
Sridharan et al. Stem Cell Research & Therapy          (2024) 15:186  
https://doi.org/10.1186/s13287-024-03792-3

RESEARCH

Bioorthogonal non‑canonical amino acid 
tagging to track transplanted human induced 
pluripotent stem cell‑specific proteome
Divya Sridharan1, Julie A. Dougherty1, Uzair Ahmed1, Shridhar K. Sanghvi2,3, Syed Baseeruddin Alvi1, Ki Ho Park4, 
Helena Islam1, Sue E. Knoblaugh5, Harpreet Singh2, Elizabeth D. Kirby6,7 and Mahmood Khan1* 

Abstract 

Background  Human induced pluripotent stem cells (hiPSCs) and their differentiated cell types have a great potential 
for tissue repair and regeneration. While the primary focus of using hiPSCs has historically been to regenerate dam-
aged tissue, emerging studies have shown a more potent effect of hiPSC-derived paracrine factors on tissue regenera-
tion. However, the precise contents of the transplanted hiPSC-derived cell secretome are ambiguous. This is mainly 
due to the lack of tools to distinguish cell-specific secretome from host-derived proteins in a complex tissue microen-
vironment in vivo.

Methods  In this study, we present the generation and characterization of a novel hiPSC line, L274G-hiPSC, express-
ing the murine mutant methionyl-tRNA synthetase, L274GMmMetRS, which can be used for tracking the cell specific 
proteome via biorthogonal non-canonical amino acid tagging (BONCAT). We assessed the trilineage differentiation 
potential of the L274G-hiPSCs in vitro and in vivo. Furthermore, we assessed the cell-specific proteome labelling 
in the L274G-hiPSC derived cardiomyocytes (L274G-hiPSC-CMs) in vitro following co-culture with wild type human 
umbilical vein derived endothelial cells and in vivo post transplantation in murine hearts.

Results  We demonstrated that the L274G-hiPSCs exhibit typical hiPSC characteristics and that we can efficiently track 
the cell-specific proteome in their differentiated progenies belonging to the three germ lineages, including L274G-
hiPSC-CMs. Finally, we demonstrated cell-specific BONCAT in transplanted L274G-hiPSC-CMs.

Conclusion  The novel L274G-hiPSC line can be used to study the cell-specific proteome of hiPSCs in vitro and in vivo, 
to delineate mechanisms underlying hiPSC-based cell therapies for a variety of regenerative medicine applications.
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Introduction
Human induced pluripotent stem cells (hiPSCs) have 
revolutionized the field of regenerative medicine in the 
last ten years [1]. The ability to develop patient-derived 
hiPSCs have opened new avenues to tailor personalized 
medicine approaches for numerous disorders and degen-
erative diseases [2]. Furthermore, the expandability and 
pluripotency of hiPSCs has been critical for their use in 
developing cell-based therapies for traumatic brain injury 
[3, 4], spinal cord injury [5, 6], myocardial infarction [7, 
8], acute kidney injury [9], and diabetes mellitus [10, 11]. 
However, despite the improved functional outcomes 
observed in preclinical studies involving hiPSC-based cell 
therapy, several studies reported poor engraftment and 
long-term survival of the transplanted cells [12–14].

Emerging studies have attributed the beneficial effect 
of hiPSC-based cell therapies on tissue repair and regen-
eration to the paracrine factors derived from these cells 
[12–14]. The hiPSC secretome containing bioactive 
growth factors, proteins, nucleic acids, and extracellular 
vesicles has been extensively studied for their therapeu-
tic potential in recent years [15]. Despite their therapeu-
tic benefits, the precise composition of the transplanted 
hiPSC secretome in vivo has not been established. While 
the extracellular microenvironment and interaction with 
other cell-types (in complex tissues) have been known 
to modulate the stem cell secretome, most studies have 
characterized the stem cell secretome in vitro using sin-
gle cell-type cultures [16, 17]. The main challenge in 
studying stem cell secretome in vivo or in multi-cell-type 
cultures is the unavailability of tools to track cell-specific 
proteome.

In the present study, we adapted a novel technique for 
protein labeling, known as bioorthogonal non-canonical 
amino acid tagging (BONCAT), to identify the hiPSC-
specific proteome. We expressed a mutant mouse meth-
ionyl tRNA synthetase (L274GMmMetRS, hereafter 
“L274G”) in hiPSCs. The mutation in L274G facilitates 
the competitive charging of methionyl-tRNA with a non-
canonical amino acid, azidonorleucine (Anl), instead of 
the endogenous methionine. Culturing L274G-express-
ing hiPSCs (L274G-hiPSCs) in the presence of Anl ena-
bled us to create a cell-specific protein tag in these cells 
which could be detected by click chemistry between a 
biologically rare azide in Anl and an alkyne, Dibenzocy-
clooctyne (DBCO)-IR800. These alkyne-conjugated, Anl-
tagged proteins were then detected and characterized by 
polyacrylamide gel electrophoresis. Using this technique, 
we successfully detected the proteins made and secreted 
by the L274G-hiPSC-CMs both in a co-culture with wild 
type human umbilical cord endothelial cells (HUVECs), 
as well as post-transplantation into an animal model 
in vivo.

Taken together, our study is the first to establish and 
characterize a hiPSC line expressing the new and inno-
vative BONCAT technology to understand the mecha-
nisms underlying stem-cell mediated tissue regeneration 
in various disease pathologies like traumatic brain injury, 
myocardial infarction, and diabetes mellitus.

Materials and methods
All experiments have been performed and reported in 
accordance with the ARRIVE guidelines 2.0.

Lentivirus production
The L274G-T2A-mCherry sequence from Mahdavi et al. 
[18] was synthesized by Genscript Inc and inserted into a 
lentiviral backbone (pLJM1-EGFP, Addgene #19319) [19]. 
EF1α promoter sequence was also synthesized by Gen-
script and cloned to replace the CMV promoter. Plasmids 
were grown in One Shot Stbl3 chemically competent cells 
(Invitrogen, #C737303) and prepared using a Qiagen 
HiSpeed Maxi prep kit (Qiagen, #12662). Plasmid iden-
tity was confirmed via restriction digestion and Sanger 
sequencing (EF1a F 5’-TCA​AGC​CTC​AGA​CAG​TGG​
TTC; mCherry R 5’-TTG​GTC​ACC​TTC​AGC​TTG​G, 
both from Addgene, synthesized by IDT DNA). VSV-G 
pseudotyped 3rd generation lentiviral particles were pre-
pared by Vigene Biosciences Inc.

Lentiviral transduction of hiPSCs
Passaging and maintenance of hiPSCs
CYS0105 hiPSCs (ATCC, henceforth WT-hiPSCs), 
reprogrammed from cardiac fibroblasts were procured 
and cultured as described previously [20]. Briefly, the cry-
opreserved hiPSCs were thawed and cultured in Essen-
tial 8™ Medium (E8, Thermo Fisher Scientific, MA) on 
Cell Basement Membrane (ATCC)-coated 6-well plates 
(Fisher Scientific). For the first 24 h, the culture medium 
was supplemented with 10 μM Y-27632 (TOCRIS, MN). 
The cultures were passaged using Gentle Cell Dissocia-
tion Reagent (Stem Cell Technologies) at a confluency 
of > 80% onto Cell Basement Membrane coated dishes as 
previously described [20].

Lentiviral transduction
Day 0: The WT-hiPSCs were passaged at 1:6 ratio on to 
Cell Basement Membrane-coated dishes in E8 medium 
supplemented with 10 µM Y27632.

Day 1: The medium was replaced with 2 ml/well of pre-
warmed E8 medium supplemented with 6  µg/ml poly-
brene (Millipore) and cultures were incubated at 37  °C, 
5% CO2 for 15 min. To each well, 10 µl of 1 × 106 TU/ml 
of L274G lentiviral particles were added and incubated at 
37 °C, 5% CO2 for 24 h.
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Day 2: The medium was replaced with 2 ml/well of pre-
warmed E8 medium supplemented with 6  µg/ml poly-
brene (Millipore) for 15 min followed by addition of 30 µl 
of 1 × 106 TU/ml of L274G lentiviral particles.

Day 3 and 4: The medium was replaced with fresh E8 
medium. mCherry fluorescence was visible in the trans-
duced hiPSCs by the end of Day 4.

Day 5–10 (Puromycin Selection): E8 medium supple-
mented with 1 µg/ml puromycin was added every day to 
the cultures.

The selected hiPSCs were passaged and maintained as 
described previously [20].

Trilineage differentiation of L274G‑hiPSCs
Trilineage differentiation potential of the WT-hiPSCs 
and L274G-hiPSCs was assessed using the STEMdiff™ 
Trilineage Differentiation Assay kit (Stem cell Technolo-
gies) per the manufacturer’s directions. Briefly, the hiP-
SCs were passaged at seeding densities of 800,000/well 
(ectoderm and endoderm) and 200,000/well (mesoderm) 
in E8 medium supplemented with 10 µM Y-27632 in Cell 
Basement Membrane-coated 12-well plates. After 24  h, 
the medium was replaced with the appropriate triline-
age differentiation medium (ectoderm, endoderm and 
mesoderm). Medium was replaced every 24 h for 4 days 
(mesoderm and endoderm) and 6  days (ectoderm), 
respectively.

Cardiac differentiation of hiPSCs
WT-hiPSCs and L274G-hiPSCs were differentiated to 
functional cardiomyocytes as described previously [21]. 
Briefly, the hiPSCs were cultured in E8 medium until 
they reached a confluence of 90%. The hiPSCs were 
treated with Cardiac Differentiation medium I (CDM-
I; RPMI medium supplemented with B27 supplement 
minus insulin) supplemented with 10  µM CHIR99021 
for 24  h. The following day, the medium was replaced 
with CDM-I for 48  h. On day 3, CDM-I supplemented 
with 5 µM IWP-4 was added to the cultures and left for 
two days after which CDM-I was changed every alter-
nate day until the cells started contracting spontaneously 
(~ 9 to 10  days). Once the cells start contracting, the 
medium was switched to cardiac differentiation medium 
II (CDM-II, RPMI supplemented with B27 supplement) 
for two days. The spontaneously contracting hiPSC-CMs 
were enriched in culture by metabolic selection in selec-
tion medium (DMEM without glucose supplemented 
with 1% non-essential amino acids, 1% GlutaMax, 1% 
penicillin–streptomycin, and 4  mM L-lactate) as previ-
ously described [21]. Post-enrichment the hiPSC-CMs 
were trypsinized, re-plated on to Cell Basement Mem-
brane-coated 6-well plates in cardiomyocyte mainte-
nance medium (CMM; CDM-II supplemented with 2.5% 

fetal bovine serum, FBS). The medium was changed every 
alternate day.

Co‑culture of hiPSC‑CMs and human umbilical vein 
endothelial cells (HUVECs)
Differentiated L274G-hiPSCs were co-cultured with wild 
type HUVECs to validate cell-specific protein labelling 
in  vitro. HUVECs were procured from Lonza, and the 
cells were cultured and maintained per the manufactur-
er’s recommendations. Briefly, the HUVECs were thawed 
and cultured in Clonetics™ EGM™-2 BulletKit™ (Lonza 
Catalog No. CC-3162) which comprises of Endothe-
lial Basal Medium-2 (EBM™-2 Medium) supplemented 
with human Epidermal Growth Factor (hEGF), Vascu-
lar Endothelial Growth Factor (VEGF), R3-Insulin-like 
Growth Factor-1 (R3-IGF-1), Ascorbic Acid, Hydrocor-
tisone, human Fibroblast Growth Factor-Beta (hFGF-β), 
Heparin, 2% FBS, and Gentamicin/Amphotericin-B. For 
co-culture, HUVECs and L274G-hiPSCs were dissoci-
ated using 0.25% trypsin–EDTA for 3  min and 7  min, 
respectively. The trypsin activity was neutralized by add-
ing equal volume of their respective culture medium con-
taining FBS. The cell suspensions were centrifuged, and 
cell pellets were re-suspended in 5 ml of HUVEC culture 
medium and CMM mixed at a ratio of 1:1. The cell count 
for each cell-type was determined using the Countess 3 
automated cell counter (Thermofisher Scientific). The 
L274G-hiPSC-CMs and HUVECs were mixed at a ratio 
of 3:1 and co-cultured for up to 5 days in HUVEC culture 
medium: CMM (1:1).

Teratoma formation assay
L274G-hiPSCs (p15) and WT-hiPSCs (p22) were dissoci-
ated into a single cell suspension using Gentle Cell Dis-
sociation Reagent and resuspended in E8 medium for cell 
count. Approximately 1.5 million L274G-hiPSCs were 
resuspended in 50  µl Matrigel, and injected subcutane-
ously into the right flank of six-week-old immunocom-
promised female (NOD.CB17-Prkdcscid/NCrCrl, Charles 
River) mice (n = 5), as previously described [22]. As a 
control, an equal number of WT-hiPSCs were injected 
into the left flank of the same mice. The mice were anaes-
thetized using 1.5% isoflurane during the procedure. The 
mice were allowed to recover, and we monitored twice a 
week till they developed teratomas (~ 6 to 8 weeks). The 
mice were humanely euthanized by carbon dioxide expo-
sure once teratomas reached a diameter of 2  cm. The 
subcutaneous teratomas were surgically excised, fixed in 
10% neutral buffered formalin, and embedded in paraffin. 
Paraffin sections of 4  µm were stained with hematoxy-
lin and eosin (H&E) and evaluated by light microscopy 
(Nikon Eclipse Ci, Nikon Instruments, Melville, NY) 
with attached SC50 digital camera, (Olympus, B and B 
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Microscopes Limited, Pittsburgh, PA) by a board-certi-
fied veterinary pathologist (S.E.K.).

Transplantation of hiPSC‑CMs to murine hearts
Immunocompromised female NOD SCID mice (NOD.
CB17-Prkdcscid/NCrCrl, Charles River) were pro-
cured and housed in the University Laboratory Animal 
Resources (ULAR), The Ohio State University. Per pre-
vious publications [23], to access in  vivo BONCAT in 
transplanted L274G-hiPSC-CMs, ten mice were ran-
domly assigned into two groups: (a) Control and (b) cell 
transplant (n = 5/group). The mice in both the groups 
were fed a fixed 0.2% methionine (met) diet (Teklad 
Custom Diet, Envigo) for the duration of the study (two 
weeks). For the cell transplant group, the mice were anes-
thetized using isoflurane (1.5–3.0%), the chest cavity will 
be opened between 2nd and 3rd ribs and approximately 
2.5 million L274G-hiPSC-CMs (suspended in 20  µl 
Matrigel) were intramyocardially delivered into the left 
ventricle. The chest incisions were closed with ~ 4-0 poly-
propylene/Ti-Cron sutures, and upon completion of the 
surgical procedures, all animals were closely monitored 
to confirm recovery from anesthesia (resume normal 
behavior, rhythmic breathing without assistance). The 
weight and health of the mice were monitored daily for 
the duration of the experiment to ensure the adequacy 
of their diet. Animals with a weight loss > 20% were 
excluded from the study. Daily intraperitoneal (IP) injec-
tions of Anl (0.2  mmol/kg body weight) were given to 
both the control and cell transplant groups for five days 
before the end of the study. At two weeks, the mice were 
euthanized, the plasma, liver, kidney, lungs, and hearts 
were collected, and frozen at − 80 °C.

Immunostaining
For immunocytochemical analysis, cells were cultured 
and/or differentiated on glass coverslips as previously 
described [20]. The cells were fixed using 4% paraform-
aldehyde for 15 min at RT and permeabilized using 0.2% 
triton X-100 for 5  min on ice. Non-specific antibody 
binding was blocked by incubating the cells in blocking 
buffer containing 1% bovine serum albumin (BSA) in PBS 
for 1 h at RT. The cells were incubated with primary anti-
bodies diluted in blocking solution at 4 °C, overnight with 
gentle shaking. The following day, the cells were washed 
thrice in PBS and incubated with the corresponding sec-
ondary antibody diluted in blocking buffer for 1 h at RT 
in dark. The cell nuclei were then counterstained with 
DAPI for 15  min, at RT in dark. Finally, the coverslips 
were mounted on to glass slides using Prolong Gold Anti-
fade. All incubation steps were followed by three washes 
with PBS. The following antibodies were used: anti-
OCT4 (A24867, 1:200, Invitrogen), anti-SSEA4 (A24866, 

1:200, Invitrogen), anti-SOX2 (A24759, 1:200, Invitro-
gen), anti-TRA-1-60 (A24868, 1:200, Invitrogen), anti-
Nestin (A11861, 1:500, Abclonal), anti-SOX17 (AF1924, 
1:500, R&D systems), anti-BryT (ab209665, 1:200, 
Abcam), anti-α-sarcomeric actinin (A7732, 1:500, Sigma-
Aldrich), anti-troponin T (HPA017888, 1:500, Sigma-
Aldrich), anti-mCherry (ab183628, 1:500, Abcam), goat 
anti-mouse AlexaFluor™ 488 (A11001, 1:1000, Invitro-
gen), goat anti-rabbit AlexaFluor™ 488 (A78953, 1:1000, 
Invitrogen), goat anti-mouse AlexaFluor™ 594 (A11005, 
1:1000, Invitrogen), goat anti-rabbit AlexaFluor™ 594 
(A11012, 1:1000, Invitrogen), donkey anti-goat Alex-
aFluor™ 488 (A11055, 1:1000, Invitrogen), and goat anti-
rat AlexaFluor™ 488 (A11006, 1:1000, Invitrogen).

Flow cytometry
The hiPSC cultures were washed twice in PBS and dis-
sociated to single cells as described above. The viable cell 
number was determined using a hemocytometer after 
staining the cells with 0.4% trypan blue dye. The cells 
were fixed in 4% PFA for 15 min at RT. The cell suspen-
sion was centrifuged and the cell pellet was washed thrice 
with PBS. For permeabilization, the cell pellet was resus-
pended in 0.2% triton X-100 in PBS for 5 min on ice. The 
cells were again washed thrice in PBS and the cell pellet 
was resuspended in 1% BSA solution for blocking at a 
density of 5 × 106 cells/ml and incubated for 1  h on ice. 
The cells (~ 1 million/200 µl) were then stained with the 
primary antibody (diluted in 1% BSA) for 1 h on ice. The 
cells were then washed thrice with PBS and incubated 
with the corresponding secondary antibodies for 30 min 
on ice. Finally, the cells were washed thrice in PBS and 
resuspended in 400  µl of PBS for analysis. Flow cytom-
etry experiments were performed using BD LSRFortessa 
system (BD Biosciences) the data was analyzed by using 
the FlowJo software. The details of the antibodies used 
are provided in section "Immunostaining".

Non‑canonical amino acid tagging
BONCAT labelling was performed as previously 
described [24]. Briefly, undifferentiated, or differentiated 
hiPSC cultures were washed twice with phosphate-buff-
ered saline (PBS) and incubated in methionine-depleted 
medium for 30 min at 37  °C, 5% CO2 to wash off resid-
ual methionine from the cultures. Medium containing 
varying concentrations (0–100  µM) of methionine and 
(0–2  mM) Anl was added to the cells and the cultures 
were incubated overnight at 37 °C, 5% CO2. The follow-
ing day, the medium was replaced with regular culture 
medium, and the cultures were incubated for an hour, 
37 °C, 5% CO2 to wash off the free Anl from the medium.
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Fluorescent non‑canonical amino acid tagging (FUNCAT)
In vitro cultured hiPSCs or their derived differentiated 
cells were fixed in ice-cold methanol for 10 min at 4  °C 
after three washes with PBS. The methanol was washed 
off from the cells with PBS, and the cells were incubated 
in 20 mM iodoacetamide (IAA, Roche) for 1.5 h, at RT in 
dark. Aza-dibenzocyclooctyne (DBCO)-FITC was spiked 
in, to attain a final concentration of 12 µM and the cells 
were incubated for 10  min in dark at RT. The unbound 
DBCO-FITC was thoroughly washed off from the cells by 
three washes with PBS for 5 min each, with gentle shak-
ing. Further, the cells were immunostained with specific 
antibodies as described above.

For FUNCAT immunohistochemical analysis, the 
L274G-hiPSC-CM-transplanted hearts were perfused 
and washed in PBS to remove blood. The tissue was 
embedded in OCT and cryosectioned as previously 
described. The cryosections were fixed and permeabi-
lized by incubating with ice-cold methanol for 10 min on 
ice. The methanol was washed off with PBS and the cryo-
sections were further incubated with 20 mM IAA for 2 h 
at RT in dark in a humidified chamber. DBCO-FITC was 
spiked in to achieve a final concentration of 12 µM and 
the sections were incubated overnight at RT in dark. The 
following day, the DBCO-FITC was thoroughly washed 
off with three PBS washes and the sections were incu-
bated with blocking buffer containing 10% normal goat 
serum (NGS) in PBS for 1 h in dark. The sections were 
then incubated with anti-mCherry antibody diluted in 
the blocking buffer (1:200), overnight at 4 °C in dark. The 
next day the sections were washed in PBS and incubated 
anti-rabbit AlexaFluor™ 594 antibody diluted in the 
blocking buffer (1:1000) for 1  h at RT in dark. The sec-
tions were then counterstained with DAPI and imaged on 
the Olympus FV3000 microscope.

BONCAT​
To identify BONCAT of cellular proteins, hiPSCs were 
cultured in a 96-well plate, fixed in ice cold-methanol, 
and incubated with IAA as described above. After IAA 
incubation, DBCO-IR800 was spiked-in, and the cells 
were incubated for 10  min in dark at RT. The DBCO-
IR800 was washed off with PBS, and the cells were dried 
completely at RT and imaged on the LICOR CLx system 
at 800 nm. Total protein in the cells was assessed by stain-
ing the cells with Page Blue and imaging at 700 nm using 
the LICOR CLx system. The signal intensities in the cap-
tured images were analyzed using the Image J software.

For western blotting, cell pellets or 30 mg of mouse left 
ventricles were resuspended in 8 M Urea (Sigma-Aldrich) 
containing protease inhibitors (Roche) and lysed by soni-
cation (10% amplitude, 3 cycles of 1 s) on ice. The lysates 

were centrifuged, and supernatants were stored at − 80 °C 
until use. The protein concentration was assessed using 
the calorimetric Braford’s assay as previously described. 
BONCAT was performed as previously described. 
Briefly, 30–50 µg of protein was incubated with 20 mM 
IAA for 1.5 h in dark. DBCO-IR800 (final concentration 
of 12 µM) was spiked into the reaction mixture and incu-
bated for an additional 30 min in dark. 1× Lamelli buffer 
containing β-mercaptoethanol was added and the sam-
ples were boiled at 95  °C for 10  min. The samples were 
resolved on a 4–20% gel and transferred onto nitrocel-
lulose membranes. The membranes were blocked with 
5% non-fat dry milk in TBS (NFDM, Biorad) and stained 
with primary antibodies diluted in 1% NFDM overnight 
at 4  °C on a shaker. The following day the membranes 
were stained with the corresponding HRP-conjugated 
secondary antibodies, developed using the Immobilon® 
UltraPlus Western HRP Substrate (EMD Millipore) per 
the manufacturer’s instructions, and imaged in the Azure 
C600 imaging system. Total protein loaded in the gel was 
assessed by staining the blots with Ponceau S stain. The 
secondary antibodies used were donkey anti-goat HRP 
(sc2020, 1:10,000, Santa Cruz Biotechnology), sheep 
anti-mouse HRP (NA931V, 1:10,000, GE Healthcare), 
and donkey anti-rabbit HRP (NA943V, 1:10,000, GE 
Healthcare).

L274G-hiPSC-CM-derived proteins in mouse plasma 
were identified as previously described [24, 25]. Briefly, 
250 µl of mouse plasma was diluted (1:1) with 8 M urea 
containing protease inhibitors. Endogenous biotinylated 
proteins were eliminated by incubating the mouse plasma 
overnight with streptavidin-agarose beads followed 
by centrifugation. The supernatant was alkylated with 
100 µM IAA for 2 h in dark and click reacted with 10 µM 
DBCO-biotin (Click Chemistry Tools) for 2  h in dark. 
The samples were then incubated overnight at 4 °C with 
the Human Growth Factor Array C1 (Ray Biotech). The 
following day, the arrays were washed and incubated with 
Streptavidin-HRP per the manufacturer’s instructions. 
The arrays were imaged as described above and signals 
were quantified using Image J. The signal intensities were 
normalized per the manufacturer’s (instructions, using 
the control mouse plasma as the reference array.

Calcium imaging
L274G-hiPSC-CMs were cultured in CMM with or with-
out supplementation with 0.125  mM Anl for one week. 
The L274G-hiPSC-CMs were then stained with Fluo-
4AM and imaged on the Nikon A1R confocal microscope 
using the line scan mode to record the calcium transients 
as previously described [26]. The captured images were 
then analyzed using the Image J software as previously 
described [27].
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Statistical analysis
All values are presented as mean values ± standard error. 
The statistical significance between the groups was deter-
mined by Student’s t-test. For the mouse plasma samples, 
three arrays per group were analyzed using the manufac-
turer’s (Ray Biotech) instructions. One plasma sample 
from the control group was randomly assigned as the 
reference array. Finally, the fold-change of signal intensi-
ties in cell transplant group was calculated by normaliz-
ing with the control group, and significance was assessed 
using two-way ANOVA. Values were considered sig-
nificant if the P values were < 0.05. All statistical analyses 
were performed using GraphPad Prism Software, version 
10.

Results
Generation of L274G‑hiPSCs
Third generation lentiviral particles carrying the L724G 
plasmid construct were generated for transduction 
(Fig.  1A). The L274G and mCherry transgenes were 
expressed under the constitutively active EF1α promoter. 
The two transgenes were separated by the T2A peptide 
sequence to enable cleavage of the two polypeptides. 
The puromycin resistance transgene was placed under 
the hPGK promoter. WT-hiPSCs were transduced with 
these lentiviral particles and mCherry fluorescence was 
monitored (Fig. 1B). We observed mCherry fluorescence 
in ~ 10% hiPSCs at 72  h after the secondary infection. 
The positively transduced, mCherry expressing L724G-
hiPSCs were enriched by treatment with 1  µg/ml puro-
mycin for five days (Fig. 1B). The enriched L274G-hiPSCs 
formed colonies typical of PSCs in culture and compara-
ble with the WT-hiPSCs (Supplementary Fig. S1A). Both 
the L274G-hiPSCs and WT-hiPSCs expressed the pluri-
potency markers OCT4, SSEA4, SOX17 and TRA-1-60 
as evidenced by the immunolocalization studies (Fig. 1C; 
Supplementary Fig.  S1B, C). The stable integration of 
the transgene was confirmed using flow cytometry 
which showed mCherry expression in 94.1 ± 3% L274G-
hiPSCs at passage (p) 30–34 (Supplementary Fig.  S1D). 
Additionally, flow analysis showed the expression of the 

pluripotency markers OCT4 and SSEA4 in both the WT-
hiPSCs (p27–38) and L274G-hiPSCs (p30–34) (Supple-
mentary Fig. S1D).

Assessment of trilineage differentiation potential 
of L274G‑hiPSCs
We assessed the differentiation potential of L274G-hiP-
SCs as compared to the WT-hiPSCs to the three-germ 
lineages: ectoderm, mesoderm, and endoderm. Both the 
WT-hiPSCs and L274G-hiPSCs exhibited differentia-
tion to ectoderm-derived Nestin-expressing cells, meso-
derm-derived Brachyury-T (BryT)-expressing cells, and 
endoderm-derived SOX17-expressing cells (Fig.  1D). 
Additionally, the L274G-hiPSCs continued to express 
mCherry post-differentiation indicating stable expression 
of the transgene in the L274G-hiPSC-derived differenti-
ated cells (Fig. 1D).

Furthermore, the in  vivo differentiation potential of 
both WT-hiPSCs and L274G-hiPSCs were assessed via 
the teratoma formation assay (Supplementary Fig. S2A). 
Both hiPSC lines formed significant teratomas within six 
weeks in all five immunocompromised mice (Supplemen-
tary Fig.  S2B). However, the diameter of L274G-hiPSC-
derived teratomas was significantly smaller as compared 
to the teratomas derived from WT-hiPSCs (Supplemen-
tary Fig. S2C). Histology showed the presence of imma-
ture ectodermal, endodermal and mesodermal structures 
in the WT-hiPSC-derived teratomas that were multifo-
cally surrounded by bands of mature mesodermal tissue 
(muscle) (Fig. 1E, i–iv). Multifocally, immature neuroec-
toderm predominated and consisted of small primitive-
appearing hyperchromatic cells arranged in rosettes or 
tubules that resemble structures seen in the early embry-
onic central nervous system (Fig.  1E, i and iii). Addi-
tionally, primitive epithelium (endoderm) surrounded 
by bands of muscle (mesoderm) and multifocal melanin 
pigment was also observed in these teratomas (Fig. 1E, ii, 
iv). In the L274G-hiPSC-derived teratomas, we observed 
immature ectodermal, endodermal and mesodermal 
structures that were multifocally surrounded by bands 
of mature mesodermal tissue (muscle) (Fig.  1E, v–viii). 

Fig. 1  Generation and characterization of L274G-hiPSCs. A Lentivirus construct for expression of L274G in hiPSCs. B Experimental design 
for L274G lentiviral transduction of WT-hiPSCs. C Immunostaining for PSC markers, OCT4 and SSEA4 in L274G-hiPSCs. Scale bar: 20 µm. D 
Fluorescence images showing expression of Nestin, BryT, and SOX17 in in vitro differentiated L274G-hiPSCs and WT-hiPSCs. Scale bar: 20 µm. E 
Representative Hematoxylin and Eosin (H&E) stained images of hiPSC-derived teratomas showing (i) WT-hiPSC-derived immature neuroectoderm, 
(ii) WT-hiPSC-derived immature epithelium (endoderm, arrows) surrounded by bands of muscle (mesoderm, *), (iii) WT-hiPSC derived immature 
neuroectoderm (#) surrounded by primitive-appearing spindle cell stroma (mesoderm,*), (iv) WT-hiPSC-derived immature epithelium (endoderm). 
(v) L274G-hiPSC-derived immature neuroectoderm (#) separated by bands of muscle (mesoderm, *), (vi) L274G-hiPSC-derived primitive 
epithelium (endoderm, arrows) surrounded by bands of muscle (mesoderm, *), (vii) L274G-hiPSC-derived immature neuroectoderm, and (viii) 
L274G-hiPSC-derived neuroectodermal tubule (#) surrounded by primitive-appearing spindle cell stroma (mesoderm, *). Scale bar: (i-iii) and (v-viii): 
50 µm; (iv): 20 µm

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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Furthermore, like the WT-hiPSCs, immature neuroe-
ctoderm predominated in the L274G-hiPSC-derived 
teratomas (Fig.  1E, v, vii, and viii) as well as primitive 
epithelium (endoderm) surrounded by bands of muscle 
(mesoderm) (Fig. 1E, v, vi, and viii). Taken together, our 
results showed no significant morphologic differences 
between the differentiation potential of WT-hiPSCs and 
L274G-hiPSCs in vitro or in vivo.

Characterization of Anl incorporation in L274G‑hiPSC 
proteome
To determine the optimum concentration of Anl and 
methionine for non-canonical amino acid tagging with-
out cell death, we cultured the L274G-hiPSCs in vary-
ing concentrations of methionine (0, 12.5, 25, 50, and 
100 µM) and Anl (0, 0.03125, 0.0625, 0.125, 0.25, 0.5, 1, 
and 2 mM) for 24 h (Fig. 2A). Furthermore, to eliminate 
non-specific Anl incorporation, we also cultured WT-
hiPSCs under similar culture conditions (Fig. 2A). After 
24  h, the L274G-hiPSCs and WT-hiPSCs were click-
reacted with DBCO-IR800 and the IR800 signal in each 
well was normalized to the total protein (determined 
by staining with Page-Blue) (Fig.  2B, C). We observed 
a dose-dependent increase in IR800 signal at lower Anl 
concentrations with a slight decrease in signal at high 
Anl concentrations (Fig.  2C). While the highest IR800/
total protein signal was observed under 0  µM methio-
nine culture conditions, complete absence of methionine 
appeared to be detrimental to cell survival. Furthermore, 
L274G-hiPSCs cultured in medium containing 12.5  µM 
methionine and 0.125  mM Anl had a significantly 
higher IR800 signal compared to cell cultured in 100 µM 
methionine and was optimized for non-canonical amino 
acid tagging of L274G-hiPSCs.

Intracellular Anl incorporation in the L274G-hiPSC 
proteome was validated using FUNCAT and immuno-
cytochemistry. We observed Anl incorporation in the 
total proteome of L274G-hiPSCs (non-specific to cell 
compartment) but not in WT-hiPSCs cultured under 
similar conditions (Fig. 2D). On the other hand, mCherry 
and SSEA-4 immunofluorescence was restricted to 
the cytoplasm and cell membrane, respectively, in 
the L274G-hiPSCs (Fig.  2D). As expected, we did not 
observe mCherry fluorescence in the WT-hiPSCs but 
detected the expression of SSEA-4 in the plasma mem-
brane (Fig.  2D). Furthermore, we validated the Anl 
incorporation into the total proteome of L274G-hiPSCs 
using BONCAT-western blot at different passages (p12, 
p23, and p28) (Fig. 2E). We observed Anl incorporation 
throughout the proteome of the L274G-hiPSCs at all 
three passages, evidenced by the presence of IR800 signal 
associated with proteins of all molecular sizes (Fig.  2E, 
F). Moreover, no Anl incorporation was observed in the 

WT-hiPSC proteome following culture of these cells 
in Anl-containing medium (Fig.  2E, F). However, we 
observed a significantly lower expression of OCT4 in the 
L274G-hiPSCs as compared to the WT-hiPSCs (Fig. 2G).

We next assessed the incorporation of Anl into L274G-
derived differentiated cell proteome. WT-hiPSC and 
L274G-hiPSC-derived ectoderm, endoderm and meso-
derm cells were cultured in 12.5  µM methionine and 
0.125  mM Anl-supplemented medium for 24  h. FUN-
CAT analysis showed the incorporation of Anl into 
Nestin-expressing ectodermal cells, Bry-T-expressing 
mesodermal cells, and SOX17-expressing endodermal 
cells (Fig.  3A) differentiated from L274G-hiPSCs. Fur-
thermore, we observed the presence of Anl-DBCO-IR800 
signal in the total proteome in the L274G-hiPSC-derived 
differentiated cells but not in the WT-hiPSCs follow-
ing mesoderm (Fig.  3B, C), ectoderm (Supplementary 
Fig.  S3A, B) and endoderm (Supplementary Fig.  S3D, 
E) differentiation. Furthermore, we did not observe 
any significant changes in the expression of lineage-
specific markers, BryT (mesoderm) (Fig.  3B, D), Nes-
tin (ectoderm) (Supplementary Fig. S3A, C) and SOX17 
(endoderm) (Supplementary Fig.  S3D, F) between the 
L274G-hiPSC- and WT-hiPSC-derived differentiated 
cells. Taken together, our data showed non-canonical 
amino acid tagging in the cellular proteome of L274G-
hiPSCs and their derived differentiated cells with no sig-
nificant changes in cellular protein synthesis.

Cell‑specific Anl incorporation in L274G‑hiPSC‑CMs
Both WT-hiPSCs and L274G-hiPSCs efficiently dif-
ferentiated to function hiPSC-CMs within 13  days of 
differentiation (Fig.  4A, Supplemental Video 1 and 
Supplemental Video 2). Immunocytochemical analy-
sis showed the expression of mCherry as well as car-
diomyocyte-specific markers, troponin-T (TNT) and 
α-sarcomeric actinin (α-SA) in the L274G-hiPSC-CMs 
(Fig.  4B). Furthermore, following culture of L274G-
hiPSC-CMs in Anl-supplemented medium, we observed 
small but insignificant changes in contractility of the 
cells as compared to L274G-hiPSC-CMs cultured in 
CMM, evident from their intracellular calcium transients 
(Fig. 4C–F).

To determine if Anl incorporation into cell proteome 
was specific to L274G-hiPSC-derived cells, we co-cul-
tured the differentiated L274G-hiPSC-CMs with WT-
HUVECs for 24 h in 12.5 µM methionine and 0.125 mM 
Anl supplemented medium. Following FUNCAT and 
immunofluorescence staining, we observed DBCO-FITC 
fluorescence only in the mCherry+ L274G-hiPSC-CMs 
(Fig.  5A). These observations validated the selective 
incorporation of Anl in L274G-hiPSC-CM proteome. 
Furthermore, to validate the cell-specific Anl-tagging 
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Fig. 2  Anl tagging of proteins in L274G-hiPSCs. A IR800 (left) and B PageBlue (right) signal showing Anl-tagged and total proteins in L274G-hiPSCs 
cultured in varying concentrations of Anl and Met. N = 3, **p < 0.01, ***p < 0.005 compared to control (100 µM Methionine). C Quantification 
of dose-dependent Anl tagging in L274G-hiPSCs. D Fluorescence images showing expression of SSEA4, mCherry, and Anl tagging in L274G-hiPSCs 
and WT-hiPSCs. Scale bar: 5 µm. E Representative images showing ANL-DBCO-IR800 tagging in L274G-hiPSC proteome, the corresponding ponceau 
staining and OCT4 expression in hiPSCs. Absence of Anl tagging in WT-hiPSCs is highlighted by blue boxes. F Quantification of Anl tagging (IR800) 
of proteome and G Quantification of OCT4 expression normalized to total protein (Ponceau stain) in WT- and L274G-hiPSCs. N = 3. ****p < 0.0001; 
**p < 0.01. Full-length blots have been shown in supplementary figure S5
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in  vivo, we transplanted L274G-hiPSC-CMs intramyo-
cardially in athymic nude mice (Fig. 5B, C). No significant 
weight differences were observed in the mice fed with 
low methionine diet during the study. In the cell trans-
plant group, immunohistochemical analysis of cardiac 
sections showed engrafted L274G-hiPSC-CMs which 
were identified by their mCherry fluorescence (Fig. 5C). 

Furthermore, FUNCAT showed Anl incorporation only 
in the mCherry+ transplanted L274G-hiPSC-CM pro-
teome and not in the surrounding wild-type host tissue 
(Fig. 5D). Furthermore, we validated our observation via 
western blot analysis of click reacted lysates from left 
ventricle (LV), lung, kidney and liver of control mice and 
mice transplanted with L274G-hiPSC-CMs. Our data 

Fig. 3  Assessment of ANL tagging in differentiated L274G-hiPSCs. A Fluorescence images showing expression of mCherry and Anl tagging 
in L274G-hiPSC-derived Nestin-expressing ectodermal cells, BryT-expressing mesodermal cells, and SOX17-expressing endodermal cells. Scale 
bar: 50 µm. B Representative images showing Anl-DBCO-IR800 tagging of proteome, the corresponding ponceau staining and BryT expression 
in WT-and L274G-hiPSC-derived mesodermal cells. Absence of Anl tagging in WT cells is highlighted by blue boxes. C Quantification of Anl 
tagging (IR800) of proteome and D Quantification of BryT expression normalized to total protein (Ponceau stain) in WT- and L274G-hiPSC-derived 
mesodermal cells. N = 3 from three independent cultures of different passages. ***p < 0.001. Full-length blots have been shown in supplementary 
figure S5
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showed presence of Anl tagged proteins only in the LV 
lysates of mice from the cell transplantation group but 
not in other tissues (Supplementary Fig. S4A). Similarly, 
we observed no Anl incorporation in control mice which 
received Anl injections but no cell transplantation (Sup-
plementary Fig. S4A).

Furthermore, we assessed the presence of L274G-
hiPSC-CM-specific Anl-tagged proteins in the mouse 
plasma using protein arrays (Fig.  6; Supplementary 
Fig. S4B). We compared the plasma from L274G-hiPSC-
CM-transplanted mice with plasma from control mice. 
Our data showed a positive detection of Anl tagged pro-
teins only in the plasma of mice which were transplanted 
with L274G-hiPSC-CMs (Fig.  6A) but not in plasma 
of control mice (Fig.  6B). Since both mice groups were 
given daily injections of Anl, our data confirmed neg-
ligible non-specific incorporation of Anl in WT host 

tissue proteome. Furthermore, quantitative analysis of 
the protein arrays showed a significant enrichment (> 1.5 
fold) of 20 out of 41 proteins in the L274G-hiPSC-CM-
transplanted mouse plasma as compared to control mice 
(Fig.  6C) indicating secretion of these proteins by the 
transplanted L274G-hiPSC-CMs.

Taken together, our results showed cell-specific Anl 
incorporation only in the L274G-hiPSC-CM proteome 
both in vitro and in vivo.

Discussion
In the present study, we have developed the transgenic 
L274G-hiPSC line expressing the L274G gene to iden-
tify cell-specific proteome in hiPSC-derived differen-
tiated cells via BONCAT. We also demonstrated the 
ability of L274G-hiPSCs to efficiently differentiate into 
cells of all the three germ lineages both in  vitro as well 

Fig. 4  Assessment of Anl-tagging in L274G-hiPSC-CMs. A Representative images showing hiPSC-CMs differentiated from WT-hiPSCs 
and L274G-hiPSCs. Images correspond to supplemental videos V1 and V2, respectively. B Confocal images showing expression of TNT and α-SA 
in L274G-hiPSC-CMs. C–D Representative traces showing C calcium transients and D their quantification in L274G-hiPSC-CMs cultured in CMM 
and Anl-supplemented culture medium. Quantitative assessment of calcium transient amplitude E and duration F in L274G-hiPSC-CMs cultured 
in CMM and Anl-supplemented medium. N = 9 cells from three independent cultures. Data shown is an average of three calcium cycles per cell
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as in  vivo. Furthermore, we established L274G-hiPSC-
specific incorporation of Anl into the proteome both in a 
co-culture system (in vitro) and post-transplantation (in 
vivo). Additionally, we were able to detect the presence 

of Anl-tagged L274G-hiPSC-CM-specific proteins in the 
plasma of mice two weeks post-transplantation in healthy 
mouse hearts. Therefore, our findings establish the appli-
cability of this novel hiPSC line to track transplanted 

Fig. 5  Assessment of cell-specific Anl-tagging in L274G-hiPSC-CMs. A Fluorescence images showing expression of DBCO-FITC and mCherry 
expression in L274G-hiPSC-CMs co-cultured with WT-HUVECs. Scale bar: 40 µm B Schematic showing experimental design for transplantation 
of L274G-hiPSC-CMs in mouse hearts. C Representative image showing intramyocardial injection (arrow) of L274G-hiPSC-CMs. D Fluorescence 
images showing expression of DBCO-FITC and mCherry expression in L274G-hiPSC-CMs in mouse cardiac tissue sections two weeks 
post-transplantation. Scale bar: Top panel: 100 µm, Bottom panel: 20 µm
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hiPSC-derived differentiated cell-specific proteome and 
gain insights into the paracrine mechanisms underlying 
hiPSC-based cell therapies.

Since their discovery, hiPSCs have provided a beacon 
of hope for the development of cell-based approaches in 
regenerative medicine. hiPSC-derived differentiated cells 
have been tested for treating a myriad of diseases includ-
ing Parkinson’s disease, spinal cord injury, diabetes mel-
litus, macular degeneration, myocardial infarction, and 
muscular dystrophy [28–30]. However, emerging reports 
from preclinical and clinical studies have shown that con-
trary to the hypothesis that transplanted hiPSC-derived 
differentiated cells would replace damaged cells and tis-
sues, the beneficial outcomes observed in these studies 
are paracrine in nature [12–14]. Therefore, understand-
ing the secretome of transplanted hiPSCs could pro-
vide key mechanistic information for designing and 
developing future therapeutic strategies for regenerative 
medicine.

In vitro studies have evaluated the composition of 
hiPSC-derived differentiated cell secretome in single cell-
type cultures. However, there is a paucity in knowledge 

pertaining to the proteome or secretome of cells in a 
complex multicellular environment like in  vitro co-cul-
ture systems or in vivo tissue microenvironment. Several 
methods like stable isotope labeling using amino acids 
in cell culture (SILAC) [31, 32], isobaric tag for relative 
and absolute quantitation (iTRAQ) [33, 34], and BON-
CAT using azidohomoalanine or homopropargylglycine 
have been developed for metabolic labelling of cell pro-
teome [35–37]. However, each of these methods has its 
advantages and disadvantages. For e.g. SILAC requires 
culturing cells in radioisotope-supplemented medium 
for several generations and none of these techniques 
can identify cell-specific proteome in co-culture sys-
tems [31–36]. On the other hand, a previous study had 
shown the identification of Anl-tagged bacteria-derived 
secreted proteins in the infected mammalian host cells 
in  vitro, using BONCAT [38]. Therefore, in our study, 
we expressed the transgene for mutant mouse methionyl 
tRNA synthetase, L274G, in hiPSCs. L274G expression 
enabled incorporation of Anl in place of methionine in 
the newly synthesized nascent proteins of L274G-hiP-
SCs and their derived differentiated cells, but not WT 

Fig. 6  Detection of transplanted L274G-hiPSC-CM-specific secreted proteins in mouse plasma. Representative protein array showing presence/
absence of 41 Anl-tagged proteins in plasma of L274G-hiPSC-CMs-transplanted mice (A) and control mice (B). C Quantification of 20 growth factors 
in L274G-hiPSC-CM treated mice plasma normalized to control mice. N = 3 mice/group. Enrichment cut-off: 1.5-fold (dashed line). **p < 0.005; 
***p < 0005; ****p < 0.0001
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cells. Therefore, we were able to successfully detect Anl 
incorporation only in L274G-hiPSC-CMs both in  vitro 
when co-cultured with WT-HUVECs as well as in  vivo 
post-transplantation into mouse hearts. Our results are 
consistent with previous reports which showed selec-
tive incorporation of Anl into L274G-expressing cells in 
in vitro co-culture systems [25] or in vivo [39, 40].

In the present study, we were able to detect > 1.5-fold 
enrichment of 20 different Anl-tagged growth factors in 
the plasma of mice up to two weeks post-transplantation 
with L274G-hiPSC-CMs compared to control mice. Our 
observations are consistent with previous in vitro studies 
that have shown the presence of these growth factors in 
hiPSC-CM secretome [41]. Among the identified growth 
factors, bFGF, PDGF, EGF, HB-EGF and IGF-1, have 
been shown to promote angiogenesis and cardioprotec-
tion [42]. Therefore, our observations are consistent with 
previous studies that have reported improved angio-
genesis and decreased apoptosis following hiPSC-CM 
transplantation [43]. Furthermore, since we observed 
negligible non-specific signals in the plasma or tissues of 
control mice which were given Anl injections for similar 
durations, our data strongly suggests the transplanted 
L274G-hiPSC-CMs as the source of these Anl-tagged 
proteins. Additionally, considering the significantly small 
ratio of transplant-derived proteins (from ~ 2.5 million 
transplanted hiPSC-CMs) to host-derived proteins in 
the plasma, the positive detection of Anl-tagged pro-
teins establishes the robustness of our BONCAT system. 
Taken together, our study, for the first time, establishes a 
proof-of-concept of the applicability of cell-specific met-
abolic labelling to identify the in vivo secretome profile of 
transplanted L274G-hiPSC-derived differentiated cells.

Additionally, the L274G-hiPSCs exhibited all charac-
teristic properties of a typical hiPSC line including the 
expression of the pluripotency markers, OCT4, SOX2, 
SSEA-4 and TRA-1-60. The L274G-hiPSCs also exhibited 
efficient differentiation to all three germ lineages: ecto-
derm, mesoderm, and endoderm in vitro and were com-
parable with the WT-hiPSCs. Moreover, the expression 
of the tested protein levels in the differentiated cells was 
comparable between the L274G-hiPSCs and WT-hiPSCs. 
Our observation is consistent with previous studies have 
shown that Anl incorporation does not grossly affect 
the abundance or content of the proteome in multiple 
cell types [18, 44, 45]. However, we did observe a signifi-
cantly lower expression of OCT4 in the L274G-hiPSCs as 
compared to the WT-hiPSCs. Moreover, although both 
the WT-hiPSCs and L274G-hiPSCs could form terato-
mas having similar differentiated cell types in  vivo, the 
teratomas derived from L274G-hiPSCs were significantly 
smaller than those derived from the WT-hiPSCs. It is 
possible that the introduction of the L274G transgene 

via lentivirus-based transduction may have affected the 
OCT4 expression and proliferation rate of the L274G-
hiPSCs via introduction of spontaneous mutations [46]. 
However, there are several studies that have shown a sig-
nificant influence of cell line, passage number and site of 
injection on the teratoma size [47, 48]. Since both the cell 
lines showed comparable trilineage differentiation poten-
tial both in vitro and in vivo, we believe that the L274G-
hiPSC line does not carry significant mutations which 
impact their pluripotency.

We observed a small but insignificant change in L274G-
hiPSC-CM contractility following culture in methio-
nine-reduced, Anl-supplemented CMM as compared to 
L274G-hiPSC-CMs cultured in regular CMM. Previous 
reports indicated small changes in the metabolic profile 
of Escherichia coli (E.coli) cells cultured in the presence 
of non-canonical amino acids [49]. This study showed 
an alteration in TCA-cycle associated metabolites which 
may impact mitochondrial function. However, unlike the 
E. coli cells, the changes observed in our culture system 
were not significant. Therefore, future studies would have 
to be carried out to evaluate the effect of non-canonical 
amino acid incorporation on L274G-hiPSC-CM function.

Conclusions and future directions
Overall, our study demonstrated for the first time that 
L274G-hiPSCs can be used to study the cell-specific 
proteome in  vitro as well as in  vivo and will pave the 
way for understanding cell specific responses to exter-
nal stimuli, like tissue microenvironment, inflammation, 
and ischemic stress. Furthermore, since the L274G-
hiPSCs can be differentiated to a plethora of cell types 
which have been used for tissue regeneration, includ-
ing neurons, skeletal muscle cells, pancreatic β-cells, 
hepatocytes, and endothelial cells, these cells can be 
used to identify the transplanted cell-specific proteomic 
responses in different disease models. However, some 
key aspects including (a) concentration and half-life of 
the secreted proteins, (b) tissue/cell of origin, (c) trans-
planted cell-type, (d) underlying disease pathology, (e) 
number of cells transplanted, and (f ) survival and reten-
tion of the transplanted cells will have to be optimized to 
establish the transplanted cell-specific secretome profile 
in future studies.
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