such as HGF and IGF-1 [219]. MSCs promote 
liver regeneration by expression of VEGF and MMP9 
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[220], and downregulation of TIMP1 in the injured 
liver [221]. MSCs enhance hepatocyte proliferation by 
the production of PGE2 via YAP and mTOR signaling 
[222]. In addition, MSC-derived PGE2 can promote the 
anti-inflammatory M2 phenotype of liver macrophages 
through STAT6 mTOR signaling. MSC-derived PGE2 
decreases macrophage-produced inflammatory cytokines 
via inhibiting the TGF-β-activated kinase 1 (TAK1) sig-
naling and NLRP3 inflammasome activation [223]. . Fur-
thermore, MSCs suppress the secretion of inflammatory 
cytokine by T cells, B cells, NK cells, and DCs [224–226], 
and participate in converting the CD4+ T cells into anti-
inflammatory Tregs and Th2 cells [227]. MSCs further 
promote inflammatory resolution by reducing the infil-
tration of neutrophils and macrophages [220, 228]. MSCs 
can also exert anti-liver fibrosis activity by alleviating 
the process of EMT [82], as well as promoting the pro-
cess of MET [229]. MSCs inhibit the activation of HSCs 
and kupffer cells. MSCs downregulate TGF-β1 receptor 
expression through secreting milk fat globule-EGF factor 
8 (MFGE8), which binds to αβ integrin on hepatic stellate 
cells (HSCs) and thereby inhibits the activation of HSCs 
[230]. MSCs also inhibit the HSC activation via suppress-
ing the Wnt/β-catenin pathway [231]. MSCs can repress 
the pro-fibrotic TGF-β/Smad signaling pathway; thereby 
reducing hepatic collagen deposition and α-SMA expres-
sion [81, 232].

Human ESCs and particularly iPSCs, provide a great 
promise as a supply for parenchymal and non-parenchy-
mal liver cells [233]. iPSC-derived hepatocytes enhance 
liver regeneration and reduce liver fibrosis [234, 235]. 
EVs produced by iPSCs can modulate HSC activation and 
expression of TIMP-1, mediated by anti-fibrotic miRNAs 
[174]. Moreover, Exosomes from iPSC-derived MSCs 
activate the sphingosine kinase and sphingosine1-phos-
phate pathway in hepatocytes and promote cell prolifera-
tion, thereby alleviating liver fibrosis [236].

Cardiac fibrosis
Cardiac fibrosis is developed following most types of 
cardiac injury. These injuries result in; (a) extensive car-
diomyocyte death such as myocardial infarction (MI), 
stimulating healing response and replacement of dead 
cells with fibroblasts that lead to deposition of ECM pro-
teins and myocardial scar formation; (b) non-extensive 
cardiomyocyte loss such as pressure or volume over-
load, hypertrophic cardiomyopathy and cardiomyopathy 
induced by diabetes, obesity and brief ischemic events 
without completed infarction. In which, interstitial and 
perivascular deposition of collagen develops as an adap-
tive response to keep the pressure-generating ability 
of the heart in the dysfunctional myocardial segments 
that can progress into the replacement of fibrous tissue 
(Fig.  2E) [237]. Generally, excessive ECM deposition in 

the myocardium, interrupts myocyte–myocyte interac-
tions and leads to ventricular wall stiffness with diastolic 
and systolic dysfunction, and causes electric instabil-
ity promoting arrhythmia that may result in irreversible 
heart failure and death [238, 239]. As in fibrosis of other 
organs, initial inflammatory reaction with upregulation 
of cytokines and pro-fibrotic mediators, subsequent acti-
vation of fibrogenic pathways, and activation of proteases 
in response to persistent cardiac injury are prominent 
components in the pathogenesis of myocardial remod-
eling [237]. During the inflammatory response, mac-
rophages and other inflammatory cells secrete various 
cytokines and pro-fibrotic mediators including TGF-β, 
TNF-α, CTGF, PDGF, fibroblast growth factor (FGF), and 
monocyte chemoattractant protein (MCP)-1 to provoke 
the differentiation and proliferation of myofibroblasts 
[240]. In the fibrotic heart, myofibroblasts originate from 
resident fibroblasts, epithelial cells (through EMT), and 
circulating fibrocytes, monocytes, and progenitor cells 
derived from bone marrow [241].

Although the principal aim of stem cell-based therapy 
in cardiac disease and heart failure is to replenish the 
cardiac tissue, new findings demonstrated that pluripo-
tent stem cells, consisting iPSCs and ESCs, and/or their 
derivatives, mediate the restoration of heart function 
by their paracrine activity. ESCs reduce adverse car-
diac remodeling via triggering myocardial regeneration, 
attenuating collagen deposition, secreting anti-apoptotic 
proteins cystatin C, osteopontin, and clusterin, and anti-
fibrotic factors such as TIMP-1 [120]. ESCs can also pro-
mote differentiation of resident cardiac stem cells, and 
thereby endogenous cardiac regeneration, via realizing 
HGF and IGF-1 [242]. Numerous studies demonstrated 
the beneficial effect of iPSCs and cardiomyocyte-like cells 
generated from iPSCs in alleviating adverse remodeling 
and improving cardiac function [243], probably via direct 
or paracrine mechanisms that remain to be elucidated. 
iPSCs and their conditioned media inhibit apoptosis and 
reduce interstitial and vascular fibrosis in the heart [244]. 
Dual stem cell therapy by applying iPSC-derived cardio-
myocytes and MSCs restore heart function and enhance 
vessel formation post-MI. In this manner, intra-myocar-
dial infusion of iPSC-derived cardiomyocytes leads to 
improvement of cardiac function by engraftment with 
the host myocardium, and epicardial implanted MSC 
patches concurrently promote vascular regeneration via 
consistent secretion of angiogenic factors. MSCs con-
tribute to cardiac repair through their paracrine factors 
with pleiotropic effects, including pro-angiogenesis, anti-
inflammation, anti-fibrosis, and CM maturation [245]. 
Transplanted MSCs produce HGF, VEGF and fibroblast 
growth factor 2 (FGF2) that stimulate cell survival, angio-
genesis and neovascularization [246]. HGF is a potent 
anti-fibrotic released by MSCs transplanted into the area 
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around MI and inhibits miR-155-mediated profibrotic 
signaling, thereby reducing left ventricular remodel-
ing and preventing fibrosis [247]. MSC-derived PGE2 
inhibits TGF-β expression, collagen accumulation, and 
myocardial fibrosis [248]. MSCs also produce MMP 2, 9, 
and 14 to inhibit fibroblast activation and ECM deposi-
tion, thus improving cardiac fibrosis [249]. Moreover, 
MSCs modified to overexpress IGF-1, can reduce the 
myofiber area in the cardiac muscle [250], and miR133-
overexpressing-MSCs attenuate fibrosis triggered by MI 
via suppressing Snail 1, which is considered the master 
regulator of EMT [251].

Renal fibrosis
Regardless of underlying etiology, renal fibrosis is a com-
mon pathological process of various progressive kidney 
injuries and is regarded as a therapeutic target for CKD 
[252]. Fibrogenesis can occur in the different kidney 
compartments inclusive of glomerulus, tubules, or ves-
sels, which are referred to as glomerulosclerosis, tubu-
lointerstitial fibrosis, and arteriosclerosis, respectively 
[252]. However, they share the key fibrotic mechanisms 
including the loss of epithelial cells and capillary bed, 
infiltration of inflammatory cells, activation of fibro-
blasts, accumulation of activated myofibroblasts, and 
ECM [253]. Eventually, ECM accumulation continues 
unchecked during chronic injury that occurs in CKD, 
which may lead to end-stage kidney failure that needs 
lifelong dialysis or kidney transplantation [254].

Renal fibrosis is mostly preceded by inflammation 
occurred secondary to excessive kidney epithelial cell 
injury, which is induced by various causes including isch-
emia, toxins, advanced glycation products, and protein-
uria originating from different diseases such as diabetes, 
hypertension, and glomerulonephritis. However, under 
several conditions including viral or bacterial infections, 
autoimmune disease, and after transplantation, epithe-
lial injury develops following inflammatory responses. 
Following epithelial injury and expression of pro-inflam-
matory cytokines, the influx of macrophages, T-cells, 
and mast cells is increased [255]. Infiltrated inflamma-
tory cells release molecules that damage tissues such as 
ROS, and promote the secretion of pro-fibrotic cytokines 
and growth factors [256, 257]. Moreover, paracrine fac-
tors produced by epithelial cells such as TGF-β, CTGF, 
PDGF, FGF, TNF, angiotensin II, and aldosterone, trigger 
the transformation of myofibroblasts to produce a large 
amount of ECM components [255]. In the tubulointer-
stitium, activated myofibroblasts predominantly derivate 
from resident fibroblasts and pericytes [258]. Myofi-
broblastic activation of the mesangial cells is important 
in ECM production [259]. Moreover, trans-differenti-
ation of the podocytes undergoing EMT causes more 
ECM deposition (Fig.  2D) [260, 261]. Several signaling 

pathways have been strongly correlated with mediating 
these fibrotic events in CKD and renal fibrosis; In which, 
TGF- β/Smad signaling is a central pathway considering 
the extensive cross-talks with other pro-fibrotic path-
ways [262]. Nuclear factor-kappaB (NF-κB) mediates the 
overproduction of cytokines participating in the fibrotic 
process [263, 264], and the induction and maintenance 
of EMT [265]. Sustained damage in CKD induces exces-
sive activation of the Wnt and Notch pathways in the 
epithelial cells, which in turn interact synergistically 
with Hedgehog signaling to mediate renal fibrosis. Wnt 
and Notch overexpression inhibits the terminal differ-
entiation of renal epithelial cells and up-regulated Wnt 
and Hh expression promotes fibroblast proliferation 
and myofibroblastic transformation in the kidney [255]. 
Besides, PI3K/AKT/mTOR, mitogen-activated protein 
kinase (MAPK), and RHO/Rho coil kinase (ROCK) sig-
naling pathways are important in the regulation of EMT 
and progression of renal fibrosis [266–270].

Stem cell therapy retards the progression of renal 
fibrosis. MSCs constitute the vast majority of SCs used 
for renal fibrosis treatment so far. MSCs and their con-
ditioned medium prohibit renal fibrosis by diminishing 
EMT and reducing ECM deposition in the kidney [72, 
271, 272]. MSCs or their EVs attenuate oxidative dam-
age and apoptosis, as well as improve renal tubular cell 
proliferation and capillary density. These functions were 
observed along with increasing HGF, IL-10, heme oxy-
genase-1 (HO-1) and reducing ROS, NADPH oxidase 2 
(NOX2), BAX, and CTGF [273–276]. Transplanted MSCs 
can improve hypoxic tubulointerstitial conditions and 
decrease HIF-1α, thereby, upregulating VEGF expres-
sion [277, 278]. These cells promote a pro-angiogenic 
microenvironment with an increased level of VEGF, Ang 
I, and decreased Flt1 expression, allowing the injured 
renal capillary bed to repair. VEGF signaling enhances 
the endothelial cell survival and proliferation as well as 
the formation of new vessels; and is negatively regulated 
by Flt1, which is a receptor for decoy VEGF. Whereas 
Ang I contributes to the capillary structure strengthen-
ing and maintenance of vascular stability [279]. However, 
some reports are indicating administrated MSCs did not 
change VEGF levels during renal fibrosis improvement 
[280, 281]. Anti-renal fibrotic effects of MSCs are also 
associated with the downregulation of pro-fibrotic medi-
ators and pro-inflammatory cytokines such as TGF-β1, 
PDGFR-β, TNF-α, IL-6, IL-1β, MIP-2, and MCP-1 and 
alleviation of renal neutrophil and macrophage infiltra-
tion [282, 283]. Besides, their EVs decrease the number 
of M1 macrophages and increase M2 macrophages in the 
inflamed kidney [284].

Transplanted MSCs ameliorate renal fibrosis by ham-
pering the fibrotic signaling pathways, and mainly inhibit 
the activation of TGF-β1/Smads, NF-κB, and ERK (as the 
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main subsets of MAPK signaling), PI3K/AKT. Further-
more, MSC-derived EVs suppress the RhoA/ROCK path-
way via MFGE8 [276, 285–287]. In addition, MSCs can 
decrease the MMP-9 expression during tubulointerstitial 
fibrosis and increase the TIMP-1/MMP-9 ratio, in part, 
by suppressing STAT3 activation [288]. Although a lim-
ited number of studies examined the impact of ESCs on 
renal fibrosis, transplanted ESCs were able to hinder the 
progression of CKD, and reduce glomerulosclerosis and 
tubular injury [289]. The underlying mechanism appears 
to be involved in the decreased inflammatory infiltrate, 
tubular apoptosis, and renal oxidative stress via upregu-
lated the antioxidant enzyme HO-1 [290]. iPSCs are also 
capable of reducing macrophage infiltration, tubular 
atrophy, interstitial fibrosis, and glomerulosclerosis. Fur-
thermore, iPSCs upregulate the expression of the VEGF 
gene [291, 292]. The anti-renal fibrosis activity of iPSCs 
appears to be majorly developed through a paracrine 
effect [291]. iPSCs-derived secretome exerts antioxidant, 
anti-inflammatory, and anti-apoptotic effects on renal 
damage induced by ischemia-reperfusion [293]. iPSCs-
derived conditioned medium is capable of reducing 
cell death, ROS production, and inflammatory cytokine 
responses, as well as protecting functional mitochondria, 
thereby improving renal function [294, 295]. Further-
more, iPSC-derived MSCs display comparable effects in 
the improvement of renal function, including decreasing 
cell apoptosis and promoting vascularization with adult 
MSCs [296].

Dermal fibrosis
Fibrotic skin disorders, either those associated with dys-
regulated cutaneous wound healing that occurred in 
response to dermal injuries such as hypertrophic scars 
and keloids, or those associated with metabolic and 
immunological disorders, such as scleroderma, share 
several pathological features, comprised fibroblast over-
proliferation, ECM over-production, and loss of skin 
elasticity (Fig. 2F) [297, 298].

Cutaneous wound healing normally is a transient pro-
cess, in which, most wounds take no longer than 2 to 3 
weeks to heal [299]. However, pathological scarring can 
be induced by devastating insults, such as deep burns, 
infected wounds, and extensive trauma, following dys-
regulated wound healing [300, 301]. Keloids recognized 
as benign fibrotic tumors, which are raised scars, tend 
to be larger than the original wound site, spontaneously 
regress extremely seldom, and often recur after surgical 
excision. While hypertrophic scars grow within the con-
fines of the primary wound border, frequently regress 
spontaneously, and rarely recur after incision [302, 303]. 
Besides the cosmetic issues, discomfort, and psychologi-
cal stress; pathological scars can also be associated with 
dysfunction, infection, itching, and pain, hence seriously 

impairing the quality of life [304, 305]. The reticular layer 
of hypertrophic scars and keloids is characterized by 
infiltration of inflammatory cells, increased frequency 
of fibroblasts, newly formed blood vessels, and colla-
gen deposits, particularly types I and III. In addition, 
pro-inflammatory mediators, such as TNF-α, IL-1, and 
IL-6 are upregulated in keloid tissues. Moreover, keloid 
fibroblasts (KFs) display faster proliferation, more ECM 
production, and more invasiveness compared with nor-
mal fibroblasts [306]. They also express elevated lev-
els of biologically active isoforms of TGF-β ligands and 
their receptors, therefore, KFs exert a unique sensitivity 
to TGF-β stimulation [307]. Besides TGF-β, IGF-1 and 
VEGF contribute to several aspects of abnormal scarring, 
including ECM deposition, cell proliferation, inflamma-
tion, immunoreaction, and angiogenesis [308, 309].

Scleroderma is considered the prototype of fibrosing 
connective tissue diseases of the skin and exists in two 
types; systemic sclerosis (SSc), the life-threatening dis-
ease with further involvement of internal organs such as 
lung and kidneys in addition to the skin; and localized 
scleroderma, in which the fibrotic changes of internal 
organs are absent and life prognosis is not compromised 
[297]. Apart from the functional defects of involved 
organs in systemic form, both demonstrate cutane-
ous symptoms that are frequently accompanied by pain, 
physical appearance deformity, and psychological stress. 
The main pathogenic constituents of scleroderma are 
(i) microangiopathy due to structural damage of small 
vessels, (ii) autoimmunity along with the production of 
auto-antibodies and activation of T cells, (iii) skin fibro-
sis results from an excessive ECM deposition [310, 311]. 
Increased production of collagen I and III fibers following 
the inflammatory fibrotic response forms a compact wax-
like intensely fibrotic matrix in the dermis. Further, hyal-
uronan markedly accumulates within the epidermis and 
dermis, in particular around blood vessels [297]. In addi-
tion to the increased production, degradation of ECM is 
also inhibited by autoantibodies blocking MMP-1 and 
MMP-3, which are found in scleroderma patients [312–
314]. Simultaneously, up-regulated expression of TIMPs, 
such as TIMP-1, might further contribute to increasing 
the extent of fibrosis into late-stage disease [297, 315]. 
The predominant T-helper (Th) lymphocytic infiltrate in 
the skin lesions, and elevated level of related cytokines, 
including TGF-β, CTGF, PDGF, TNF-α, IL-1, IL-2, IL-3, 
IL-4, IL-6, IL-13 and IL-17 in patients, are involved in the 
histopathologic features of skin fibrosis in the SSc and 
localized scleroderma [311, 316, 317]. Moreover, skin 
fibroblasts from patients with SSc exert resistance to Fas-
mediated apoptosis due to TGF-β-induced Akt activation 
[318]. The other scleroderma-like conditions, such as 
scleroderma, lichen sclerosis, eosinophilic fasciitis (Shul-
man’s disease), and graft-versus-host disease (GVHD), 
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share a dysregulated ECM turnover resulting in excessive 
cutaneous collagen accumulation by activated fibroblasts. 
However, the underlying mechanisms, cutaneous mani-
festations and systemic implications are different. These 
fibrosing skin disorders are often incurable, and effective 
treatments remain to be established [297].

The therapeutic potential of MSCs in hypertrophic 
scars is attributed to the higher expression of important 
anti-fibrotic mediators, such as TGF-β3 and HGF [319]. 
TGF-β3 enables to antagonization of the pro-fibrotic 
function of TGF-β1 [320]. MSCs are also involved in the 
elevated expression of MMP-2 and a higher MMP-2/
TIMP-2 ratio, which reflect the remodeling activ-
ity to reverse fibrosis. These effects are associated with 
reduced dermis thickness and skin collagen content in 
the humanized skin graft model in nude mice [319]. The 
other mechanism by which MSCs prevent hypertrophic 
scar formation is the secretion of TNF-alpha-stimulated 
gene/protein 6 (TSG-6) under apoptosis, and inflamma-
tory regulation [321]. The anti-scarring effect of MSCs 
is partly mediated by the suppression of the p38/MAPK 
signaling pathway [106]. MSCs can inhibit the prolif-
eration, migration, and protein expression of collagen I 
and III, through suppression of the TGF-β1/Smad2/3/7) 
pathway in hypertrophic scar fibroblasts (HSFs) and KFs 
[322, 323]. Additionally, the anti-fibrotic effect on these 
fibroblasts is mediated by downregulation of the pro-
fibrotic mediators, such as CTGF, PAI-1, TGF-β1 and 
2, as well as upregulation of the anti-fibrotic mediators, 
such as TGF-β3 and decorin in HSFs and KFs through a 
paracrine manner [324].

Furthermore, MSCs inhibit inflammatory cell accumu-
lation, angiogenesis, and collagen deposition, thereby, 
keloid development via paracrine secretions. The thera-
peutic mechanism is mediated partially by Ectodyspla-
sin-A2 (EDA-A2), Insulin-like growth factor binding 
protein-related protein-1 (IGFBP-rp1) /IGFBP-7, and 
TSP-1 [325]. The inhibitory mechanism of MSCs on 
dermal fibroblast growth and induce apoptosis in the 
keloids, is involved in the inhibiting proliferation of KFs 
and promoting their apoptosis by regulating the arachi-
donic acid-derived cyclooxygenase-2 (COX-2)/PGE2 
pathway, through a paracrine manner [326]. In this way, 
MSCs further, inhibit KF-related bioactivities, includ-
ing proliferation, migration, cellular invasion, and ECM 
production, through the blockade of TGF-β/Smad and 
MAPK/ERK signaling pathways [327].

Contrary to the effects observed with AD-MSCs and 
BM-MSCs, WJ-MSCs appear to promote keloid phe-
notype through a paracrine signaling mechanism. WJ-
MSC-CM can enhance the expression of the pro-fibrotic 
gene, PAI-1, and TGF-β2, downregulated the expression 
of the anti-fibrotic gene, TGF-β3, increased the level of 
pro-fibrotic proteins, IL-6, IL-8, TGF-β1 and 2, in KFs. 

The secretome of WJ-MSCs promotes the proliferation 
of KFs, with no significant change in their apoptosis rate 
or migration ability [328]. Besides, BM-MSCs have been 
reported to enhance the fibrotic behavior of deep dermal 
fibroblasts through paracrine signaling [329].

The therapeutic mechanism of MSCs in the systemic 
form of scleroderma includes the induction of apoptosis 
in activated T cells via activation of the Fas/Fas ligand 
pathway, leading to ameliorating autoimmune pheno-
types and reducing hypodermal thickness [330, 331]. 
MSCs ameliorate BLM-induced scleroderma by prevent-
ing the infiltration of CD4+ and CD8+ T cells and mac-
rophages into the dermis. They not only downregulate 
the expression of collagen and pro-fibrotic cytokines, 
such as IL-6 and IL-13, in the skin but also reduce the 
frequency of pro-fibrotic cytokine-producing CD4+ T 
cells and effector B cells in the spleen [332]. In addition, 
MSCs or their exosomes transfer miR-151-5p into recipi-
ent cells and attenuate autoimmune and dermal pheno-
types of fibrosis, accompanied by an improvement of 
osteopenia in Tsk/+ mice, via regulating the IL-4 receptor 
alpha (IL4Rα)/mTOR pathway [333]. MSC administra-
tion ameliorates BLM-induced lung and skin fibrosis and 
accelerates wound healing, associated with downregu-
lated expression of pro-fibrotic miR-199 and increase of 
corresponding protein expression of its target, caveolin-1 
(CAV-1). Furthermore, they inhibit BLM-induced over-
expression of αv-integrin and TNF-α in lung and skin 
wounds, as well as suppression of AKT activation [334].

In addition to MSCs, iPSCCM can be effective in pre-
venting hypertrophic scar formation. iPSCCM reduces 
collagen and αSMA in dermal fibroblasts activated with 
TGF-β1. Moreover, activation and contractibility of 
fibroblast, as well as recruitment and adhesion of inflam-
matory cells are hampered by iPSCCM [335]. In sclero-
derma, iPSC-derived ECs reduce collagen content, the 
number of cells, and skin fibrosis, in addition to partici-
pating in damaged vessel recovery [336]. However, addi-
tional research is needed to elucidate the mechanism of 
the suppressive effect on dermal fibrosis by iPSCs.

Resident stem cells for organ-specific fibrosis 
therapy
In addition to various exogenous stem cell sources 
explored for their anti-fibrotic potential, resident stem 
cells present within affected organs themselves hold 
promise as a future therapeutic strategy. These organ-
specific stem cells are thought to be involved in tissue 
maintenance, repair, and regeneration throughout life. 
Their inherent localization within the target organ and 
potential immunologic compatibility offer potential 
advantages compared to stem cells derived from other 
sources.
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Resident stem cells in different organs
Lungs: The lung epithelium harbors resident stem cells, 
including basal epithelial stem cells and club cells, cru-
cial for maintaining the alveolar surface. Additionally, 
mesenchymal stromal cells reside within the lung inter-
stitium and contribute to tissue repair [337]. Studies are 
underway to investigate the therapeutic potential of these 
cells for pulmonary fibrosis by promoting regeneration 
and modulating the immune response; Concurrently, 
instances where these cells may inadvertently contribute 
to lung fibrosis are also under investigation, with the aim 
of discovering innovative methods to steer their activity 
towards beneficial outcomes.“ [338–340].

Liver: Hepatic progenitor cells reside in the canals of 
Hering and are believed to be responsible for liver regen-
eration after injury [341]. Liver-derived human mesen-
chymal stem cells (LHMSCs) have been isolated from the 
liver, LHMSCs share characteristics with other MSCs but 
possess unique features as they may produce higher levels 
of beneficial factors compared to other MSCs, potentially 
making them more effective. Also, being liver-derived, 
they might have a natural affinity for liver tissue and func-
tion [342]. LHMSCs could be a promising therapeutic 
approach for various liver diseases due to their regen-
erative and immunomodulatory properties. Research is 
ongoing to explore their therapeutic application in liver 
fibrosis models, with promising results in reducing fibro-
sis and promoting hepatocyte proliferation [341–343].

Kidneys: The kidneys harbor renal progenitor cells 
within the nephron structure. These cells play a role in 
kidney repair after injury, and their potential for thera-
peutic use in kidney fibrosis is being explored [344, 345]. 
However, compared to lungs and liver, research on resi-
dent kidney stem cells for fibrosis therapy remains at an 
earlier stage. Also, they have the potential to contribute to 
kidney fibrosis themselves; as in investigating the role of 
resident mesenchymal stem-like cells (MSLCs) in kidney 
fibrosis caused by ureteral obstruction (UUO) in mice, 
it was observed that MSLCs from the obstructed kidney 
increased their expression of genes associated with fibro-
sis (collagen, inflammatory factors, TGF-beta) [346].

Heart: The heart harbors a population of cardiac pro-
genitor cells (CPCs) residing within the myocardium and 
epicardium [347]. These cells are thought to contribute to 
cardiac repair after injury, although their exact role and 
regenerative potential are still under investigation. Pre-
clinical studies suggest CPCs may hold promise for treat-
ing heart failure and myocardial infarction, potentially 
through mechanisms involving paracrine signaling and 
immunomodulation [348]. In exploring the potential of 
CPCs as a treatment for cardiac fibrosis using a sophis-N
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ticated 3D model, it was observed that CPCs co-cultured 
with human cardiac fibroblasts reduced the fibrotic 
response, suggesting an anti-fibrotic effect [349]. Further 
research is needed to determine their efficacy and safety 
for treating cardiac fibrosis [350].

Skin: The epidermis, the outermost layer of the skin, con-
tains epidermal stem cells responsible for lifelong renewal 
of the skin surface [351]. These stem cells also contrib-
ute to wound healing after injury [352, 353]. While not 
directly studied in the context of fibrosis yet, their regen-
erative potential suggests they might be a future avenue 
for exploring therapies targeting skin fibrosis.

Current efforts to leverage resident stem cells
While significant challenges remain regarding isolation, 
expansion, and complete understanding of their func-
tions, current efforts to utilize resident stem cells for 
treating fibrosis include:

  • Optimizing isolation and expansion techniques: 
Researchers are developing methods to efficiently 
isolate resident stem cells from target organs with 
minimal damage and expand them in culture for 
therapeutic use. This involves identifying specific 
markers that distinguish these cells and developing 
culture conditions that support their self-renewal 
and differentiation potential [354–356].

  • Gene editing and cell engineering: Gene editing 
techniques like CRISPR-Cas9 are being explored 
to modify resident stem cells and enhance 
their therapeutic potential. This could involve 
introducing genes that promote tissue regeneration 
or immunomodulation, or correcting genetic 
abnormalities that might contribute to fibrosis 
[357–359].

  • Delivery methods and scaffolding techniques: 
Researchers are investigating methods to safely 
deliver resident stem cells to the target organ within 
the body. This might involve using biocompatible 
scaffolds or hydrogels to support cell engraftment 
and survival at the site of injury or fibrosis [360–
363].

  • Preclinical studies in animal models: Studies are 
ongoing in animal models of fibrosis to evaluate the 
efficacy and safety of resident stem cell therapies. 
These studies assess the ability of these cells to 
reduce fibrosis, improve organ function, and 
promote tissue regeneration [350, 364].

Challenges and considerations
Despite the exciting potential of resident stem 
cells, significant challenges remain due to a Limited 

Understanding of the underlying mechanism by which 
these cells could affect fibrotic processes since our 
knowledge regarding the differentiation capacity and 
regenerative potential of these cells is still evolving. Also, 
efficient methods for isolating and expanding resident 
stem cells for therapeutic use require further develop-
ment. Furthermore, Safety Considerations must be taken 
into account because manipulating resident stem cell 
populations might carry unforeseen risks, requiring care-
ful evaluation. Overall, resident stem cells within various 
organs represent a promising approach for organ-specific 
fibrosis therapy. While challenges exist regarding their 
isolation, expansion, and complete understanding of their 
functions, ongoing research holds promise for the devel-
opment of novel therapeutic strategies to combat fibrosis 
and promote tissue regeneration. It should be noted that 
some studies pointed to the profibrotic effects of these 
cells which necessitates a thorough insight into the sig-
naling pathways contributing to fibrotic processes; this 
facilitates harnessing the anti-fibrotic capacities of these 
cells by insightful manipulation of their physiological 
properties toward combating fibrosis with various tech-
niques such as genetic engineering methods.

Molecular signaling pathways in anti-fibrosis: 
unveiling the cellular crosstalk and potential of 
stem cell therapies
Fibrosis development is a complex orchestration of cel-
lular processes driven by intricate molecular signaling 
pathways. Understanding these pathways is crucial for 
developing effective therapeutic strategies to combat 
fibrosis in various organs. This section explores some 
key signaling molecules and their roles in fibrosis, along 
with current efforts to target them therapeutically using 
antifibrotic agents and the emerging potential of stem cell 
therapies:

Transforming growth factor-β (TGF-β): a master fibrogenic 
regulator
TGF-β is a potent cytokine that plays a central role in 
fibrosis initiation and progression [15]. It activates Smad 
proteins, which translocate to the nucleus and regulate 
the expression of genes involved in extracellular matrix 
(ECM) production, myofibroblast differentiation, and 
pro-inflammatory responses. Some therapeutic Strate-
gies include using antifibrotic agents such as antibodies 
and small molecule inhibitors; Inhibiting TGF-β signal-
ing using specific antibodies or small molecule inhibitors 
holds promise as a therapeutic strategy. Some examples 
include Fresolimumab (monoclonal antibody against 
TGF-β1) which is undergoing clinical trials for various 
fibrotic conditions [365–367]. The small molecules pir-
fenidone (blocks Smad signaling) as well as [368](multi-
targeted tyrosine kinase inhibitor) which are approved 
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for the treatment of idiopathic pulmonary fibrosis [369]. 
Among the stem cells discussed so far, mesenchymal 
stem cells (MSCs) have shown promise in pre-clinical 
studies to counteract TGF-β signaling [364, 370]. MSCs 
can secrete immunomodulatory factors that suppress 
TGF-β activity and promote tissue repair [371, 372]. 
Additionally, gene editing approaches could be explored 
to engineer MSCs with enhanced anti-TGF-β capabili-
ties. Although there are studies reporting TGF-b pro-
duction by the MSCs which limits the safe application 
of these cells for antifibrotic approaches [371]. Besides, 
iPSCs have also shown promises in treating mouse mod-
els of IPF by downregulating the TGF-β and the down-
stream pathways [156].

Mitogen-activated protein kinase (MAPK) pathways: a 
network of fibrogenic signaling
The MAPK family, including ERK, JNK, and p38, are 
activated by various stimuli and contribute to fibrosis 
development [373–375]. These pathways regulate cell 
proliferation, survival, migration, and production of pro-
fibrotic mediators. Targeting specific MAPK pathways 
using inhibitors could be explored for the treatment of 
organ fibrosis [373]. Some examples include: Ulixertinib 
a selective ERK1/2 inhibitor [376]; JNK-specific inhibi-
tors which are still in pre-clinical stages of development 
but might show promise for targeting fibrosis [376]; and 
Losmapimod (p38 MAPK inhibitor) which also could 
be used for the treatment of fibrosis [377]. Besides these 
approaches, MSCs have also demonstrated the ability to 
modulate MAPK signaling pathways [378, 379]. Further 
research is needed to fully understand the complex inter-
actions between MSCs and MAPK signaling in fibrosis. 
It should be noted that due to the plasticity and hetero-
geneity of MSCs, they could also enhance the activity of 
this pathway [380].

Mammalian target of rapamycin (mTOR) pathway: a 
regulator of cell growth and metabolism
The mTOR pathway plays a crucial role in cell growth, 
proliferation, and metabolism [381]. Dysregulation of 
mTOR signaling has been implicated in fibrosis develop-
ment by promoting myofibroblast activation and ECM 
production [382]. mTOR inhibitors are being investigated 
for their potential to prevent or reverse fibrosis [383]. 
Some examples including Everolimus (mTORC1 inhibi-
tor) and Sirolimus (mTORC1/2 inhibitor) are approved 
for other conditions but are being explored for their anti-
fibrotic potential as well [384–387]. On the other hand, 
Pre-clinical studies suggest that MSCs can suppress 
mTOR activity, potentially contributing to their anti-
fibrotic effects [387]. However, the exact mechanisms by 
which MSCs modulate mTOR signaling in fibrosis are 
still under investigation.

Wnt/β-catenin signaling: a double-edged sword in fibrosis
The Wnt/β-catenin pathway has complex and context-
dependent roles in fibrosis [388]. Both canonical and 
non-canonical Wnt/β-catenin signaling can promote 
fibrosis. Modulating specific components of the Wnt 
pathway offers potential for targeted therapeutic strat-
egies [389, 390]. However, this area of research is still 
evolving, and specific inhibitors are not yet widely used 
in clinical trials for fibrosis. Emerging evidence suggests 
that certain stem cell populations, such as induced plu-
ripotent stem cells (iPSCs), can modulate Wnt signaling 
[391]. Furthermore, iPSCs have the potential to differ-
entiate into various cell types within the affected organ, 
potentially influencing the Wnt signaling landscape in 
multiple ways.

Organ-specific signaling crosstalk: tailoring therapies
The specific signaling pathways contributing to fibrosis 
can vary depending on the affected organ [392]. Under-
standing these organ-specific differences is crucial for 
developing targeted therapies. For example, integrin sig-
naling plays a significant role in liver fibrosis, while Notch 
signaling might be more relevant in kidney fibrosis [255, 
393]. Research continues to unravel the intricacies of 
molecular signaling pathways involved in fibrosis. By elu-
cidating the complex crosstalk between these pathways 
and their influence on different cell types, researchers can 
develop more effective therapeutic strategies tailored to 
specific organs and fibrosis subtypes [394]. This will lead 
the way for personalized medicine approaches to combat 
fibrosis and improve patient outcomes.

Future directions and perspectives for stem cell-
based therapy for fibrotic diseases are

  • To optimize the delivery methods, doses, and timing 
of stem cell administration to achieve the best anti-
fibrotic outcomes and minimize the potential adverse 
effects, such as tumorigenicity, immunogenicity, and 
infection.

  • To identify the optimal sources, types, and 
subpopulations of stem cells that have the highest 
anti-fibrotic potency and specificity for different 
organs and diseases.

  • To elucidate the molecular mechanisms and 
pathways by which stem cells modulate the fibrotic 
process, such as by secreting anti-inflammatory and 
anti-fibrotic factors, transferring mitochondria or 
exosomes, or directly differentiating into functional 
cells.

  • To develop novel strategies to enhance the anti-
fibrotic effects of stem cells, such as by genetic 
engineering, preconditioning, or combination with 
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other therapies, such as drugs, biomaterials, or gene 
therapy.

  • To establish standardized and validated protocols 
and criteria for the isolation, expansion, 
characterization, and quality control of stem cells for 
clinical use.

  • To conduct more rigorous and large-scale clinical 
trials to evaluate the safety and efficacy of stem 
cell-based therapy for fibrotic diseases, as well as 
to monitor the long-term outcomes and potential 
complications.

Conclusion
Despite the encouraging advances in the understand-
ing of the pathophysiology of organ fibrosis, effective 
treatment to stop the progression towards organ fail-
ure remained an urgent need. In recent years, stem cells 
have shed great light on anti-fibrotic therapy. A growing 
body of evidence supports the remarkable impact of stem 
cell-based therapy on various fibrotic mechanisms and 
repair processes. Although, the results of the in-vitro and 
in-vivo studies mentioned above are promising, several 
challenges and issues currently remain to be addressed 
before such therapeutic strategy can be safely translated 
to clinical practice for patients with fibrotic diseases: (i) 
well-defining and standardizing the optimal dose, route, 
time and course of stem cell administration; (ii) optimiza-
tion and refinement of isolation, reprogramming (in the 
case of iPSC), purification, characterization, cultivation, 
propagation, differentiation and pretreatment protocols; 
(iii) Considering safety issues, including immunogenic 
risks, clear assessing oncogenic transformation risk, 
prospective elimination of tumorigenic cells through 
using intrinsic cell properties, such as surface antigens, 
to minimize the tumorigenesis potential of transplanted 
stem cells, determining the mechanisms of homing and 
long term safety of utilizing stem cells; (iv) Recognizing 
the exact anti-fibrotic mechanisms of stem cells particu-
larly iPSCs, as unrestricted sources of pluripotent stem 
cells, in organ fibrosis. Given that most investigations in 
this field considered MSCs for stem cell therapy, further 
endeavors are required to recognize mechanisms and 
pathways by which, iPSCs conduct the suppressive effect 
to stop fibrogenesis in various organs. While stem cell 
therapy for fibrosis shows promise, there’s a gap between 
lab investigations and large-scale clinical applications. 
MSCs are currently leading the way due to their safety, 
feasibility, and encouraging results in ongoing clinical 
trials. Drawing definitive conclusions about safety and 
effectiveness requires more comprehensive clinical trial 
data. However, the ongoing research with MSCs suggests 
this approach has the potential to move from the lab 
towards clinical application in the coming years (Table 2). 

Collectively, taking these issues into account allows for 
enhancing the efficacy and avoiding the adverse effects 
of stem cell-based therapy, which improves survival and 
reduces the mortality rates in millions of patients suffer-
ing from organ fibrosis.
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