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Abstract 

Background Mesenchymal Stromal Cells (MSCs) are the preferred candidates for therapeutics as they possess 
multi-directional differentiation potential, exhibit potent immunomodulatory activity, are anti-inflammatory, and can 
function like antimicrobials. These capabilities have therefore encouraged scientists to undertake numerous preclini-
cal as well as a few clinical trials to access the translational potential of MSCs in disease therapeutics. In spite of these 
efforts, the efficacy of MSCs has not been consistent—as is reflected in the large variation in the values of outcome 
measures like survival rates. Survival rate is a resultant of complex cascading interactions that not only depends 
upon upstream experimental factors like dosage, time of infusion, type of transplant, etc.; but is also dictated, post-
infusion, by intrinsic host specific attributes like inflammatory microniche including proinflammatory cytokines 
and alarmins released by the damaged host cells. These complex interdependencies make a researcher’s task 
of designing MSC transfusion experiments challenging.

Methods In order to identify the rules and associated attributes that influence the final outcome (survival rates) 
of MSC transfusion experiments, we decided to apply machine learning techniques on manually curated data col-
lected from available literature. As sepsis is a multi-faceted condition that involves highly dysregulated immune 
response, inflammatory environment and microbial invasion, sepsis can be an efficient model to verify the therapeutic 
effects of MSCs. We therefore decided to implement rule-based classification models on data obtained from studies 
involving interventions of MSCs in sepsis preclinical models.

Results The rules from the generated graph models indicated that survival rates, post-MSC-infusion, are influenced 
by factors like source, dosage, time of infusion, pre-Interleukin-6 (IL-6)/ Tumour Necrosis Factor- alpha (TNF-α levels, 
etc.

Conclusion This approach provides important information for optimization of MSCs based treatment strategies 
that may help the researchers design their experiments.
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Background
Stem cells are considered the ‘holy grail’ for therapeutics 
due to their renewal and regenerative capabilities [1]. 
Mesenchymal Stromal/Stem Cells (MSCs) fulfill all the 
necessary requirements as candidates for therapeutics, 
namely: ability to differentiate multi-directionally, immu-
nomodulatory activity, anti-inflammatory potential, anti-
microbial capability, etc. Their translational potential is 
also aided by the fact that the protocols required to iso-
late and expand them are relatively less complicated and 
rapid as compared to protocols for other stem cells [2]. 
These biological capabilities as well as accessible experi-
mental procedures have made treatment of diseases 
using MSCs treatment an attractive proposition.

As a consequence, de novo information is constantly 
being generated from many disease specific studies. In 
spite of these endeavors, the efficacy of MSCs has not 
been consistent in these translational studies [3]. This 
heterogeneity could be due to the fact that a multitude of 
parameters are required to be decided, by the researcher, 
in order to conduct a MSCs translational experiment. 
Some of these like animal models, dosage, time of MSCs 
infusion, etc. are determined by the researcher while oth-
ers like physiological variability; immune environments 
and disease condition, etc. are intrinsic to the host and 
donor biology. The challenges faced by a researcher in 
accurately choosing these extrinsic experimental factors 
and accessing the intrinsic host factors, could ultimately 
dictate the outcome of these translational studies.

Sepsis is one such condition where the characteristics 
of MSCs such as their ability to differentiate multi-direc-
tionally, modulate the immune system, control inflamma-
tion, and anti-microbial properties, are entirely pertinent. 
Sepsis entails an abnormal host response to a microbial 
infection and results in a highly dysregulated immune 
response, hyperinflammation and microbial invasion that 
could lead to multiorgan failure [4]. As specific and effec-
tive therapies against sepsis are still lacking [5], it is an 
appropriate model for MSCs therapy. Although MSCs 
have been shown to reduce mortality in septic animal 
models [6], ambiguity exists due to differences in MSCs 
treatment procedures like: source of MSCs, dosage and 
timing of MSCs infusions, host microenvironment etc. 
[7].

With a goal to suggest optimization criteria for thera-
peutic interventions in clinical settings, we started by 
initially scanning the literature for terms related to the 
role of MSCs in preclinical models and clinical trials. We 
found that there was a huge variability in the extrinsic 
experimental factors like dose utilized, timings of infu-
sion post sepsis induction, weight of the model, trans-
plant type, etc. Furthermore, the intrinsic host physiology 
governed outcomes in terms of cytokine production, 

factors for organ failure, etc. and this eventually led to 
survival rate variability in multiple studies. These variable 
parameters as well as experiment outcomes make it very 
difficult to decide the exact methodology to achieve con-
sistent therapeutic outcomes.

With the emergence of advanced machine learn-
ing techniques, strategies have now been developed to 
identify and predict the factors that govern the outcome 
of therapeutic interventions [8]. In order to suggest the 
rules and associated factors that may help the research-
ers overcome the challenges of using MSCs as therapeu-
tic agents, we applied machine learning techniques to 
extract knowledge rules from the published data pertain-
ing to the use of MSCs in sepsis conditions. The graphical 
representation of the study is depicted in Fig. 1.

After pre-processing and curation of these data sets, we 
implemented the machine learning algorithms to recog-
nize the trajectory of outcomes post MSC infusion. We 
aimed to identify the extrinsic experimental factors as 
well as the internal host factors and their associated rules 
that influence the efficacy of MSCs transplantation–
thereby dictating the outcome (survival rate in the stud-
ies). The generated graph models indicated the survival 
rates post-infusion of MSCs are influenced by factors 
like animal model, source, dosage and time of infusion 
of MSCs, basal level of inflammatory cytokines like IL-6 
&TNF-α. This information is particularly useful to pre-
dict the clinical outcome of MSCs application in a spe-
cific setting and more importantly in designing targeted 
treatments.

Methods
All the preprocessing, filtering, and machine learning 
analysis was conducted using Waikato Environment for 
Knowledge Analysis (WEKA) 3.8.6 machine learning 
toolkit along with R scripts.

Data acquisition
Systematic search was carried out to collect available data 
on therapeutic effects of mesenchymal stem cells (MSCs) 
for sepsis in preclinical models. Public databases such as 
PubMed, Google Scholar, Litmaps were searched until 
May 2023. Various terms were used as key words or free 
text words: “sepsis” and “therapeutic” and “treatment” 
and “mesenchymal stem cells”. In total, 67 manuscripts 
were chosen (Supplementary Table 1, Additional file 1).

After extensive search, a number of common param-
eters were identified to analyse through machine learn-
ing techniques. These included: source of MSCs, animal 
model, weight, dose of MSCs, time of MSCs administra-
tion, survival rate, serum levels of different pro-inflam-
matory cytokines: TNF-α and IL-6 and Liver enzymes: 
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Aspartate aminotransferase (AST) and Alanine transami-
nase (ALT).

Source of MSCs
The literature gathered included sources like Adipose 
tissue, Bone Marrow and Umbilical cord. Addition-
ally, compatibility was either allogeneic or xenogeneic 
depending upon source and host of MSCs.

Animal model
Mice and rats were majorly used as model to study sepsis 
at preclinical levels. Two studies included pigs as well.

Dose
To treat the sepsis, MSCs were administered intrave-
nously in most of the studies. Dose throughout the study 
is mentioned as number of cells (in  106) per animal.

Time of administration
Time of infusion of MSCs after establishing septic model 
differ in each study ranging from 0 to 48 h. Although, in 
majority of studies, MSCs were injected within 6  h of 
generating the model.

Survival rate was compared in sepsis models without 
MSCs infusion and septic model infused with MSCs 
at 48  h (Supplementary Fig.  1, Additional file  1). Levels 
of TNF-α, IL-6, AST and ALT, before and after MSCs 

infusion were noted. Cytokines levels were reported as 
pg/mL.

Data preprocessing and handling incomplete data
Missing data, prevalent in many clinical and experimen-
tal studies, leads to inadequacies while building predic-
tive models [9, 10]. These inconsistencies arise due to 
experimental design or data acquisition problems. The 
possibility of missing data is higher in meta-analysis stud-
ies, such as ours, where results from multiple studies are 
pooled together. As a result of experimental design and 
methodologies followed by different studies our pooled 
database had missing data, ranging from 15 to 35% in 4 
attributes, namely: Survival Rate, IL-6, TNF-α, and Dose.

Multiple studies have reported varied methods that 
deal with missing data. These methodologies range from 
extreme measures like removing the missing records, 
to imputing the missing attribute values with mean 
or median value. Some methods also employ “filling” 
in missing data by liner interpolation or extrapolation 
techniques. As missing data should be processed before 
conducting any analysis [11], we imputed the missing 
data for the attributes Survival_Rate by mean and of the 
immune attributes: IL-6 and TNF-α, by median values. 
Missing values in the attribute Dose were replaced by the 
most common dose values corresponding to the animal 
model used and its respective body_weight.

Fig. 1 Schematic representation of the study. (Created with BioRender.com)
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To maintain consistency in the nomenclature, we 
renamed the values of the attribute “Animal model” from 
“mouse” to “mice”. Additionally, the 2 values “Wharton’s 
jelly” and “Amniotic Fluid” were replaced by “Umbilical 
cord” to reduce the number of distinct nominal values in 
the attribute “Source_of_MSCs”.

A single outlier data record where the “Source_of_
MSCs” was “Menstrual fluid” was removed.

Due to the fact that classification models require the 
predictive class attribute to be nominal, we discretized 
the class attribute “Survival_Rate” by using equal-width 
binning. This attribute was discretized into 3 bins: “67–
100%”, “34–66%” and “0–33%”. Biologically these corre-
spond to “high”, “median” and “low” survival rates.

Selection of input attributes
The procedure to select the most appropriate input prop-
erties, that classifies the “Survival_Rate” is challenging for 
our meta-analysis, as available attributes not only vary 
across different studies, but there exists large variation in 
the attribute values. To identify the researcher declared 
extrinsic experimental factors as well as the internal host 
factors and their associated rules, we decided to gener-
ate two types of models: experimental factors model 
and immunological factors model, by manually selecting 
the input properties based on the above 2 criteria. The 
experimental properties were: Animal_Model, Source of 
MSCs, Dose, Time_MSC_Infusion. Evidently, variation in 
the inflammatory environment in the tissues can regulate 
the immunoregulatory properties of MSC [12, 13].

Therefore, we tried to analyse the correlation between 
basal levels of the inflammatory cytokines i.e. IL-6, 
TNF-α before MSC infusion and the survival rate of 
septic animal models after MSC infusion. Two immuno-
logical models were selected: either basal/control TNF-α  
(Model 1) levels or basal/control IL-6 (Model 2) levels. 
As these also depends on the experimental properties, 
these two were taken along with the experimental prop-
erties for further analysis. Although AST and ALT levels 
were also available, we did not employ these for machine 
learning analysis, as these had large number of missing 
values (~ 50%).

We employed the “AttributeSelectedClassifier”, with 
tenfold cross-validation, to select the attributes that had 
the greatest influence in predicting the “Survival_Rate”. 
The score “Merit of best subset found” was used to ana-
lyze the importance of select pre and post IL-6/TNF-α 
attributes towards the chosen classification algorithm.

Machine learning methods
We employed a variety of classification approaches 
that accessed the impact of selected attributes towards 
predicting the efficacy of MSCs therapy. WEKA-3.8.6 

machine learning toolkit along with R scripts were used 
for implementing and testing the classification models. 
We initiated the analysis by using decision tree models 
like j48 and Random Forest (RF) [14], which is an ensem-
ble of decision trees. After obtaining encouraging results 
we tested the performance of Naïve Bayes models, Sup-
port Vector Machines (SVM using radial basis function) 
and Multi Layered perceptron (Neutral network). Ensem-
ble algorithms like AdaBoostM1 (Boosting), Bagging and 
stacking were also tested. Logistic regression was also 
employed and the odds ratio of each attribute was used 
to access its contribution towards classifying the survival 
rates.

Decision trees
Although best known for their prediction capability, the 
true utility of machine learning algorithms on biological 
data is for knowledge acquisition that unravels patterns 
amongst various biological attributes. Decision trees 
are a set of classification algorithms that aid in generat-
ing novel knowledge by applying discriminating criteria 
on graphical representation of biological attributes. One 
can then use such a graph of conditions to infer possible 
consequences of a treatment. At the very top of a deci-
sion tree is a root node that represents the most impor-
tant condition for discriminating classes. Lower internal 
nodes represent additional conditions for class discrimi-
nation, whereas the leaf nodes represent the final clas-
sification of a biological condition under scrutiny. By 
following the path from the root node to the leaf node 
[15], one can learn certain “rules” for the classification of 
records in a dataset. Therefore, in order to discover the 
rules (and associated attributes) that influence survival 
rate we gave experimental attributes and immunological 
attributes to the J48 decision trees algorithm, a WEKA’s 
implementation of the C4.5 algorithm [16].

Model performance and comparison
By using tenfold cross-validation we used percentage of 
correctly classified instances and F-score as measures of 
model accuracy. In order to compare the different algo-
rithms, we employed “PairedCorrectedTTester” in order 
to find which of the algorithms performed significantly 
better or worse when comparing with each other. As a 
measure of individual classifier performance, we used 2 
measures: Percent_correct (performance metric that rep-
resents the percentage of instances that are correctly clas-
sified by a machine learning algorithm) and F-measure 
(measure of a classifier’s accuracy that takes into account 
both precision and recall where a higher value indicates 
better performance).
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Results
Curated database of mesenchymal stromal cells in septic 
preclinical models
Data preprocessing by the removal of outlier records, 
renaming of nominal values and imputation of miss-
ing values resulted in the selection of 78 records (from 
67 published reports) where the septic animal models 
were injected with MSCs. Post attribute selection, these 
78 records had 8 attributes that were chosen as inputs 
for further analysis. Using these attributes for the 
dimensionality reduction using attribute selection clas-
sifiers further revealed that three attributes: Animal_
Model, Source_of_MSCs and Dose_per_Animal were 
common between both the experimental factors model 
and both the immunological factors models. For the 
experimental factors model, one additional attribute: 
Time, was selected along with the three above (Merit 
score ranged from 0.83 to 0.89). For the immunological 
model 1, the one attribute selected was TNF-α levels 
before infusion (Control_ TNFα) (Merit score of 0.88). 
The immunological model 2 had the basal levels of IL-6 
(Control IL_6 with merit score of 0.92) along with the 
three common ones above. Thereafter, 4 attributes, for 
each of the respective models, were used as inputs for 
classification algorithms. It is noteworthy that these 
attributes were influencing the Survival_Rate only in 
the cases where the Animal_Model was mice (Figs. 2, 3, 
4). In the models generated, the path from root node 
to outcome leaf node through the intermediate levels, 
suggested the following rules that influenced the sur-
vival rates (Table 1).

Classification: decision trees
Extrinsic experimental rules and attributes
Post tenfold cross validation, we analyzed the best rep-
resentative decision tree for survival rate. As we can 
observe in Fig.  2, the root node of decision tree is the 
Animal_model, namely mice, rats, and pigs, which influ-
ences survival rate. This root node therefore predicts 
that only the type of animal is dictating the outcome of 
the MSCs transplant and that the survival rate is high 
(above 66%) for both rat (21 records) and pig (2 records) 
animal models. However, if the animal model is “mice”, 
there were additional rules that influenced the success 
of the MSCs infusion. At the second level, the attribute 
represents the source of MSCs used in mice model: bone 
marrow, adipose tissue, umbilical cord. Interestingly, adi-
pose tissue-derived MSCs (AD-MSCs) resulted in a high 
survival rate (above 66%: 13 out of 16 correctly classified 
records). In case of umbilical cord derived MSCs (UC-
MSCs) and bone marrow derived MSCs (BM-MSCs), 
there were additional rules that influenced the success of 
the MSCs infusion.

The next level of the decision tree identifies the dose of 
MSCs administered to the mice as the governing factor 
towards survival rate. Instances, where the MSCs dose 
was less than 0.8X106 cells reported a high survival rate 
(above 66%: 10 out of 12 correctly classified records). 
However, when the MSCs dose exceeded 0.8X106 cells, 
the time of infusion of the MSCs influenced the mice 
survival rate. When time of infusion was less than 0  h, 
the survival rate was above 66% (3 records) as opposed 
to survival rate majorly falling into 34–66% bin (7 out of 
11 correctly classified records) when the time of infusion 

Fig. 2 Experimental Factors Model: Decision Tree depicting the dependence of survival rate on the animal model, source, dose and time 
of infusion of MSCs. The numbers in the braces represent: total number of records/number of misclassified records
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is between 0 and 6 h in the case of BM- MSCs infusion. 
On the other hand, in the case of UC-MSCs infusion, the 
time range between 2 and 4 h was resulting in a survival 
rate of 67–100% (4 out of 5 correctly classified records).

These findings highlight the importance of consider-
ing the type of animal model, source of MSCs, dosage 
and time of infusion when designing an experiment for 
treating animal models of sepsis. Our data driven deci-
sion tree models suggest that researchers may increase 
the likelihood of achieving successful outcomes in their 
experiments if they give importance to these attributes.

Intrinsic immunological rules and attributes
The models based upon immunological attributes 
showed a lot of similarity to the model based upon 
experimental attributes. As in the previous model, the 
root node of the decision tree is based on the cho-
sen animal model: mice, rats, or pigs. Remarkably, 
in accordance to both the immunological models, all 
instances involving rat and pigs resulted in high sur-
vival rates (above 66%) for both rat (21 records) and 
pig (2 records) animal models. However, in the case of 
mice models, additional factors influenced the success 

Fig. 3 Immunological Model 1: Decision tree illustrates the dependence of survival rate on basal levels of TNF-α (Control_TNF-α) in addition 
to the animal model, source, dose and time of infusion of MSCs. The numbers in the braces represent: total number of records/number 
of misclassified records. Note: TNF-A stands for TNF- alpha

Fig. 4 Immunological Model 2: Decision tree illustrates the dependence of survival rate on basal levels of IL-6 (Control_IL-6) in addition 
to the animal model, source, dose and time of infusion of MSCs. The numbers in the braces represent: total number of records/number 
of misclassified records
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of MSCs infusion. In parallel with above results, AD-
MSCs resulted in a high survival rate (above 66%: 13 
out of 16 correctly classified records) in mice model. 
The subsequent branch of the decision tree in immuno-
logical model 1 (Fig. 3) reveals the importance of basal 
levels of TNF-α in mice i.e. levels without MSCs infu-
sion. Mice models with TNF-α levels more than 110 pg/
mL had a survival rate more than 66% post BM-MSCs 
infusion as opposed to low survival rate when TNF-α 
levels were lower than 110 pg/mL.

Moreover, in immunological model 2 (Fig. 4), basal lev-
els of IL-6 in mice i.e. levels without MSCs infusion, was 
also observed to determine the success of the MSCs infu-
sion in terms of survival rate. In case of infusion of less 
than or equal to 0.8 million BM- MSCs per mice, the sur-
vival rate was invariably higher than 67% while if the dose 
exceeded 0.8, the survival rate was dependent upon basal 
IL-6 levels and when these levels in serum were more 
than 380, the survival rate was more than 67% (7 out of 
11 correctly classified records) in comparison to lower 
survival rate correlating with lower basal IL-6 levels (2 
correctly classified records). Likewise, in the case of UC-
MSCs infusion, the basal IL-6 levels more than 900  pg/
mL resulted in higher survival rate (4 out of 5 correctly 

classified records) while the survival rate was between 34 
and 66% when basal IL-6 levels were less than 900 pg/mL.

Just like in the experimental model case, these findings 
emphasize the significance of the type of animal model, 
transplantation methods, MSCs source, dose and timing 
of MSCs infusion when designing an experimental study 
leading to MSCs therapy. Additionally, anti-inflamma-
tory cytokines like IL-6 and TNF-α basal levels should 
be given careful consideration so that researchers can 
ensure greater probability of attaining higher survival 
rates from their infusion experiments.

To summarize, the path from root node to outcome 
leaf node through the intermediate levels, suggested the 
following rules that influenced the survival rates in the 
immunological model (ST-1), (i) Rule 1–3: Applicable to 
both conditions (Dose, IL-6 and TNF-α), (ii) Rules 4–11 
are based on dose of MSC’s and infusion time (iii) Rules 
12–16: are determined by Dose and IL-6 levels in the 
mice. (iv) Rules 17–21 are based on the MSC’s dose and 
the TNF-α levels.

Comparisons with other machine learning algorithms
We implemented classification models, using the same 
selected attributes as inputs, by employing a variety of 

Table 1 Set of Classification Rules contain21 rules for MSC transplantation experimental design

1 If Animal Model = Rat 67%− 100%

2 If Animal Model = Pig 67%− 100%

3 If Animal Model = Mice and Source of MSCs = Adipose Tissue-Derived 67%− 100%

4 If Animal Model = Mice and Source of MSCs = Bone Marrow and MSC Dose <  = 0.8 × 10^6 cells 67%− 100%

5 If Animal Model = Mice and Source of MSCs = Bone Marrow-Derived and MSC Dose > 0.8 × 10^6 cells and Time of MSC infusion 
is <  = 0

67%− 100%

6 If Animal Model = Mice and Source of MSCs = Bone Marrow-Derived and MSC MSC Dose > 0.8 × 10^6 cells and Time of MSC infu-
sion <  = 6 h

34%− 66%

7 If Animal Model = Mice and Source of MSCs = Bone Marrow-Derived and MSC Dose > 0.8 × 10^6 cells and Time of MSC infusion > 6 h 67%− 100%

8 If Animal Model = Mice and Source of MSCs = Umbilical Cord derived and Time of MSC infusion <  = 4 h and <  = 2 h 34%− 66%

9 If Animal Model = Mice and Source of MSCs = Umbilical Cord derived and Time of MSC infusion <  = 4 h and > 2 h 67%− 100%

10 If Animal Model = Mice and Source of MSCs = Umbilical Cord derived and Time of MSC infusion > 4 h 67%− 100%

11 If Animal Model = Mice and Source of MSCs = Bone Marrow-Derived and Dose > 0.8 × 10^6 cells and > 1.2 × 10^6 cells 67%− 100%

12 If Animal Model = Mice and Source of MSCs = Bone Marrow-Derived and Dose > 0.8 × 10^6 cells and <  = 1.2 × 10^6 cells and Control 
IL-6 level <  = 380

34%− 66%

13 If Animal Model = Mice and Source of MSCs = Bone Marrow-Derived and Dose > 0.8 × 10^6 cells and <  = 1.2 × 10^6 cells and Control 
IL-6 level > 380

67%− 100%

14 If Animal Model = Mice and Source of MSCs = Umbilical Cord and Control IL-6 level <  = 400 67%− 100%

15 If Animal Model = Mice and Source of MSCs = Umbilical Cord and Control IL-6 level > 400 and <  = 900 34%− 66%

16 If Animal Model = Mice and Source of MSCs = Umbilical Cord and Control IL-6 level > 400 and > 900 67%− 100%

17 If Animal Model = Mice and Source of MSCs = Bone Marrow and Control TNF-α <  = 110 and MSC Dose <  = 0.5 × 10^6 cells Control 
TNF-α <  = 110 and MSC Dose <  = 0.5 × 10^6 cells

67%− 100%

18 If Animal Model = Mice and Source of MSCs = Bone Marrow and Control TNF-α <  = 110 and MSC Dose > 0.5 × 10^6 cells 34%− 66%

19 If Animal Model = Mice and Source of MSCs = Bone Marrow and Control TNF-α > 110 67%− 100%

20 If Animal Model = Mice and Source of MSCs = Umbilical Cord Derived and Control TNF-α <  = 75 34%− 66%

21 If Animal Model = Mice and Source of MSCs = Umbilical Cord Derived and Control TNF-α > 75 67%− 100%
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classifiers. The tenfold cross validation revealed that 
all the classifiers, with the exception of Naïve bayes and 
Stacking (~ 56% accuracy for both), had high accuracy 
and most of these algorithms correctly classified the 
instances with > 70% accuracy (Table 2). 

To find out which of the algorithms were the best per-
formers we applied “PairedCorrectedTTester” to reveal 
the statistical significance of their performance. Both the 
Percent_correct and F-measure revealed that j48 deci-
sion tree, as well as other algorithms, had high accuracy 
both in terms of correctly classifies instances as well as 
F-measure (Table 2).

Discussion
The fact that MSCs act variably in different microenvi-
ronments compels us to standardize factors like their 
dosage, time of infusion and MSCs source to obtain clini-
cally applicable outcomes. Clinical applications of MSCs 
can only be successful when we are aware of the param-
eters that influence the efficacy of the infused MSCs. 
Therefore, it is imperative that, during experimental 
design, only those factors be emphasized that enhance 
the efficacy of MSCs. In this study, we identify the attrib-
utes that may influence the outcome of MSCs infusion 
experiments, by applying machine learning techniques. 
Although MSCs therapy for sepsis has been widely 
researched over the last decade, the parameters dictating 
the outcome of the treatment regimen remain unknown. 
Analysis of the available literature revealed several fac-
tors that are dependent upon the decisions taken by the 
researcher during experimental design. There are also 
several host specific factors like the immune environ-
ment that directly influence the success rate of the MSCs 
treatment [17]. Our machine learning approach has not 

only highlighted several of these attributes, but has also 
generated rules informing us of the hierarchical interac-
tions (between different attributes), as well as the values 
of these factors that determines the outcome. Here we 
discuss some of the salient features of these factors.

It is noteworthy that the decision tree algorithms, in 
the case of mice, highlighted the 3 way hierarchical inter-
play between source of MSCs, dosage and time of infu-
sion. The rule generated by our analysis suggests that the 
survival rates are influenced by the source where MSCs 
are derived from. The analysis revealed that the studies 
in which septic group of mice received AD-MSCs expe-
rienced survival rate greater than 66%. Contrarily, when 
the tissue source was either bone marrow or umbilical 
cord, other factors like dose, time of infusion and basal 
levels of pro-inflammatory cytokines determined the sur-
vival rate.

Interestingly, an attribute, according to machine learn-
ing decision trees, that does not play a role in MSC 
efficacy is the transplant compatibility. According to 
the data, the majority of AD-MSCs were allogenically 
infused, as compared to BM-MSCs that were allogenic 
and xenogenic. Whereas, in case of UC-MSCs xeno-
geneic infusion was majorly reported. This attribute 
“Transplant type” did not have sufficient support from 
the decision tree algorithm and is therefore not part of 
the generated rules. By analysing the effect of dosage on 
survival rate of septic mice models Li et al. had demon-
strated that those mice that were administered medium 
dose (~ 0.5X106 per mice) displayed highest survival rates 
[7], whereas low and high doses were detrimental to their 
survival. Adverse effects of high ADSCs, injected intra-
vitreally, were observed by Rasiah et  al. when treating 
mild traumatic brain injury [18]. Another study by Chen 
et  al. on ischemic stroke rat models, came to a conclu-
sion that a low dose of MSCs infusion displayed the most 
effective neurobehavioral recovery and infarction reduc-
tion [19]. Likewise, our analysis depicted an average dose 
of 0.8 million per mice to be appropriate and responsible 
for a higher survival rate post sepsis induction.

The time of administration of MSCs, to treat sepsis in 
animal models, varied between studies and ranged from 
0 to 48 h after the induction of sepsis. These studies have 
shown that this time range was the most appropriate 
towards alleviating bacteremia by increasing the survival 
rate of septic models, decreasing levels of proinflamma-
tory cytokines, and also reducing levels of liver enzymes 
[20–25]. There are also documented relationships 
between the time of MSCs administration and immune 
response in terms of proinflammatory, anti-inflammatory 
and coagulation factors. A biphasic response, in a LPS 
(Lipopolysaccharide) induced sepsis model, has been 
observed depending upon the timing of MSCs infusion. 

Table 2 The Machine learning classification methods and 
their performance accuracy as measured by the percentage of 
correctly classified records and the F-Measure that combines 
precision and recall.

The best performing j48 decision tree algorithm is shown in bold. The * sign 
depicts significantly underperforming statistic.

S. No Methods Percent correct F measure

1 J48 74.52 0.82
2 Naïve Bayes 55.91* 0.71

3 Lib SVM 73.71 0.77

4 MultiLayer Perceptron 71.16 0.77

5 Ada Boost ML 71.29 0.75

6 Bagging 73.02 0.78

7 Stacking 56.68* 0.72

8 Random forest 75.21 0.81

9 Logistic 69.34 0.76
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The activation or suppression of innate immune path-
ways was shown to be dependent on early (2  h activa-
tion) or late (4  h suppress) LPS induction [26]. Timing 
of MSCs infusion, in relationship to the effectiveness of 
the solid organ transplantation, contradicted between 
different studies [27]. In other diseased conditions like 
COVID19, early time point MSCs infusion in critically ill 
patients reduced their mortality [28]. Our decision tree 
rules also revealed that the timing of MSCs infusion dic-
tates the outcome with MSCs infused in parallel to onset 
of disease (for BM-MSCs) or in a window between 2 and 
6  h of sepsis induction (for UC-MSCs) leads to a rela-
tively higher survival rate. Importantly, these rules indi-
cate the well-established immunomodulatory activity of 
MSCs, as the mortality rates associated with sepsis can 
be mitigated by early infusion of MSCs.

Among the literature analysed for mice models in this 
study, three manuscripts differed wherein the time of 
infusion of MSCs was greater than 6 h after sepsis induc-
tion and still resulted in an improved survival rate rang-
ing between 70 and 85% [24, 25, 29]. It is to be noted that 
these studies either utilised LPS preconditioning, or the 
MSCs were injected via retro-orbital route or sequential 
MSCs dosing was performed post 2 h, 24 h and 48 h of 
septic model generation. This clearly indicates that we 
can extend the window timings of MSCs infusion and 
improve their efficacy through different alterations in the 
treatment regimen.

An even more compelling observation in the current 
analysis was that survival rate post MSCs infusion in 
rats and pigs was higher (66–100%), irrespective of dose 
or weight. However, data analysis depicted that 98% of 
these studies, the infusion time was less than 3  h while 
majorly within 1  h of generation of model. Timing of 
infusion seemingly played an important role here: i.e.: if 
the infusion is as soon as the sepsis condition is gener-
ated, then the dose does not matter. As we increase the 
time window, the infusion is dependent upon dose of 
MSCs and weight of animals especially in case of mice. In 
addition to the dose/weight and time of MSCs infusion 
in the study, as mentioned above, internal host factors 
like the basal levels of pro inflammatory cytokines play 
a major role in response to MSCs infusion. In the sep-
sis model, the analysed cytokines are IL-6, TNF-α, IL-1β 
that indicate proinflammatory environment while IL-10 
and TGF-β are indicative of anti-inflammatory environ-
ment. The cytokines that influences the survival rate were 
TNF-α and IL-6 in our study.

Although TNF-α is a proinflammatory cytokine and 
usually associated as a marker of an inflammatory 
microenvironment, various studies have proven that 
preconditioning of MSCs with TNF-α enhances the 
immunomodulatory capacity of MSCs. TNF-α, alone 

or in combination with other inflammatory media-
tors, influences the functional reprogramming of MSCs 
including higher anti-inflammatory effects [30], increas-
ing their anti-tumour potential [31] and attenuating dis-
eases like colitis [32].

Interestingly, IL-6 has been identified as a marker posi-
tively correlated with the severity of sepsis [33]. High 
levels of IL-6 are shown to be associated to mortality 
of septic patients and septic models in preclinical stud-
ies [34–37]. On the contrary, when Human-IL-6 was 
injected in mouse model, 24  h before the induction of 
sepsis, it promoted the survival of mice. Moreover, IL-6-
/- mice had no effect on anti-inflammatory cytokines 
[38]. On similar lines, Remick et al.,2005 developed IL-6 
knockout (KO) model of mice, and observed no differ-
ence in mortality in both IL-6 KO and control group 
of mice post sepsis induction [33]. In another study, 
IL-6 administration in neonatal mouse model of sepsis 
resulted in increased survival [39], whereas; total inhi-
bition of IL-6 lowered the survival rate. These studies 
altogether suggest the variable roles of IL 6 being a pleio-
tropic cytokine and its role in regards to survival rate is 
uncertain because of its ubiquity and diverse functions.

It is well known that the anti-inflammatory effects of 
the MSCs are dependent on the host microenvironment, 
in vitro preconditioning of MSCs with proinflammatory 
cytokines is an effective strategy to boost the immu-
nomodulatory activity of MSCs [12, 13]. On the similar 
note, our analysis has pointed towards a higher survival 
rate in an inflammatory mileu when basal TNF-α serum 
levels are above 110 pg/ml that primes BM-MSCs to have 
better functional capabilities. Basal levels of IL 6 over a 
threshold value of 380  pg/mL in case of BM-MSCs and 
900  pg/mL in case of UC-MSCs also made them act in 
a better way resulting in improved survival rate. This 
suggests that by exposing MSCs to a simulated in  vivo 
inflammatory milieu in advance improves their func-
tional capabilities and improvement in survival rate in 
sepsis preclinical model.

The performance and accuracy of the j48 decision trees, 
from which these rules have been generated, were com-
pared with 8 other machine learning algorithms. Apart 
from Naïve Bayes, all the other algorithms had high per-
centage (> 70%) of correctly classified instances (as well 
as high F-measure scores: > 0.7) post tenfold cross-valida-
tion. This depicts the validity of the rules generated from 
a machine learning perspective.

Although our study has suggested the attributes that 
must be considered towards planning a MSCs transplan-
tation experiment, the dependence on data from pub-
licly available studies has inadvertently led to undesirable 
inadequacies while building the decision tree models. 
Particularly the prevalence of missing data has forced 
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us to replace the values of some attributes with imputed 
data. This “artificially generated” data could have con-
tributed to the results being skewed. As the number of 
data sets were 78, removing all the instances having miss-
ing data in any of the attributes would have significantly 
reduced the sample size and prohibited the application 
of machine learning techniques. As mentioned earlier, 
although AST and ALT levels were also available, we did 
not employ these for machine learning analysis, as these 
had large number of missing values. This lack of ample 
data also prohibited the generation of a single unified 
tree. For example, two separate immunological models 
were generated i.e. for TNF-α and IL-6. When decision 
tree was made with both the parameters in a single data-
set, the rules generated were biologically non-interpret-
able and obscure. The limited sample size used in the 
present study also means that the results were skewed 
towards the animal that was maximally used in the stud-
ies: mice. The other animal models, pigs and rats, were 
used in a lesser number of studies and detailed hierarchi-
cal decision rules could not be generated for these.

Conclusion
From the current data availability, it’s a herculean task to 
draw an accurate conclusion regarding the optimal con-
ditions for administering MSCs. Our analysis depicts that 
a threshold level of inflammation is required for MSC 
driven immunomodulation which is further depend-
ent upon source, dose and timing of MSCs infusion. It 
is difficult to specifically have a standard protocol as the 
studies involve multiple models and varied experimental 
approaches that makes interpretation a difficult task.

Five major points can be highlighted that guide the 
therapeutic methodologies involving MSCs in accord-
ance to our analysis:

First, survival rate in a diseased model is dependent 
upon source of tissue from where MSCs are procured. 
This study suggests that AD-MSCs have better therapeu-
tic efficacy for sepsis.

Second, an inflammatory milieu primes MSCs to per-
form immunoregulation. High basal cytokines levels: 
IL-6 and TNF-α in septic animal contributes to high sur-
vival rates, particularly in mice.

Third, an important factor is the amount of dose of 
MSCs. High dose can be detrimental as seen in case of 
mice. When MSCs were administered less than 0.8 mil-
lion per mice, it remarkably improved the survival rate.

Fourth, type of animal model apparently influences the 
survival rate. Higher the hierarchy of the animal model 
better the survival rate in septic preclinical models.

Lastly, the time of infusion of MSCs markedly alters 
the survival rate. Through machine learning data it has 

been deduced that less the time of infusion of MSCs 
after septic induction higher is the survival rate.

The decision tree-based machine learning method 
has provided us with options to utilize MSCs in a more 
efficient manner for modifying real-time treatment 
options for many diseased states especially sepsis.
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