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Umbilical cord blood derived cell expansion: <

a potential neuroprotective therapy
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Abstract

Umbilical cord blood (UCB) is a rich source of beneficial stem and progenitor cells with known angiogenic, neurore-
generative and immune-modulatory properties. Preclinical studies have highlighted the benefit of UCB for a broad
range of conditions including haematological conditions, metabolic disorders and neurological conditions, however
clinical translation of UCB therapies is lacking. One barrier for clinical translation is inadequate cell numbers in some
samples meaning that often a therapeutic dose cannot be achieved. This is particularly important when treating
adults or when administering repeat doses of cells. To overcome this, UCB cell expansion is being explored to increase
cell numbers. The current focus of UCB cell expansion is CD34+ haematopoietic stem cells (HSCs) for which the main
application is treatment of haematological conditions. Currently there are 36 registered clinical trials that are examin-
ing the efficacy of expanded UCB cells with 31 of these being for haematological malignancies. Early data from these
trials suggest that expanded UCB cells are a safe and feasible treatment option and show greater engraftment
potential than unexpanded UCB. Outside of the haematology research space, expanded UCB has been trialled

as a therapy in only two preclinical studies, one for spinal cord injury and one for hind limb ischemia. Proteomic analy-
sis of expanded UCB cells in these studies showed that the cells were neuroprotective, anti-inflammatory and angio-
genic. These findings are also supported by in vitro studies where expanded UCB CD34+ cells showed increased gene
expression of neurotrophic and angiogenic factors compared to unexpanded CD34+ cells. Preclinical evidence dem-
onstrates that unexpanded CD34+ cells are a promising therapy for neurological conditions where they have been
shown to improve multiple indices of injury in rodent models of stroke, Parkinson’s disease and neonatal hypoxic
ischemic brain injury. This review will highlight the current application of expanded UCB derived HSCs in transplant
medicine, and also explore the potential use of expanded HSCs as a therapy for neurological conditions. It is proposed
that expanded UCB derived CD34+ cells are an appropriate cellular therapy for a range of neurological conditions

in children and adults.
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Introduction

Umbilical cord blood (UCB) is a well-studied source
of stem cells and the first UCB cell transplant was per-
formed in 1988 to treat Fanconi’s anaemia [1]. Since
then, >40,000 UCB cell transplants have been performed
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and repopulate the immune system as seen by neutrophil
and platelet recovery [6].

Preclinical studies and clinical trials have also been
conducted to examine the efficacy of UCB in a regenera-
tive medicine capacity as a therapy for multiple non-hae-
matological conditions including, diabetes [7-10], heart
failure [11, 12], cerebral palsy [13-17], stroke [18-20]
and spinal cord injury [21-23]. The benefits of UCB in
regenerative medicine are thought to be attributed to
the presence of a heterogenous population of naive stem
and progenitor cells and potent immunosuppressive
cells which are present in varying concentrations in cord
blood. Specifically, the mononuclear cell (MNC) popu-
lation found in UCB is composed of a variety of cells,
including stem and progenitor cells (Table 1). The pres-
ence of these cell types is not unique to UCB as they are
found throughout the body, however it is thought that
the combination of these cell types and their naivety con-
tributes to their beneficial effect. In addition, they convey
a reduced risk of graft versus host disease (GVHD) and
rejection when compared to adult sources of cells [29].

Besides use of the total mononuclear cell fraction, stud-
ies have investigated the therapeutic potential of spe-
cific cell types found within UCB, particularly HSCs and
MSCs [13]. In regenerative medicine applications, UCB
derived MNCs are thought to act via paracrine effects
and by promoting an endogenous response to injury. As
such, UCB derived MNCs have been broadly shown to
promote angiogenic and neuroregenerative responses as
well as having anti-inflammatory and immune-modula-
tory effects [16, 37]. In addition, MNCs have been shown
to improve functional deficits following neurological
injury [38].

To achieve a therapeutically effective dose for engraft-
ment and reconstitution of the haematopoietic stem cell
niche, the availability of sufficient cells in a single unit
of UCB for clinical trials, and now clinically for haema-
tological conditions, has previously limited the use of
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UCB in autologous and allogeneic matched transplanta-
tion to children and adolescents. Transfusion of multi-
ple units of allogeneic UCB are now, increasingly, being
used to ensure an adequate therapeutic dose is achieved
particularly in adults [39]. This further increases the risk
of GVHD and it is often difficult to find multiple human
leukocyte antigen (HLA) matched donors, particularly
for people of non-Caucasian origin [40, 41]. To address
this potential barrier, stem cell expansion was developed
as an alternative strategy to increase total cell number
for transplantation. However, the heterogeneity of cell
populations within UCB necessitates different expansion
conditions that require individualised optimisation for
each cell type. Expansion studies to date have predomi-
nantly focused on haematopoietic stem and progeni-
tor cells (HSPCs) for expansion, as these cells are most
relevant to transplantation medicine where haemato-
logical malignancies are the primary focus [42]. HSC
expansion has been well studied, and the methods used
to achieve expansion are varied and result in different
rates of expansion (ranging from 35 fold [43] to 1594 fold
expansion [44]) and differentiation into other cell types.
Currently there are 36 registered clinical trials that are
investigating the therapeutic potential of expanded UCB
cells, with 73% of these trials using expanded HSCs.
These clinical trials span treatment of various condi-
tions including haematological conditions and metabolic
disorders. The variety of methods by which HSCs are
expanded, and their use in clinical trials are summarised
below. In an exciting very recent development, the Gam-
ida-Cell Ltd UCB expanded cell product, “Omisurge’, was
granted market approval from the FDA [45].
Unexpanded UCB and HSCs have been shown to
be effective as a potential therapy for multiple neuro-
logical conditions, including perinatal brain injury [14,
37, 46, 47] and subsequently cerebral palsy [48, 49],
ischemic stroke [18, 50], and in adults for Parkinson’s
disease [51]. Although at present HSC expansion is

Table 1 Major cellular constituents of UCB and examples of cell surface markers commonly used to identify MNCs in UCB

Cell type Proportion Positive for cell surface markers Negative for cell surface markers References
of MNCs
(%)
Haematopoietic stem cells (HSCs) 0.02-1.43 CD34* CD45% CD90* CD38™ CD45RA™ [24, 30]
Mesenchymal stem/stromal cells (MSCs) ~ <0.01 CD105" CD90* CD73* CD44" STRO-1* CD34~ CD45~ HLA-DR™ CD11b~ CD14~ [25,31]
Regulatory T- cells (Tregs) 1-5 CD3* CD4* CD25" FoxP3* CD34 [26,32]
Monocyte derived suppressor cells 5 CD14* CD11b* CD16* CD66b* HLA-DR"/~ [27,33]
(MDSCs)
Endothelial progenitor cells (EPCs) 0.2-1 CD34* CD133* VEGFR2* CD45~ CD31~ [28,34]
Lymphocytes 15-51 CD3" CD4* CD8* CD19* CD34~ (25, 35]
Dendritic cells (DCs) 0.01-1.6 CD11C* CD45" MHC-I* CD3™ CD56™ CD19 CD20™ CD16™~ [36]
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predominantly used in transplant medicine where the
goal of therapy is engraftment and reconstitution of
the immune system, it is becoming apparent that there
are multiple potential benefits that lie in regenerative
medicine applications, particularly where engraftment
is not required to elicit a therapeutic response. Out-
side of haematological studies, there are no clinical
and very few preclinical studies that have investigated
the use of expanded HSCs as a therapy. Currently, this
therapy has only been trialled in the setting of spinal
cord injury [52] and hind limb ischemia [53] where
expanded HSCs were shown to promote tissue repair
and functional improvements.

To meet this perceived increasing demand for UCB
derived cells repurposing the use of expanded UCB
derived cells for regenerative medicine applications
will, in our opinion, be essential. This review will dis-
cuss the current use of expanded HSCs in transplanta-
tion medicine and highlight the potential of expanded
HSCs for regenerative medicine purposes, specifically
in the context of neurological conditions. It is pro-
posed that expanded UCB derived HSCs will be a safe
and efficacious treatment for a range of brain injuries
observed in both adults and children.

Haematopoietic stem cells

Stem cell therapies are now established in clinical
practice in transplantation and engraftment applica-
tions particularly as a treatment option for individu-
als suffering from haematological malignancies such
as leukemias and lymphomas [54]. More recently there
has been a focus on a plethora of regenerative medi-
cine potential applications, although most of these are
still being investigated in preclinical studies and in the
clinical trial phase of use. HSCs have been the focus
of cell therapy research since the first bone marrow
transplant in 1956 and have principally been used for
haematological disorders such as leukemia [55]. HSCs
are multipotent cells that can differentiate into cells of
the blood lineage- broadly, red blood cells, white blood
cells and platelets [56]. The cell surface antigen clus-
ter of differentiation 34 (CD34) is a marker of early,
multipotent haematopoietic cells and is often used
clinically to quantify the number of HSCs available for
use in transplantation [57]. Upon differentiation, hae-
matopoietic cells lose their CD34 marker and become
CD34 negative [58]. HSCs can differentiate down the
myeloid or lymphoid lineage to give rise to all haema-
topoietic cells [59] (Fig. 1), which allows for complete
immune reconstitution when used as a treatment for
haematological conditions [60].

Page 3 of 20

Advantages and disadvantages of umbilical cord blood
derived HSCs

Bone marrow (BM) and mobilised peripheral blood
(MPB) are widely accepted to be the most common
source of cells used in transplant applications, specifically
HSCs and MSCs are the cells commonly isolated from
these sources [40, 61-63]. Despite this, BM and MPB
have inherent restrictions associated with them. They
require painful/invasive procedures for collection and are
associated with a high risk of adverse events [39].

More recent studies have focused on UCB as an alter-
native source of HSCs for cellular therapies as this is
associated with less restrictions [64] (Table 2).

The use of MPB as a source of HSCs was implemented
as an alternative to BM as it involves a less painful pro-
cedure and has a lower risk associated with collection.
MPB also has a higher CD34+ concentration compared
to BM and is associated with a lower risk of GVHD upon
transplantation [39]. One of the main restrictions of both
BM and MPB derived cells is the need for extensive HLA
matching. For transplantation of adult BM and MPB, the
HLA matching criteria for unrelated donors must be 7/8
or 8/8 matching loci and for fully matched siblings, the
requirement is a 6/6 match [65]. This is not always fea-
sible, as there is often a lack of suitably matched HLA
donors, particularly for ethnic minorities [40].

Alternatively, UCB derived HSCs have low ethical con-
siderations, are easy to collect and their collection poses
no risk to the donor, since cord blood is collected after
birth. UCB derived HSCs may in fact be a preferred source
of HSCs for therapeutic use due to their relative naivety
and highly proliferative nature [24, 66]. Due to the pres-
ence of immature immune cells in UCB, HLA matching
can be less stringent than with other sources, as multiple
antigen mismatches can be tolerated whilst still reducing
the risk of GVHD upon transplantation [39, 40]. Specifi-
cally, transplantation of donor UCB can tolerate HLA mis-
matches at up to two loci, thus have a matching criterion
of 4/6 to 6/6 [67]. Despite these advantages, UCB has the
lowest concentration of CD34+ cells, compared to BM and
MPB, with CD34+ cells only comprising 0.02—1.43% of all
UCB mononuclear cells [24], and UCB derived cells also
show slower engraftment compared to other sources [39].
As such, multiple UCB unit infusions are currently used to
increase therapeutic potential, but this poses the difficulty
of finding multiple HLA matched donors, which in turn
can contribute to a higher risk of GVHD [39]. Due to the
relatively low CD34+ concentration in UCB, cell expansion
is being investigated to increase cell numbers available for
infusion. This allows for treatment with multiple doses of
autologous cells, as well as increasing cell numbers avail-
able for allogeneic donation, banking and potential use.
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Fig. 1 Haematopoietic lineage of differentiation. This schematic demonstrates the current understanding of the differentiation potential
of haematopoietic stem cells following early differentiation into either a common myeloid or lymphoid progenitor cell. (Created with BioRender.
com)
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Table 2 Advantages and disadvantages of HSC sources
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Source Advantages

Disadvantages

Bone Marrow

Mobilised Peripheral Blood

Fast engraftment

Umbilical cord blood No ethical challenges

Non-invasive collection procedure

Standard source of stem cells for transfusion [40]
Higher CD34+ cell numbers than UCB [39]

Less invasive than BM collection [39]
Highest CD4 + cell numbers [39]

Higher risk of GVHD

Invasive procedure to collect
Stringent HLA requirements (8/8) [65]
Higher risk of GVYHD

Cells need to be mobilised with G-CSF
Stringent HLA requirements (8/8) [65]
High number of T-cells [39]

Lowest CD34+ cell numbers [24]
Slower engraftment [39]

Can tolerate up to 2 HLA mismatches [67]

Naive cells

Low number of T-cells [39]
Lower risk of GVHD [39]
Lower risk of rejection

GVHD Graft versus host disease, HLA Human Leukocyte Antigen, BM Bone marrow, G-CSF Granulocyte colony stimulating factor

Umbilical cord blood expansion

In order to increase the number of cells available for
transplantation, methods of expanding UCB derived
stem cells have been investigated. These expansion stud-
ies have predominantly focused on expanding the hae-
matopoietic fraction of UCB as an emerging therapy for
haematological malignancies.

Expansion strategies

Initial expansion studies involved culturing UCB derived
HSCs in a cocktail of haematopoietic growth factors
including thrombopoietin (TPO), Fms-like tyrosine
kinase 3 ligand (FIt3), Interleukin 6 (IL-6), Interleukin 3
(IL-3) and stem cell factor (SCF) [68, 69]. Whilst these
factors successfully induced haematopoietic cell prolif-
eration, the cell yield was low and with significant dif-
ferentiation of the native cells, restricting the number of
HSCs available for transfusion [70]. As such, novel meth-
ods are being investigated to enhance the rate of UCB
derived HSC expansion, whilst promoting symmetrical
cell division, rather than differentiating cell populations
[71]. These current expansion strategies have been well
documented [29, 72, 73], and thus will only be briefly dis-
cussed here.

Aryl hydrocarbon antagonists

The Aryl hydrocarbon Receptor (AhR) antagonist Stem
Regninin-1 (SR-1), when combined with haematopoi-
etic growth factors, has been shown to successfully
expand CD34+ cells in vitro via inhibition of aryl hydro-
gen receptor signalling [70]. Culture with SR-1 has been
reported to increase the number of MPB CD34+ cells by
1118-fold after a 3-week culture period and promoted
expansion of UCB CD34+cells by 17,100-fold increase
following a 5-week culture period. SR-1 also reduces

CD34 differentiation, where following 5-weeks of cul-
ture with SR-1, the expanded population comprised of
66—76% CD34+ cells, in comparison to controls (no SR-1;
14-31% CD34+ cells) [70]. To date there have been three
phase I/II clinical trials using an SR-1 expanded UCB
CD34+cell product known as MGTA-456 (previously
HSC835) for leukemia and lymphomas, as well as inher-
ited metabolic disorders where engraftment and neutro-
phil recovery were the primary outcomes. Results from
these trials show that expansion using SR-1 resulted in an
average of 330-491-fold increase in CD34+ cells [74-76],
and that infusion of SR-1 expanded cells was safe and
feasible.

Pyrimidoindole derivatives

Pyrimidoindole derivative UM729 was identified as a low
molecular weight compound that had the ability to pro-
mote expansion of CD34+cells by enriching a popula-
tion of long-term HSCs. The related molecule, UM171,
a synthetic analogue, was shown to be 10—20 times more
potent than UM?729, thus further studies were conducted
using UM171 [77]. Unlike SR-1, UM171 does not supress
the AhR pathway, but instead is thought to target the
transcriptional corepressor complex CoREST, compris-
ing of lysine-specific histone demethylase 1A (LSD1A),
histone deacytylase 1 (HDACI1) and rest corepressor 1
(RCOR1), which is known to inhibit HSC self-renewal.
Further, degradation of LSD1 and RCOR1 promotes
in vitro expansion of human HSCs similarly to UM171
[78]. Expansion with UM171 in combination with SR-1
has been shown to increase CD34+CD45+ cells 1120-
fold after 14 days, with CD34+ cells making up~80%
of the expanded cell population [79]. UM171 expanded
CD34+ cells have also been implemented in clinical tri-
als, with 6 trials currently registered (Table 3). A trial by
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Cohen et al. demonstrated a 35-fold increase in cell num-
ber after 7 days of expansion and demonstrated the safety
and feasibility of treatment with UM171 expanded CD34
cells for haematological transplantation [43].

Nicotinamide

Nicotinamide is a vitamin B3 derivative that is known
to inhibit CD34 differentiation. It is thought to do so by
inhibiting Sirtuin 1 (SIRT1), a deacytylase, which plays a
role in regulating normal haematopoietic stem cell regu-
lation [92]. This is further confirmed using mouse models
where SIRT1 deficient mice exhibit increased prolifera-
tion of primitive CD34 cells in vivo [93]. A nicotinamide
expanded UCB product, Omisirge (previously Omidu-
bicel, NiCord® or cordIn) has been tested in 6 different
clinical trials (Table 3) and expansion using nicotinamide
results in up to 486-fold increase in cells after 21 days
of expansion [85]. Two of these completed studies have
demonstrated improved time for neutrophil recovery
compared to historical controls and have demonstrated
the safety of Omisirge as a cell therapy option [85, 84].
This product has recently been granted market approval
from the FDA [45].

Notch ligands

Members of the notch gene family are known to be
expressed in CD34+ cells, including haematopoietic pro-
genitors, and have been shown to mediate cell-fate deci-
sion during haematopoiesis [94]. The notch ligand Delta 1
has been shown to activate notch signalling in HSCs and
promote HSC-self renewal [95]. Dilanubicel (NLA101) is
a Delta 1 expanded UCB product that has been tested in
3 completed clinical trials and is currently being tested
in 2 additional clinical trials (Table 3). Results from one
of the completed studies has shown that expansion with
Delta 1 resulted in an increase in total cells by 1099-fold,
and an average fold expansion of CD34+ cells of 141-fold.
Further, CD34+ cells made up only 30-35% of the final
expanded product, suggesting that activation of notch
ligand signalling promotes cell proliferation without pre-
venting differentiation [86].

Copper chelator

Copper has previously been shown to regulate hae-
matopoietic  progenitor  cell  proliferation and
differentiation, and lowering cellular copper using Tetra-
ethylenepentamine (TEPA), a copper chelator, lowers
cell differentiation [96]. Preclinical studies have shown
that culture with TEPA results in an average of 17-fold
increase in CD34+ cells after three weeks of expansion,
and 1594-fold increase after 11 weeks of culture [44].
Currently there have been two completed clinical tri-
als testing a tetraethylenepentamine expanded UCB
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product, carlecortemcel-L (StemEx®). An initial phase I/
II clinical trial reported only a median 2.26-fold increase
in CD34+ cells after culturing for 21 days with the final
product comprising of 12.8% CD34+ cells [97]. A subse-
quent clinical trial reported a median of 90-fold increase
in CD34+ cells, with the final product consisting of only
18.2% CD34+ cells [87].

Valproic acid

Valproic acid (VPA) is a HDAC inhibitor (HDACI)
which has been investigated as a method for expanding
HSCs. HDACIs are known to upregulate pluripotency
genes, which when these genes are knocked down leads
to a reduction in CD34+CD90+ cells [98]. A preclinical
study demonstrated a 213-fold increase in CD34+ cells
and a 20,202-fold increase in CD34+CD90+ cells
after 7 days. 75% of the final expanded product were
CD34+CD90+ [98]. There has been one clinical trial
completed utilising VPA expanded HSCs, however the
results for this study have not yet been published.

Other

Other methods of HSC expansion utilises a co-culture
system with other cell types including MSCs [99-91] and
adult endothelial cells [101, 102]. Co-culture systems aim
to recapitulate the hematopoietic stem cell niche, where
HSCs have continued contact with other niche cells to
promote proliferation. There are also other methods of
expansion currently being investigated to expand UCB
derived non-HSCs such as mesenchymal progenitor cells
(MPCs), natural killer (NK) cells [90], T-cells [80], Tregs
and monocytes. These methods of UCB cell expansion
have all been tested in clinical trials (Table 3).

Clinical data supporting the use of expanded UCB
Currently there are 36 registered clinical trials that are
investigating expanded UCB as a cellular therapy, includ-
ing 22 completed trials (clinicaltrials.gov; Table 3). The
majority of these trials use expanded HSCs (26/36), with
the remaining trials using lymphocyte derivatives includ-
ing expanded NK cells, T-cells and Tregs or MPCs/
MSCs. In addition, most of these trials are focused on
transplantation applications for haematological condi-
tions (31/36) such as leukemia, lymphoma and myelod-
ysplastic syndromes. Other conditions include metabolic
disorders (3/36) such as type 1 diabetes, and neurological
conditions such as multiple sclerosis (1/36) and glioblas-
toma (1/36), where the target of the therapy is for regen-
eration, not engraftment.

Of the 22 completed trials using expanded UCB
CD34+cells, 15 trials have published results [43, 74, 76,
85, 84, 86, 87, 91, 90-81]. A recent systematic review
and meta-analyses [103] of these published studies has
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indicated that treatment with ex vivo expanded UCB can
accelerate engraftment of platelets and neutrophils, and
all but one study showed that treatment with expanded
UCB resulted in a significant reduction in time to neu-
trophil recovery compared to controls. Meta analyses of
these studies also revealed a significant decrease in the
risk of death following expanded UCB infusion, com-
pared to controls [103].

Whilst the results from current trials are promising,
many of the listed clinical trials are open label, single-
group studies that have the primary outcome of safety
(26/36), with only 5 of 36 being randomized controlled
trials (Table 3). Safety studies are important and are the
necessary first step to progress any new therapy through
ethics and governance bodies, and 9 completed studies
now report safety in a total of ~ 300 patients ranging from
3 to 65 years of age [103]. One limitation of these stud-
ies is that there is a large amount of heterogeneity in the
cell treatment regimes being implemented in these trials.
This includes the method by which the cells are expanded
and the timing and dosage of cell treatments. In addition
to an expanded cell product, many studies also include
administration of an accompanying unmanipulated UCB
unit, or the unexpanded portion of the UCB unit that
underwent expansion.

As the main use for expanded HSCs is currently in
transplantation medicine, the safety and efficacy of
these cells has not been well established for regenera-
tive medicine purposes. Despite this, infusion of cells in
most regenerative medicine applications does not require
ablation of the immune system and does not require the
cells to engraft to be beneficial, thus it is predicted that
infusion of cells for regenerative medicine purposes will
not be as challenging as in transplantation applications.
Further, a recent systematic review by Paton et al. has
concluded that allogeneic administration of unexpanded
UCSB in regenerative medicine applications is considered
safe and has not been associated with severe adverse
events [104].

Preclinical studies supporting the use of expanded UCB

as a therapy

Expanded UCB derived CD34+ cell therapies have been
the subject of preclinical studies to establish the thera-
peutic benefits in the setting of haematological condi-
tions, including cancers. Predominantly these studies are
conducted using immunodeficient mouse models and
data from these studies has provided the scientific basis
for clinical translation of expanded UCB therapies for
transplantation [73]. In addition, there have been a large
number of preclinical studies that are focused on opti-
misation of expansion techniques and understanding the
mechanisms of UCB expansion in vitro [71, 73].
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Outside of haematology research, there have been very
few preclinical studies that have investigated the efficacy
of expanded UCB cells in a regenerative medicine capac-
ity. One study trialled expanded UCB cells in vivo as a
therapeutic option for traumatic spinal cord injury in an
immunosuppressed rat model. Chua et al. demonstrated
in this study that rats treated with expanded CD34+ cells
demonstrated functional recovery when compared to
untreated controls [52]. Analysis of expanded cell con-
ditioned media revealed increased expression of anti-
inflammatory (TIMP-1 and TIMP-2), angiogenic (VEGE,
IL-8 & angiogenin) and neuroprotective (BDNF, PDGE-
BB and EGF) factors [52]. A subsequent study by White-
ley et al. has investigated expanded UCB CD34+ cells as
a potential therapy for hind limb ischemia in mice [53].
In this study, treatment with expanded CD34+ cells
resulted in improved blood flow to the ischemic limb
and decreased necrosis of the foot. As the mouse model
used did not allow for cell engraftment, positive effects
of expanded CD34+ cells were determined to be a result
of paracrine signalling. Further proteomic analysis of
conditioned cell expansion media identified an increase
in proteins involved in tissue repair (FGF-9), extracellu-
lar matrix production and maintenance (IGF-1, PDGF-
BB, MMP-9, TIMP-1 and TIMP-2), angiogenesis (IL-3,
IL-4, VEGF and EGF) and activation and maintenance of
inflammatory processes (MIPs, MCP-4, TGE-f 3) [53].

The neuroprotective properties of expanded UCB
CD34+cells have also been investigated in vitro [79].
CD34+ cells were expanded using standard growth fac-
tors UM171 and SR-1. Expanded cells had higher gene
expression of neurotrophic factors (BDNF, GDNE,
NTEF-3 and NTF-4) and angiogenic factors (VEGFA and
ANG), compared to unexpanded CD34+ cells. Further,
expanded CD34+ cells promoted glial cell proliferation
and vascular tube formation and reduced oxidative stress
to a greater degree than unexpanded CD34+ cells [79].

Taken together, these studies support anti-inflamma-
tory, angiogenic and neuroprotective roles of expanded
CD34+ cells, and emphasise the therapeutic potential of
CD34 expansion for non-haematological diseases (Fig. 2).

Umbilical cord blood cell therapies for brain injury

Umbilical cord blood derived cells have been extensively
researched in preclinical and clinical studies as a poten-
tial cell therapy option in the field of neurological inju-
ries. The topic of UCB as a therapy for brain injury in
clinical and preclinical studies has been well reviewed
[104-111], and the potential efficacy of treatment with
UCB has been shown in a variety of conditions. These
includes in adults, for treatment of traumatic brain injury
(TBI) [112, 113], stroke [18, 19] and spinal cord injury
[22, 23], and conditions in babies/children including
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Fig. 2 Mechanisms of action of expanded UCB derived CD34+ cells. Data from preclinical studies suggests that expanded UCB derived CD34+ cells
have many beneficial properties for regenerative medicine applications. These cells are neuroprotective, immunomodulatory and angiogenic.

(Created with BioRender.com)

cerebral palsy (CP) [48, 49], hypoxic ischemic encepha-
lopathy (HIE) [14, 46, 114], preterm birth [115, 116] and
fetal growth restriction (FGR) [37].

Briefly, preclinical studies have shown that UCB
mononuclear cells are neuroprotective and able to
modulate multiple aspects of brain injury. A recent sys-
tematic review and meta-analysis of preclinical studies by
Nguyen et al. has highlighted the efficacy of UCB cells as
a therapy for perinatal brain injury. Specifically, UCB cell
administration increases neuron and oligodendrocyte
cell numbers, reduces cell death and microglia activa-
tion. Further, UCB has been shown to modulate neuro-
inflammation, resulting in a significant decrease in the
pro-inflammatory cytokines TNF-a, IL-6 and IL-1p. UCB
cells have also been shown to improve motor function as
determined by the cylinder test and rotarod test [38].

Several clinical trials have also been conducted to inves-
tigate the efficacy of UCB therapies for non-haematologi-
cal malignancies where the most commonly reported use
of UCB as a therapy was for neurological diseases. This
includes cerebral palsy, autism, TBI, stroke and spinal
cord injury, with cerebral palsy accounting for the major-
ity of neurological UCB clinical trials [117]. Results from
various clinical trials have demonstrated that both autol-
ogous and allogeneic administration of UCB for neuro-
logical conditions is safe and is not associated with severe

adverse events [104, 105]. The efficacy of UCB cell thera-
pies for neurological conditions has only been reported
in a few clinical trials. Overall, results from clinical tri-
als in the setting of cerebral palsy have shown that UCB
administration improved motor and cognitive outcomes
[118] and preclinical and clinical studies combined show
that UCB derived MNCs are effective at improving vari-
ous pathologies associated with brain injury in adults and
children.

Neuroprotective and neuroregenerative potential
of CD34+ cells

Whilst unexpanded CD34+stem cells have been well
studied as a therapy for haematological malignancies,
there are limited studies looking at this population of
cells for other conditions including brain injury. Here we
will summarise the in vivo and in vitro studies that have
investigated the use of CD34+ cells as a therapy for neu-
rological injuries, as well as the action of endogenous
CD34+ cells in response to brain injury.

Actions of endogenous CD34+ cells in response to brain
injury

The action of endogenous mobilised CD34+ cells have
been studied in response to a neurological insult, most
commonly ischemic stroke and TBI. In a rat model
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of TBI, bone marrow derived CD34+ cells are rap-
idly mobilized into the peripheral blood, reaching a
peak at 48 h post insult. These cells then homed to
the site of injury, resulting in a significant increase in
CD34+ cells in the ipsilateral hemisphere, with a peak
in cell numbers occurring at 7 days post TBI. There
was also an increase in microvasculature density up to
14 days post TBI in the injured tissue, suggesting that
the CD34+ cells promote neovascularization [119].

Mobilisation of CD34+ cells has also been detected
in the setting of ischemic stroke. Using a mouse model
of stroke following a bone marrow transplant there
was a significant increase in BM CD34+ cells found
in the ipsilateral hemisphere of the brain 6 weeks and
6 months following stroke injury. Cell double label-
ling determined that more than 90% of these cells
displayed microglia markers [120]. UCB and MBP
CD34+ cells injected into immunodeficient mice have
also been shown to differentiate into microglia. In a
study by Asheuer et al., CD34+ cells from both sources
were administered intravenously to immunodeficient
mice. Analysis of post-mortem tissue demonstrated
that 95-100% of engrafted human cells expressed
RCA-1 lectin, a marker of perivascular microglia. 50%
of engrafted cells also expressed the Ibal antigen, a
marker of ramified microglia. It is proposed that the
ability for CD34+ cells to differentiate into microglia in
the brain may be due to the common origin of micro-
glia and the haematopoietic system, the yolk sac [121].

Transplanted BM CD34+cells have also been
detected in the vasculature in the acute period fol-
lowing induction of stroke, with these cells displaying
endothelial cell markers [122]. Further, higher levels of
circulating CD34+ cells have been detected in humans
who have experienced an ischemic stroke [123, 124]. In
fact, the number of circulating CD34+ cells present in
peripheral blood after a stroke event has been shown
to be correlated with the degree of functional and neu-
rological recovery [125, 126]. However this mobilisa-
tion of CD34+ cells has been shown to be muted when
patients have been treated with tissue-type plasmino-
gen activator (tPA), the standard treatment option for
stroke [127].

The mobilisation of CD34+cells in response to
injury is likely to be a protective mechanism that can
promote neovascularisation or perhaps promote an
anti-inflammatory response, highlighting the thera-
peutic potential of CD34+ cells for neurological con-
ditions. As such it is proposed that mobilising CD34
cells after injury, or delivery of exogenous CD34+ cells,
could provide an avenue for repairing injured cerebral
tissue.
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Treatment of neurological conditions with CD34+ cells

As previously mentioned, treatment with CD34+ cells is
generally targeted towards haematological conditions,
however the efficacy of CD34+ cells as a therapy for neu-
rological conditions has been investigated in a number of
preclinical studies.

Previous studies have focused on investigating the effi-
cacy of CD34+cells as a therapy for adult stroke injury
using the middle cerebral artery occlusion (MCAO)
model. One of the key outcomes that has shown to
be improved following CD34+cell administration
was motor and behavioural outcomes. Specifically,
CD34+cells have been shown to reduce hyperactivity
[50, 128], improve spatial learning and memory [129],
and improve motor deficits including balance and
strength as determined by beam walk and rotarod testing
respectively [130]. Further, two such studies have shown
that treatment with CD34+ cells resulted in an improved
motor and neurological score using the modified neuro-
logical severity score (mNSS) [130, 131].

As with other UCB cell types, CD34+ cells are thought
to convey neuroprotection through trophic mechanisms,
however, CD34+ cells have been shown to migrate to the
site of injury and differentiate in neural cell subtypes.
Specifically, infused cells have been detected generally
in both the ipsilateral and contralateral hemispheres
[131, 132], as well as specifically homing to the border
zone of the ischemic lesion [130]. Further, small num-
bers of CD34+ cells that have migrated to the brain dis-
play markers of microglia [132], neurons, astrocytes and
endothelial cells [131].

Aspects of neuropathology are modulated following
CD34+ cell administration including astrogliosis [133],
apoptosis, and neuroinflammation [132]. Further, an
increase in neurogenesis, and thus neural cell populations
[50], and expression of BDNF was seen after CD34+ cell
administration [133].

Lastly, in an adult rat model of Parkinson’s disease,
CD34+ cells improved limb asymmetry as seen by the
cylinder test. Infused CD34+ cells were detected in the
brain; however, they were not positive for markers of
neurons, astrocytes or oligodendrocytes. Treatment with
CD34+cells also induced neovascularization, reduced
astrogliosis and preserved dopamine producing neurons
[51].

The efficacy of CD34+cells has also been investi-
gated in the setting of neonatal brain injury, specifically
using the MCAO model of stroke, and the Rice—Van-
nucci model of hypoxic-ischemic (HI) brain injury.
Some of these studies have shown that treatment with
CD34+ cells resulted in small improvements in behav-
ioural outcomes, particularly locomotor activity [134]
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and limb use [135], whilst other studies showed little to
no improvement in motor and behavioural outcomes [47,
135, 136]. Further, some aspects of neuropathology were
improved with cell administration, including an increase
in neurogenesis [134, 136] and a decrease in apoptosis
related genes [137], however CD34+ cells were not able
to significantly reduce tissue loss [135].

From these few studies, it appears that the efficacy of
CD34+ cell administration for perinatal brain injury was
not as evident as in the adult population. This could be
due to the timing of administration or cell dose used.
The majority of neonatal studies delivered cells 48 h after
injury with doses ranging from 1.5x 10" to 1x10°. Con-
versely, in the adult studies, cells were delivered as early
as 30 min after stroke, with 24 h being the most com-
mon administration timepoint. Cell doses also ranged
from 5x10° to 5x10° cells. This could suggest that the
neuroprotective benefits of CD34+ cells is dependent on
cell dose and timing. Further, there are differences in the
way in which injury progresses between adults and neo-
nates following an ischemic insult [138]. This could con-
tribute to discrepancies in the efficacy of CD34+ cells
following an ischemic injury, thus the timing and dose
of cell administration should be optimised for neonatal
ischemia. In order to reduce heterogeneity in studies,
cell dosages should be consistent to reflect cord blood
cell doses used in clinical trials and shown to be effective,
which is often 25-50x 10° cells/kg [105].

Taken together, this preclinical evidence demonstrates
that CD34+ cells have the potential for improving aspects
of brain injury, including engraftment and differentia-
tion into neural cell subtypes, however optimisation will
be needed for cell doses and timing. Further, the limited
availability of HSCs derived from UCB is a potential
roadblock for translation into clinical use for regenerative
medicine, thus it is proposed that HSC expansion will
allow us to overcome this barrier. It is clear that preclini-
cal work on expanded UCB cells as a therapy is limited
and no such study has tested the neuroprotective poten-
tial of these expanded UCB cells in an in vivo model of
brain injury. Consequently, we are currently investigating
the potential of expanded UCB derived cells particularly
for neonatal neuroprotection.

Future applications of UCB expansion

This review highlights the current progress of HSC
expansion and demonstrates the evolution of expanded
UCB therapies from preclinical studies into clinical
trials. Results from clinical trials have established the
safety of expanded UCB therapies in adults and chil-
dren as young as 3 years of age, particularly for treat-
ment of haematological malignancies, with few adverse
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events reported as a direct result of expanded UCB
infusion. Despite this clinical evidence, the current
application of expanded UCB is very narrow. Preclini-
cal evidence supports the application of this novel cell
therapy for treatment of neurological conditions.

Preclinical studies have highlighted the benefits of
unexpanded CD34+cells in neurological conditions,
specifically for ischemic stroke, as well as the differen-
tiation and homing ability in response to brain injury.
These preclinical studies demonstrate efficacy in adult
models of stroke, however the efficacy for perinatal
brain injury has not yet been well established. There are
however, very few studies that have explored the use of
CD34+ cells in perinatal brain injury, thus more stud-
ies are needed to determine their true potential. Fur-
ther, these studies suggest that cells may work in a time
and dose dependent manner, thus consistency should
be employed between studies to ensure that appropri-
ate conclusions can be drawn regarding the efficacy of
CD34+ cells for modulating brain injury. In addition,
only two studies have been conducted where expanded
UCB cells were used for regenerative medicine pur-
poses, and these studies have shown that expanded
UCB demonstrated a degree of tissue repair and func-
tional recovery in models of spinal cord injury and hind
limb ischemia respectively.

It is proposed that expanded UCB derived HSCs will
be a key therapy candidate for neurological conditions
and this technique will allow for autologous treatment
for babies with insufficient cells available, “off the shelf”
allogeneic therapies, and will allow for administration
of repeat doses of cells, which have been shown to be
more beneficial than a single dose alone [14, 139, 140].
The use of expanded UCB also reduces the need for the
infusion of multiple cord blood units to reach sufficient
therapeutic cell numbers for infusion, thus finding
appropriately HLA matched samples will be simpler.

Stem cell expansion will be beneficial for both autolo-
gous and allogeneic applications. Specifically, in autol-
ogous settings, where cells could be used soon after
collection for therapy or banked for later use. This is
particularly important where there may not be enough
cells available for infusion, such as in cases where the
baby has a small placenta and low cord blood volume,
which is often the case with babies who are born pre-
term [141]. In these circumstances, cord blood expan-
sion will ensure that an appropriate therapeutic dose is
met. Further, expansion will allow for the same alloge-
neic donor to be used in clinical treatments to reduce
the incidence of rejection and GVHD and allows for
the formation of an off the shelf cell therapy that can
be easily accessed, particularly in low resource settings.
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Conclusion

In summary, further studies should be conducted to
determine the therapeutic efficacy of expanded UCB
derived HSCs for neurological conditions, particularly
in neonates. This potential therapy provides a novel
avenue for cell therapies that will be more accessible
and allows for more standardised “off the shelf” thera-
pies for babies, children and adults.
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