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Abstract

In recent years, biologists and clinicians have witnessed prominent advances in in vitro 3D culture techniques related
to biomimetic human/animal tissue analogs. Numerous data have confirmed that unicellular and multicellular
(tumoroids) tumor spheroids with dense native cells in certain matrices are sensitive and valid analytical tools for drug
screening, cancer cell dynamic growth, behavior, etc. in laboratory settings. Angiogenesis/vascularization is a very
critical biological phenomenon to support oxygen and nutrients to tumor cells within the deep layer of solid masses.
It has been shown that endothelial cell (EC)-incorporated or -free spheroid/tumoroid systems provide a relatively reli-
able biological platform for monitoring the formation of nascent blood vessels in micron/micrometer scales. Besides,
the paracrine angiogenic activity of cells within the spheroid/tumoroid systems can be monitored after being treated
with different therapeutic approaches. Here, we aimed to collect recent advances and findings related to the monitor-
ing of cancer angiogenesis using unicellular and multicellular tumor spheroids. Vascularized spheroids/tumoroids can
help us in the elucidation of mechanisms related to cancer formation, development, and metastasis by monitoring
the main influencing factors.
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Introduction

Inside the body, cells reside in a specific three-dimen-
sional (3D) microenvironment which is known as a niche.
The close interaction between cells and the environment
within the defined 3D space can regulate each cell’s mor-
phology and function [1]. From the past to the present
time, cell culture has been widely used to understand
the participation of various molecular pathways, cell
behaviors, and the mechanism of diseases and pathologi-
cal conditions [2]. In this regard, the conventional two-
dimensional (2D) culture system is a basic method for the
cultivation, expansion, and conduction of several experi-
ments in most laboratories [3]. As a common belief, the
2D culture system is a relatively low-cost and friendly-
use in vitro model for large-scale production and har-
vesting of human and animal cells [2]. In this system,
adherent cells are directly attached to a plastic surface
predominantly composed of polystyrene-based materials
[4]. While the non-adherent cells are expanded without
the necessity to attach to the bottom of culturing flasks
[5]. Despite these advantages, several issues and limita-
tions restrict the generalization of in vitro data to in vivo
conditions. It is postulated that 2D culture systems could
not completely reflect the in vivo conditions because
of the lack of accurate tissue model structures, cellular
heterogeneity, and real-time pathological changes [6].
Generally, the monolayer cell culture systems produce
flattened cells with unlimited access to micro-, macro-
elements, metabolites, signaling molecules, and growth
factors, leading to uncontrolled cell proliferation and
expansion, and loss of specified morphologies and func-
tions [7, 8]. Of course, the subcellular localization of
organelles, paracrine activity, and stimulation of certain
signaling pathways are also changed in cells cultured
in 2D systems [9, 10]. Under such conditions, the prot-
eomic, metabolic, and genomic profiles of cells are also
changed compared to cells of the same lineages inside the
body [11]. Due to the easy distribution of soluble factors
in 2D culture systems, even trivial concentrations of ther-
apeutics can evenly affect the cultured cells which is not
comparable to the in vivo conditions while in the in vivo
microenvironment, there is a competition between the
cells to access nutrients and other signaling molecules
[12]. Besides, diffusible molecules are delivered to vari-
ous tissues in a concentration gradient manner [13]. The
absence of extracellular matrix (ECM), multiple signals,
and mechanical cues inhibit or blunt the activity of cer-
tain molecular effectors inside the cells, resulting in
low-rate predictability [14]. High-rate proliferation and
expansion of cells in 2D culture systems can result in
the existence of numerous dead cells with diverse waste
products which can affect the physiology of co-expanded
cells [15-17]. To overcome these limitations, 3D in vitro
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cell culture systems have been advanced for basic and
pre-clinical cancer research [18]. In this regard, Petersen
and Bissell presented the 3D organotypic structures to
mimic healthy and cancerous breast tissue niches [19]. It
is believed that in vitro organoid systems can in part, but
not completely, provide the key elements of in vivo con-
ditions via the regulation of cell morphologies, juxtacrine
and paracrine activities, and cell-to-ECM interaction
[20]. Using various supporting ECM components at dif-
ferent ratios, organoid (tumoroid) microstructure can be
developed similar to the native tissues [18]. Despite the
existence of different limitations, 3D culture settings pro-
vide valuable information about cell behavior for clinical
use compared to 2D culture settings [21, 22].

As above-mentioned, the development of optimized
biomimetic culture systems with high similarity to in vivo
conditions can yield more valid and comparable data
[23]. To date, several 3D culture systems have been devel-
oped to recapitulate the physiological and pathological
conditions (Table 1). Among several 3D culture systems,
organoids/spheroids are engineered in vitro micro/mac-
rostructures composed of stem cells, cancer cells, and/or
mature cells and have been used for theranostics, large-
scale drug screening, hereditary diseases, and personal-
ized medicine purposes (Table 2) [24, 25]. In this review
article, the recent advances in 3D culture systems with a
focus on organoids/spheroids will be discussed in terms
of stem cell biology and tumor cells.

Different organoid/spheroid systems in biomedical
fields

Terms and general features

The advent and development of 3D culture systems have
helped biologists in the conduction of numerous animal-
free studies for basic biology and clinical research [26].
Irrespective of ethical issues, data from animal stud-
ies are relatively inefficient in understanding the physi-
opathological conditions of human counterparts and
could not be completely applied to clinical settings [27].
The cost of drugs and therapeutic applications is high on
different animal models. The reproducibility and reliabil-
ity analyses on animals are under question as different
animal strains are treated using rigorous protocols and
conditions [28]. Of note, most of the drugs examined in
animals fail to yield relatively similar responses in human
counterparts because of differences in animal models,
strain, dose of therapeutics, and administration route
[28]. To be specific, organoids and spheroids are 3D min-
iaturized tissue structures with either stem cells, mature
cells, or even cancer cells to recapitulate the in vivo-like
microenvironments and efficient pre-clinical platforms
for drug screening and validation [1]. Carcinogenesis
and promotion of anaplastic changes coincide with the
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activation of several sequential processes that provoke
cancer cells and non-cancer cells into the tumor stroma
[29]. To date, several techniques and approaches have
been used for the fabrication of organoids/spheroids, and
other 3D culture systems (Table 1 and Fig. 1). Data have
confirmed that cells maintained and expanded within the
organoid/spheroid/tumoroid system exhibited relatively
similar patterns of in vivo dynamic growth and response
to therapeutics compared to conventional 2D culture sys-
tems [30]. Progress and advancement in 3D culture sys-
tems like organoids have led to the compensation of gaps
and shortcomings between the 2D culture system and
animal models [16, 17]. In this scenario, the 3D culture
system exhibits more valuable data about the physiology
of cells because of reciprocal cell-to-cell and cell-to-ECM
interaction [16, 17].

In cancer biology, several tumoroid models have been
used for the evaluation of therapeutics as follows; 3D
tumor cell culture, 3D tumor slice, patient-derived orga-
noids, vascularized tumoroid, spheroid, and organoid
culture models [31-37]. Most often there is an overlap
between the terms spheroids and organoids concerning
cellular sources and generation procedure [33]. Spheroids
have less complexity and are common 3D structures for
preliminary monitoring of anti-cancer drugs while orga-
noids have higher similarities in terms of genetic pat-
terns and histological features to the source tissues and
tumors [1]. In the context of cancers, assembling disas-
sociated tumor cells using suitable ECM components
generates organoids which are known as tumoroids [31].
It has been proposed that 3D culture systems like orga-
noids are valid tools to simulate tiny tumor masses using
several cell types with relatively in vivo-like growth and
treatment patterns [16, 17]. To the best of our knowledge,
unicellular tumor spheroids have been extensively uti-
lized for cancer cell biology, invasion, and drug screen-
ing. However, they do not accurately mimic the intricate
biological and clinical characteristics of primary tumor
tissues, thus restricting their effectiveness in predict-
ing individualized responses to chemotherapy. In con-
trast, organoids (known also tumoroids) exhibited more
valuable tools for drug screening, disease modeling, and
personalized medicine. Tumor organoids can be devel-
oped from primary patient samples within a defined 3D
framework. It is thought that tumoroids have relatively
structural and functional cues like in vivo tumor masses,
with a reliable platform for clinical decision-making [38].
Unlike tumoroids, single-cell spheroids lack cell polarity,
heterogenicity, and complexity and function of cancer
cells within the cancer masses. Thus, organoids reflect
more accurately the cellular diversity and physiological
roles found in organs [39]. Besides, in stem cell research,
organoids composed of tissue-specific stem cells with
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other specific cell lineages have been used to mimic the
architecture and function of the target tissues [40]. Stem
cell organoids are effective in vitro modeling tools in the
establishment of studies related to developmental pro-
cesses (organogenesis), regenerative defects, and cer-
tain pathophysiological conditions. Retention inside the
defined microenvironments helps the stem cells to pre-
serve their stemness while it simultaneously helps us to
use naive or genetically manipulated stem cells for spe-
cific regenerative purposes [40].

For conventional organoid/tumoroid development,
three main elements including broad-ranging cells (either
homogenous or heterogeneous cell type), supporting
scaffolds, and endogenous/exogenous signaling mol-
ecules can be modulated according to the purpose and
objective of the study [1]. In several studies, both natu-
ral and synthetic substrates have been used for the gen-
eration of organoids/tumoroids to provide a platform for
cell attachment, proliferation, and juxtacrine within a
3D structure [41] (Table 1). For generation of organoid/
tumoroid structure using natural ECM components, the
existence of specific motifs such as Arg-Gly-Asp (RGD)
can be useful in providing an in vivo-like microenviron-
ment. Despite the several advantages (toxicity], biocom-
patibility?, bioactivity?, and biodegradability?) related to
the application of natural substrates, the final organoids/
tumoroids lack appropriate mechanical stability and
integrity in response to the changes of certain parameters
such as pH and incubation temperature [42]. In line with
these comments, the addition of synthetic substrates
such as polyurethane (PU)-, polyethylene glycol (PEG)-,
poly (lactic-co-glycolic acid) (PLGA)-based composites
can yield organoids/tumoroids with higher mechanical
properties and resistance to environmental parameters.
However, the lack of essential bioactive motifs like RGD,
etc. restricts their bulk application in organoid/tumoroid
fabrication [43].

Mechanisms related to tumoroid formation

Due to the complexity of the tumor microenvironment
(TME) and the involvement of different cell types, it
seems that an intricate molecular network is involved
in the formation of tumor colonies [44]. Like in vivo
conditions, in vitro protocols should be performed with
a focus on the stimulation of such molecular interac-
tions and specific cell behavior to promote cell aggre-
gation within distinct dimensions and geometries. In
a common belief, the loosely cell-to-cell connection is
promoted in in vitro conditions mainly via the attach-
ment of integrins and cadherins to ECM components,
leading to the formation of preliminary cell aggregates
[45, 46]. The initial spheroid units undergo compaction
via the maintenance of homotypic cadherin binding
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[45]. By the promotion of homotypic (homophilic)
cadherin interaction, cells are juxtaposed in contact
areas while the surface tension is also diminished [47].
In this regard, E and N-cadherins are the most impor-
tant cadherin types and they participate in homophilic
cell-to-cell attachment [48]. However, the possibility
of heterophilic interaction between N and E-cadherins
is also possible via physical interactions between the
cadherins ectodomains [48]. Upon induction of cad-
herin-to-cadherin interaction, intracellular actomyosin
contractility is stimulated, resulting in cell aggregate
morphogenesis [49]. Of course, the type and level
of cadherins are associated with the cell lineage. For
instance, E-cadherin is actively involved in juxtacrine
interaction between the cancer cells rather than can-
cer stem cells (CSCs). Powan and co-workers indicated
that the lack of cell-to-cell connection via cadherin can
increase the possibility of apoptosis (p531, phospho-
rylated FAK]), leading to loss of integrity in tumor cell
aggregates [50]. Despite the existence of heterophilic
cadherin interaction between the CSC N-cadherin and
non-CSC E-cadherin, it seems that this interaction is
not highly stable when compared to the homophilic
E-cadherin-to-E-cadherin connection. Besides, the
conversion of E-cadherin to N-cadherin during the ana-
plastic changes can reduce the possibility of colony for-
mation and increase the metastatic behavior, leading to
the disintegration of multicellular components within
the tumoroid systems [51, 52]. Previous data showed
the co-precipitation of cytoskeletal proteins like actin
with N-cadherin, indicating the ability of N-cadherin
to modulate specific cell morphologies between the
juxtaposed cells [46]. As above-mentioned, the activity
of ECM components along with cell surface adherens
can promote the integrity of cell-to-cell junction and
thus tumoroid stability. For instance, fibronectin with
fibrillar strands can recruit tensin, and a5p1 integrins
and strengthen the physical contacts between the cells.
The loss of fibronectin can result in N-cadherin ligation
recruited a5B1 integrins, tensin, and P-catenin [46].
These data show that cells tend to preserve their jux-
tacrine interactions using different mechanisms even in
the absence of certain ECM components.

Of note, the application of several cells within the
tumoroid system can stimulate several cell-to-cell junc-
tion pathways. It has been shown that CAFs can secret
different fibroblast growth factor members within the
ovarian tumor mass [53]. In the presence of FGF-2, the
stability of VE-cadherin increases between the juxta-
posed ECs via controlling SHP2 [54]. These features can
promote blood support into tumor parenchyma and
facilitate tumor cell growth and expansion. According to
these data, one can hypothesize that the integrity of cells
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via juxtacrine interaction can be induced via the applica-
tion of multiple cells within the tumoroid system rather
than of unicellular units. Within the tumor parenchyma,
ECM is remodeled with the balances between the pro-
duction and degradation. For example, several cell types
such as tumor associate macrophages (TAMs) and CAFs
can release various MMPs (MMP2, 7, 9, and 12) along
with cytokines such as VEGF and FGF-2 into tumor
parenchyma, leading to bulk remodeling of ECM and
angiogenesis [55]. Collagen is the most abundant ECM
component with the potential to induce cancer fibrosis.
The mutual tumor cell-collagen interaction is done via
the engagement of several signaling pathways such as
transforming growth factor-p (TGF-B)/Smad axis, etc.
Collagen fibers in proximity to epithelial cells generate a
stiff fibrotic layer via reciprocal interaction between the
Smad4 and phosphorylated myosin light chain 2 [56].
Inside tumor parenchyma, several collagen types are pro-
duced with diverse biological activities. The orientation,
alignment, and stroma stiffness are related to the size and
fiber type of collagen in which the long collagen fibers are
closely aligned to each other and stabilize cell localization
and organization. There is a physical contact between cell
surface integrins « (3, 9, 35 40 10 11)/P; Subunits with ECM
collagen fibers. Unlike long collagen fibers, short fibers
can increase the permeability of tumor niches [57]. In
terms of angiogenesis, it was suggested that collagen stiff-
ness can influence microvascular integrity and develop-
ment. Of note, there is an inverse relationship between
the microvascular network distribution and collagen
fiber density. On the other hand, the increase of inter-col-
lagen fibril branching and spatial arrangement (especially
type IV collagen) promotes vascular density and number
[57]. In in vitro conditions, the application of collagen
with basal membrane components takes approximately
five days to generate relatively compact cell aggregates
with certain viscoelastic behavior [58]. Therefore, the
existence of supporting ECM can support simultaneously
reciprocal cell-to-cell and cell-to-ECM interactions.

Tumoroids/spheroids and angiogenesis potential

Tumor angiogenesis

It has been indicated that angiogenesis or neo-vascular-
ization is a critical phenomenon for the development,
and expansion of tumor cells within the solid cancer
parenchyma [59]. Angiogenesis is the formation of new
blood vessels from the pre-existing vascular network
while vascularization is the phenomenon of in situ dif-
ferentiation and expansion of vascular units with the
participation of endothelial progenitor cells (EPCs) [60].
Angiogenesis with different signaling pathways, and cell
components, especially endothelial cells (ECs) supports
blood and oxygen demand to cells exposed to hypoxic
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conditions [60]. Considering the urgent need for estab-
lishing rapid, reproducible, and valid in vitro cancer angi-
ogenesis models for the evaluation of various pro-, and
anti-angiogenesis compounds, it seems that the selection
of appropriate assays such as tumoroid/spheroid-based
assays can help us to understand angiogenesis mecha-
nisms better than conventional cell-based assays [61].
Most commonly used in vitro angiogenesis assays are
based on the culture and expansion of ECs on the plas-
tic surface or certain substrates (Table 3) [62]. Notably,
2D culture settings and numerous 3D culture assays can
lead to the loss of typical function and phenotype of ECs
[63]. Based on previously published data, cultured ECs
in 2D culture systems exhibited prominent changes in
karyotype, cell-surface antigens, and dynamic growth
activity [64]. To achieve suitable angiogenesis potential,
ECs must be in a quiescent state to stimulate the juxta-
position of several vascular cells with simultaneous acti-
vation of certain pro-angiogenesis factors [65]. Of note,
there is no 2D gold-standard and definite angiogenesis
assay for the detection of cellular and molecular events
[65]. Thus, more angiogenesis-related assays are manda-
tory to achieve reliable results. It should not be forgot-
ten that most assays use ECs as the only cellular source
for angiogenesis assessment while different cell lineages
with a high degree of heterogeneity (either structural or
functional diversity) participate in blood vessel forma-
tion [66]. Noteworthy, the shape and size of ECs, and
the complexity of junctions are significantly altered in
2D culture platforms compared to the in vivo conditions
[64]. Commensurate with these descriptions, the devel-
opment of novel angiogenesis protocols is highly recom-
mended. To date, several 3D assays based on tumoroid/
spheroid generation have been conducted to evaluate the
angiogenesis in different tumor cells (Table 4) [67]. As
mentioned above, it is thought that unicellular spheroids
and multicellular tumoroids are valid avascular units and
can mimic relatively in vivo cytoarchitectural features
compared to the 2D culture systems.

Impact of hypoxia on angiogenesis

Inside the body, solid tumor cells are exposed to hypoxia
when O, levels drop below 21% which can worsen the
prognosis of cancer individuals [68]. Due to micron-
size dimensions, tumoroids/spheroids can provide dif-
fusional limitations and radial gradients in terms of O,,
nutrients, micro- and macroelements, and waste byprod-
ucts [69]. Cells located at the deeper layers of organoid/
tumoroid microstructures are more prone to hypoxic
changes because of an imbalance between O, consump-
tion and the limited distribution of nutrients [70]. It has
been indicated that hypoxia is a potent angiogenesis
stimulator via the regulation of several pro-angiogenic
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pathways. Besides the critical role of angiogenesis fac-
tors in different aspects of EC biology, hypoxic conditions
can also influence vascular cell arrangement, and func-
tions [68]. In response to hypoxic conditions, the activa-
tion of hypoxia-inducible factors (HIFs) can per se switch
on the expression of multiple angiogenesis factors, lead-
ing to angiogenesis transition via direct interaction with
cognate receptors on tumor cells, ECs, and other vascular
cells [71]. HIFs consist of HIF-1«, -1f, -2a, and -3a with
the potential (especially HIF-1a) to simultaneously alter
the transcription of other genes such as vascular endothe-
lial growth factor (VEGEF), and erythropoietin following
the attachment to hypoxia response elements (HREs)
[72]. HIF-1a is inhibited via factor inhibiting HIF (FIH),
and prolyl-hydroxylases (PHDs) when O, contents return
to basal levels. In contrast, these factors (PHDs, and FIH)
are inactive under hypoxic conditions which in turn pro-
mote the translocation of HIF-«a into the nucleus and its
interaction with HIF-f [73]. Hypoxic conditions result in
excessive cytosolic hyperacidification due to the accumu-
lation of waste byproducts, including lactate, pyruvate,
and acetic acid in the central zone [74]. Of course, the
intensity of the pH value is blunted from the central zone
to the outer layers. The activation of HIF-1a triggers the
enzymes of the anaerobic glycolysis pathway and height-
ens the intracellular levels of lactate (Fig. 2) [70, 75, 76].
In the presence of HIF-1a, the function of the Na*/H*
exchanger is altered to efflux accumulated proton ions
and regulate intracellular pH homeostasis, leading to
the reduction of ECM pH values [77]. Acidic conditions
can increase the solubility of angiogenesis factors such
as VEGF and activate relevant signaling pathway effec-
tors such as MAPK/ERK in target cells. It should not be
forgotten that excessive acidic conditions beyond the cell
threshold can inhibit the angiogenic behaviors of ECs,
leading to the promotion of necrotic cell death [78, 79].
In support of this statement, Mena et al. found that acid
preconditioning (pH=6.6) of endothelial colony-forming
cells promotes vasculogenesis, and increases the adhe-
sion, and cell resistance in response to hyperglycemic
conditions and pro-inflammatory status [61]. Of course,
the intensity of the pH value is blunted from the central
zone to the outer layers.

In an experiment conducted by Taghavi Narmi et al.,
they developed colon cancer tumoroids using human
HT-29 adenocarcinoma cells, HFFF2 fibroblasts, and
umbilical cord vein ECs (HUVECs) using hanging drop
embedded in 2.5% methylcellulose solution [79]. Based
on histological analysis, central cells exhibit typical fea-
tures of necrotic changes with prominent pyknotic
changes [79]. These conditions promoted the production
of angiogenesis factors, especially endocan in the outer
layers [79]. Schmitz et al. indicated a significant
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reduction of O, levels in mesenchymal stem cell (MSC)
spheroids using CPOx-orange polystyrene microbeads,
and OPAL Optical O, measurement system by monitor-
ing UnaG hypoxia reporter protein [80]. Data indicated
O, levels dropped below 1% (v/v) in spheroids containing
about 3x10* MSCs while these levels were near 2.5%
(v/v) in a 2D culture system [80, 81]. Of course, it should
be kept in mind that local O, levels are variable in cell
microaggregates developed using different fabrication
platforms. For instance, the O, tension is higher in the
deep layer of MSC spheroids induced by hanging drop
methods using Terasaki plates when compared to sphe-
roids fabricated by direct culture on ultra-low attach-
ment plates [80]. The activation of vascularization and
accumulation of metabolic byproducts can lead to differ-
ences in temperature values compared to the surround-
ing tissues [82]. It seems that the active pro-angiogenesis
properties increase the local temperature within the solid
tumor masses while the progression of necrotic changes,
accumulation of metabolic byproducts, and reduction of

metabolic activity reduce the local cancer mass tempera-
ture compared to the healthy niches [82]. In an interest-
ing experiment conducted by Kumar et al., they proved a
temperature difference between the 3D tumoroid core
and periphery composed of human HCT-8 colon cancer
cells and NIH3T3 fibroblast cells using the fluorescent
polymeric nano-thermometers. Data indicated fewer
temperature values (~2.9 °C) in the core zone compared
to the outer layers of the tumoroid system [83]. There-
fore, one can hypothesize that the active metabolic state
along with higher temperature values can help us in the
evaluation of pro-angiogenesis status within the tumor
parenchyma in in vitro conditions. Hypothermic condi-
tions in the core of tumor mass are highly related to the
lack of angiogenesis signaling and prominent necrotic
changes as seen in real tumor masses. Besides, these fea-
tures can stimulate specific signaling molecular path-
ways. For instance, several signaling pathways related to
inflammation, angiogenesis, and epithelial-mesenchymal
transition (EMT) were indicated in hepatocellular
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organoids [84]. Of note, prolonged hypoxic conditions
can result in the expression of angiogenesis-related fac-
tors such as VEGF within the organoid systems [85].
Regarding the fact that most tumor cell types prefer glyc-
olysis over oxidative phosphorylation, it seems that the
lack of suitable oxygen levels can educate these cells to
behave similarly to the in vivo-like conditions. In orga-
noids exposed to hypoxic conditions, the proliferation of
ECs and differentiation of stem cells and progenitors
toward endothelial lineage is increased [86]. Each cell
type can select specific spatial localization within the
organoid/tumoroid structure. For example, ECs prefer
the periphery of spheroids/organoids in the early days
after development while the formation of vascular units
and elongation of these cells help them to penetrate the
deeper layers (Fig. 3) [87]. In line with this statement, in
heterotypic spheroids consisting of ECs and MSCs, green
fluorescent ECs can be detected in the periphery of these
structures over time and promotion of angiogenesis
response increases the EC migration into the central
zone according to gradient density of angiogenesis fac-
tors [87]. These features highlight the importance of EC
location within the tumoroid/spheroid system which can
pre-determines the angiogenesis capacity. It is postulated
that the poor access of innermost cells of tumoroids to
O, can initiate the pro-angiogenesis signaling pathways
while new vessel formation is promoted by the stimula-
tion of outer layer ECs. It was suggested that ECs in the
periphery of unicellular spheroids are more potent in
generating capillary sprouts and outgrowth within the
collagen gel [65]. Inside the multicellular spheroids com-
posed of human endothelial and osteoblast lineages, ECs
can generate the CD31% microvessels in in vitro condi-
tions and these vascular units can interconnect with sur-
rounding capillaries after being transplanted into the
target tissues [88]. Using appropriate ECM components
and suitable cell types, the angiogenic potential of vascu-
lar cells can be stimulated [89]. In spheroids composed of
ECs and smooth muscle cells (SMCs) within the meth-
acrylated hyaluronic acid with fibrinogen, the expression
of angiogenesis factors such as stromal-derived factor-1
alpha, HIF-1a, and angiopoietin 1 and migration capacity
were in the maximum levels in EC-SMC spheroids com-
pared to EC, and SMC spheroids [89]. These data indi-
cate that heterotypic interaction can promote the
function of ECs and thereby angiogenesis potential inside
the tumoroids/spheroids. In breast cancer tumoroids
consisting of MDA-MB-231 and/or MCE-7 cancer cell
lines, lung ECs, and bone marrow MSCs, the localization
of ECs is associated with breast cancer cell types and
close interaction with MSCs in tumoroids. Cellular organ-
ization was more prominent in tumoroids containing
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MDA-MB-231 rather than MCF-7 cells. This effect would
be related to the supportive role of MSCs in the stabiliza-
tion of vascular units via direct juxtacrine interaction with
ECs or pericytes [90, 91]. It is also mentioned that ECM-
producing cells like fibroblasts can improve the angio-
genic behavior of ECs within the tumoroid/spheroid
structures [92]. Inside the body, fibroblasts, especially
cancer-associated fibroblasts (CAFs), tend to localize in
the core zone of tumors while proliferating cancer cells
occupy the outer margins of solid tumors [93]. Of note,
the exact location of fibroblasts within the tumoroid sys-
tem determines morphological adaptation. For instance,
CAFs and fibroblasts located near the core zone are
round-shaped while these cells are elongated and flat-
tened in the outer layer. This effect would be closely asso-
ciated with topological net charge in which the deep layer
exhibits positive values and these features are negative in
the periphery of tumor masses [94]. It was shown that
fibroblasts and especially CAFs can support tumor angio-
genesis via the production of type I collagen, different
pro-angiogenesis factors such as fibroblast growth factor
(FGF), VEGF, etc., and stimulation of EMT phenomenon
(Fig. 4) [95, 96]. In contrast to the cancer cells, E-cadherin
and other adhesion molecules are normally distributed at
the surface of normal cells, increasing the juxtacrine cell-
to-cell interaction over time [97, 98]. Morphological
changes and close interaction of cells within the spheroid/
tumoroid system along with the hypoxic core are essential
for angiogenesis potential [62, 99]. Emerging data have
revealed that there is a close relationship between sphe-
roid/tumoroid vascularization potential and activation of
resistance mechanisms [100]. Ahn and co-workers devel-
oped unicellular HepG2 cells, and hybrid HepG2 plus
HUVEC spheroids using fibrinogen matrix [100]. Com-
pared to unicellular HepG2 spheroids, the expression of
genes related to angiogenesis and vascular unit function
(CD31, vWF, and FLTI), and metastasis (H19, VIM,
LAMB3, ITGAS) were prominent in HepG2-HUVEC
spheroids. These data confirmed that heterogeneous cell
microstructures (such as tumoroids) can efficiently pro-
vide geometric clues for in vivo-like cell behavior and
phenotype, especially cancer angiogenesis status [100].
Inside solid tumors, the existence of differentiation capac-
ity from the epithelial-to-mesenchymal lineage, especially
ECs, and other cell types can enhance the formation of
intraparenchymal vessels, resulting in invasive tumor cell
behavior and metastasis toward remote sites [101].
HepG2-HUVEC fibrin spheroids indicated eminent
expression of EMT factors (LUG?T, MMP-91, and
a-SMAY1), leading to the increase of intra-spheroid vascu-
larization [100]. It has been indicated that ECs possess
plasticity to acquire mesenchymal phenotype (EndMT)
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within the cancer parenchyma. Upon the activation of
EndMT, ECs reduce protein levels of certain factors such
as CD31, VE-cadherin, Tie-2, and vWF, and the expres-
sion of mesenchymal cell lineages such as a-SMA, type I/
III collagen, and fibroblast-specific protein-1 is induced
[102]. Inside the tumor niche, resistant cancer cells and
CSCs prefer to locate at sites near the hypoxic zone to
maintain their stemness features, angiogenesis potential
(VEGF), and resistance mechanisms [103]. In contrast,
the increase of O, levels inside TME leads to CSC-to-
normal cancer cell maturation, and loss of stemness fea-
ture loss [104]. It should be noted that the development
of vascular units within the tumoroid/spheroid system
indicates activated endothelial differentiation of CSCs,
and proliferation of ECs in response to hypoxic condi-
tions. In the hypoxic conditions, glioma CSCs are prone
to acquire EC phenotype by the activation of A3 adeno-
sine receptor [105]. It was shown that the exposure of
spheroids to specific culture conditions such as cyclic
fluid shear stress can improve the angiogenesis potential
and endothelial differentiation of adipose MSCs (VWEFT,
and CD1441) [106]. The application of specific ECM,
and/or ECM-like substrates with different cell lineages
(multicellular spheroids) can yield a suitable platform for
the analysis of tumor angiogenesis. However, it should be
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kept in mind that providing a hypoxic niche inside sphe-
roids/tumoroids using certain techniques is an essential
factor in an efficient angiogenesis analysis. It is suggested
that the mean diameter of avascular tumoroids/spheroids
should exceed 400 pm for obtaining a hypoxic core [107].

During past decades, several techniques and assays
have been used to assess the angiogenesis potential of
cancer cell spheroids and tumoroids based on the EC
function and activity. Among several techniques and
approaches, spheroid-based sprouting angiogenesis is
a simple, fast, and valid assay to measure the formation
of new blood vessels and the activity of tip cells embed-
ded in supporting dense matrices [67]. Sprouting param-
eters such as the number of sprouting and migrating ECs,
mean envelope area, mean total outgrowth cell area, and
the distance of ECs from the spheroid center, and border
can be calculated in unicellular spheroids or multicellular
spheroids composed of endothelial lineage and other cell
types [108—110]. In an interesting study, Park and col-
leagues monitored the angiogenesis behavior of tumor
spheroids composed of human fibroblasts with different
cancer cell lines such as HepG2, U87MG, A549, and/or
plasmacytoid dendritic cells in all-in-one-IMPACT sys-
tem using the microfluidic platform and fibrin gel [111].
The formation of vascular sprouts within the different

Vascular cells and networks
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Outer layer proliferative zone

Fig. 2 Typical tumor spheroid structure. In the left panel, the multicellular tumor spheroid is composed of human adenocarcinoma colorectal
HT-29 cells, HUVECs, and HFFF2 fibroblasts. Spheroids have an inner dark compact core area and are enclosed by several cells in the periphery (outer
layers). The connection of cells is loose in the external layers, indicating higher proliferation capacity. Copyright 2023. [79]. Cancer Cell International
(Springer Nature Publishing Group). In the right panel, the schematic of tumor spheroid cell layers is indicated. Due to hyperacidification, lack

of enough O,, and other parameters, most of the cells in the central zone undergo apoptotic and necrotic changes. In response to these features,
juxtaposed to the central zone can release HIF-1a along with several angiogenesis factors to stimulate the formation of blood vessels. These
vascular units are indicated by typical capillary sprouts in the tumor mass periphery and anastomosis within the stroma. The existence of hypoxic
conditions is an essential element for the promotion of angiogenesis in tumor spheroids/tumoroids. The right panel was designed by using

BioRender's web-based software
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concentrations of fibrin hydrogel was assessed [111]. Sev-
eral molecular analyses such as proteomic [i.e. immuno-
fluorescence [112, 113], immunohistochemistry staining
[114], western blotting [79], etc.], and genomic assays
have been also to measure the angiogenesis status in sev-
eral spheroid systems [62, 79, 115] following the exposure
to different modalities [116—118].

Along with different in vitro spheroid-based angiogen-
esis assays, the transplantation of developed spheroids/
tumoroids into animal models has been extensively used
during the last decades [119]. Spheroid-plug model is one
of the most applicable methods for the analysis of sphe-
roid-derived angiogenesis in in vivo conditions. In this
approach, unicellular and/or multicellular spheroids are
embedded inside the supporting substrates, like Matrigel,
etc., and directly injected into the subcutaneous area or
transplanted into the target tissues [120, 121]. At distinct
time points, the angiogenesis potential of transplanted
spheroids/tumoroids was assessed using imaging tech-
niques, i.e. ultrasonographic, proteomic, and genomic
analyses [122]. Recently, Choi and co-workers investi-
gated the formation of angiogenesis in a mouse xenograft
model of oral mucosa after the injection of CAFs and
head and neck squamous cell carcinoma (SCC) grown
in a 2D monolayer and/or 3D spheroid culture systems
[123]. Histological analyses revealed that the number of
CD31* was less in mice that received disassociated cells
while the injection of spheroids resulted in the formation
of a vascular bed with numerous CD31% cells [123]. Inter-
estingly, they found that the levels of exosomes (Exos)
also increased in spheroids composed of CAFs, and SCC
cells with the increase of angiogenesis potential (pdgf?,
vegf?!, vegfr-21, pdgfrat). Data indicated that the presence
of CAFs can increase the angiogenic potential of FaDu
squamous cell carcinoma [123]. It has been shown that
Exos are valid theranostics for monitoring molecular sig-
natures in the parent cells and loading certain cargo for
therapeutic purposes [124]. Exos are produced directly
by the activity of the endosomal system inside the cytosol
via the invagination of the endosome membrane. During
this process, several signaling factors and pro-angiogene-
sis factors are sequestrated into the Exo lumen [125].

Due to their nano-sized scales, Exos can easily pen-
etrate the spheroid structure for the analysis of angio-
genesis potential. In most studies, supporting ECM is
composed of collagen, gelatin, hyaluronic acid, polymeric
carbohydrates such as alginate, and other substrates
which can yield fibrous networks or hydrogel with nano-
to micron-sized pores in the structure of spheroids/
tumoroids [126-128]. To this end, Capik and co-work-
ers incubated human EC spheroids with hypoxic oral
SCC cell Exos for monitoring the angiogenesis potential
[129]. Data indicated that exosomal miR-1825 led to the
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increase of sprouts in EC spheroids via the modulation
of the TSC2/mTOR axis [129]. These data confirmed that
Exos can efficiently harbor both genetics and proteom-
ics in different cell layers within the spheroid structure.
Whether the majority of Exos can be uptaken by cells
located at outer or deep cell layers needs more eluci-
dation. In an interesting study, paclitaxel/gemcitabine
monophosphate-loaded Exos efficiently entered pan-
creatic ductal adenocarcinoma spheroids with about an
average diameter of 300-350 um. Immunofluorescence
images revealed significant homing capability of fluo-
rochrome-stained Exos in the deep layer of pancreatic
ductal adenocarcinoma spheroids and orthotopic model
in mice [130]. Hao and co-workers indicated the promi-
nent penetrating properties of doxorubicin-loaded Exos
in human adenocarcinoma A549 spheroids after 4 h in
in vitro conditions [131]. These data show that Exos are
valid diagnostics for the evaluation of pro-angiogenesis
cargo. Thus, Exos can be used for the delivery of specific
therapeutics into deep layers of tumoroids/spheroids
using some sophisticated loading techniques.

Microfluidic devices and 3D bioprinting for fabrication

of vascularized tumor spheroids

In recent years, 3D bioprinting technology along with
microfluidic devices have been used for precise and spa-
tial arrangement of cells and supporting materials to
generate micro-sized aggregates and simulate in vivo
tumor-like conditions [132]. Along with different bio-
printing modalities, droplet-based bioprinting (such
as inkjet, acoustic, and microvalve-based approaches)
exhibits reproducibility, accuracy, adaptability to dif-
ferent substrates, etc. for the fabrication of tumor sphe-
roids/organoids [133]. Using droplet-based bioprinting,
both cell number and type can be controlled in the
structure of final tumor spheroids [133]. Previously,
Utama et al. used drop-on-demand bioprinter and algi-
nate-based substrate for the fabrication of multicellular
tumor spheroids (neuroblastoma, and lung cancer cell
lines) with the potential to control parameters such as
size, and dimensions of colonies [134]. Data indicated a
rapid spheroid formation rate with high encapsulated
cell numbers within certain dimensions. The current
approach was eligible to preserve the stemness of neu-
roblastoma cells (CD133" cells?) within the tumor sphe-
roids. Besides, the cell alignment and compactness were
increased in 3D-bioprinted spheroids as compared with
manually prepared spheroid counterparts. The presence
of HIF-1a™ cells indicates typical hypoxic conditions in
the inner layers of 3D-bioprinted spheroids which can
be used for monitoring angiogenesis and drug screening
[134]. In a similar work conducted by Hong and co-work-
ers, they used a 3D bioprinting system for the evaluation
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Fig. 3 The localization of human cord b\ood EC and bone marrow MSCs within the spheroids generated using agarose molds (Day 0 a-b). ECs
and MSCs were stained with CellTrace™ Oregon Green® 488, and CellTrace™ Far Red Cell, respectively to be tracked within the spheroid structure.

Immunofluorescence images indicate the localization of ECs in the periphery of spheroids (a

,and b). Data showed that green CD317 cells were

located at the periphery of spheroids while red-colored a-SMA.* MSCs distributed within the spheroid parenchyma. The nuclei were stained using
DAPI. These data show that cell alignment and localization depend on types and functions within the spheroids in in vitro conditions. Copyright
2020 [228]. Journal of Molecular Medicine (Springer Nature Publishing Group)

of drug resistance in breast cancer spheroids containing
MCEF-7 CSCs and alginate-gelatin hydrogel [135]. The
developed tumor spheroids preserve the stemness feature
(CD44%/CD24~/ALDH" cells?) with simultaneous up-
regulation of resistance markers such as GRP78 chaperon
and ABCG2 [135].

In recent years microfluidic bioreactors have been
increasingly used for the evaluation of angiogenesis
response in tumor spheroids [100]. It has been shown
that the integration of the tumor-on-a-chip technique
with 3D bioprinting platforms can help us provide a het-
erogeneous TME and monitor angiogenesis as well [136].
Meng and co-workers fabricated 3D bioprinted modules
consisting of photo-responsive microcapsules [GelMA
core with EGF, and Au-functionalized PLGA film], A549
tumor cell droplets, endothelialized (HUVECs) micro-
channels, and fibroblast-loaded natural hydrogel. This
platform can successfully mimic the TME and be eligible

to monitor cancer cell migration in association with
growth factor gradient and interaction with the stromal
cells [137]. By combining 3D bioprinting technology and
microfluidic devices, unicellular or multicellular tumor
spheroids can be exposed directly to an EC-lined surface
with predetermined flow rates and certain pro-, and anti-
angiogenesis factors [138]. The angiogenesis rate is moni-
tored in terms of vascularization area, and penetration of
vascular cells to spheroid structure (Figs. 5, and 6) [100].
Han and co-workers studied the angiogenesis of U78
glioblastoma tumoroids plated on a bioprinted vascular
niche composed of pulmonary fibroblasts and human
ECs embedded in gelatin/alginate/fibrinogen composite
[139]. Data confirmed the invagination of vascular ECs
into tumoroid structure and migration of U78 cancer
cells toward vessels and vice versa. On day 7, the expres-
sion of CD31 and a-actin is up-regulated coinciding with
the formation of vascular network within the hydrogel.
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Fig. 4 Detection of ECM protein components [collagen IV (Col IV), collagen I (Col 1), and fibronectin (FN)] in multicellular spheroids composed

of breast HCC1954 cells (TC), PKH26-labeled dermal fibroblasts (hF), and Cell Tracker Deep Red-labeled HUVECs (ECs) with different ratios (TC 1:

hF 1:EC 1,and TC 1: hF 3: EC 10) using immunofluorescence images. Spheroids were generated using ultra-low 96-well plates. Spheroids were
incubated with VEGF [VEGF suppl. (0.5 ng/m)] or VEGF-deprived conditions (VEGF w/0) for 30 days, and exposed 2-day static culture system
followed by agitation-based culture setting (rotation speed: 100 rpm). Data showed that fibronectin was produced in monotypic and heterotypic
spheroid systems and is mainly at the center zone of spheroids, indicating the cancer cell origin. In contrast, the production of type | and IV collagen
was promoted in the heterotypic spheroid system compared to the monotypic spheroids. The presence of VEGF can intensify the production

of collagen by fibroblasts within the heterotypic spheroid system. These data highlight the role of cells in the production of certain components

of ECM via the production of certain growth factors within the spheroid systems. The analyses were done in triplicate. Nuclei were stained with DAPI
Scale bar, 100 um. Copyright 2021. [236]. Frontiers in Bioengineering and Biotechnology (Frontiers Publishing Group)

In the presence of anti-cancer compounds (temozolo-
mide, and sunitinib), the intensity of vascular units was
reduced in the tumoroid backbone compared to the cells
treated with temozolomide alone. These features indicate
the feasibility of the designed system for monitoring the

efficiency of several anti-cancer drugs on certain tumor
types in vitro [139].

Under physiological conditions, the existence of shear
stress with frictional forces is an essential element for
the regulation of EC function and activity. Thus, the
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application of a perfusable culture system with simul-
taneous shear stress forces can yield reliable data com-
pared to static culture platforms. In microfluidic systems,
microfabrication approaches can be used for the fab-
rication of microchannels using suitable substrates for
monitoring cell attachment, morphogenesis, and func-
tion in the dynamic aqueous phase [140]. In an interest-
ing work, Miller and co-workers developed engineered
vascular tissue consisting filament network composed of
carbohydrate glass using 3D bioprinting [141]. The lumi-
nal surface was furnished with ECs and exposed to pul-
sative blood flow. Based on the complexity of TME, this
approach can be applied to control several geometries
such as vascular network dimension, EC function, impact
of intervascular niche, and tumor cell behavior. The appli-
cation of different cell lineages within certain substrates
is also possible for achieving reliable in vivo-like data
[141]. Using a tumor microfluidic model, immune cell
function can be also monitored in response to tumoroids
with different cell types [142]. In this regard, fibroblasts
were co-incubated with different tumor cells (H69M lung
cancer cells, OV90 ovarian cancer cells. SN12C kidney
cancer cells) within the tumor-on-a-chips composed of
PDMS for assessing angiogenesis potential [142]. The
tumoroids were overlaid on HUVEC- and fibroblast-
incorporated fibrin gel and vascularized tumoroids were
evident after 7 days [142]. Application of continuous flow
for 4 days showed that CAR T cells successfully penetrate
the tumoroid microenvironment and interact with the
apical surface vascular ECs. Along with the recruitment
of CAR T cells into the tumor niche, the local IFN-y lev-
els were also increased, indicating the activation of CAR
T cells after being exposed to tumor cells [142].

In most previously conducted works, ECs have been
used as the main vascular cell component for monitor-
ing angiogenesis in tumor model analyses. The inclusion
of other vascular cells such as pericytes and perivascular
niches can reflect more reliable in vitro data about the
dynamic tumor cell growth comparably to in vivo con-
ditions [143]. In an experiment conducted by Ngo et al.,
brain glioblastoma tumoroids were fabricated using brain
microvascular ECs, pericytes, and astrocytes to moni-
tor the possible role of perivascular cells in angiogen-
esis potential of tumoroids within the GelMA substrate
[143]. Data indicated that mono, di, and triculture of ECs
with pericytes, and astrocytes led to the formation of a
primitive stable vascular network (CD31t, ZO1) within
the tumor unicellular or multicellular aggregates. The
presence of pericytes can increase the expression of tight
junction molecules such as ZO, and CLDN5. Along with
these changes, the expression of ECM components such
as LAMA4 was also induced. The culture of GBM6 cell
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spheroids within the GelMA hydrogel containing ECs,
pericytes, and astrocytes indicated numerous peripheral
invading tumor cells after 7 days. On the other hand,
ECs were also recruited to the proximity of tumor sphe-
roids to generate vascular networks. Taken together, the
existence of perivascular cells (pericytes) can stimulate
the migration and metastasis of glioblastoma cells with
enhanced vascular density [143].

Current bottlenecks and challenges
Despite the superiority of unicellular and multicellular
spheroids over 2D culture systems in terms of cancer
research, this platform faces some critical limitations
that need further consideration. Compared to cultured
cells in 2D systems, bright-field imaging and obtaining
high-resolution scanning are usually difficult and labori-
ous due to intricate geometries that affect light scatter-
ing, penetration, and absorption within the spheroid/
tumoroid systems [144, 145]. These features make it dif-
ficult to make transparent images and study the central
zone of multicellular complexes. Prolonged light expo-
sure can also increase the possibly of phototoxicity and
photobleaching effects that per se necessitate the appli-
cation of more expensive techniques such as electron
microscopy, and layer-by-layer fluorescence imaging
[146, 147]. In most circumstances, the lack of an appro-
priate penetration rate or homogenous distribution of
fluorochrome compounds reduces the possibility of cer-
tain biomarkers and positive cells within the deep layers
of spheroid/tumoroid systems [7, 144, 148]. To fabricate
interpretable 3D datasets, certain imaging software, and
platforms with motorized and controllable microscope
frames are mandatory [144]. It should not be forgotten
that the mean diameter size of multicellular units is not
completely similar which can affect the access of nutri-
ents and other essential factors into central zones. In this
regard, obtaining almost uniform data is problematic and
makes the results difficult [149]. In contrast to in vivo
conditions, the distribution of O, and various nutrients
in the 3D culture system is restricted in the static culture
systems. Of note, dynamic culture platforms can in part
circumvent these pitfalls but it is not completely simi-
lar to biological systems [150]. In terms of anatomical
microstructure, the tumor masses are enclosed by solid
tissues while in in vitro spheroid/tumoroid cultures are
surrounded by aqueous phases. These features allow the
cells located at the external surface to proliferate more
actively because of unlimited access to growth factors
and cell culture elements [7].

Notwithstanding, each tumor has specific supporting
ECM components and the development of spheroid/
tumoroid systems with native ECM compositions needs
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Fig. 5 Application of microfluidic 3D culture system for monitoring the patient tumor (gastric adenocarcinoma)-derived spheroid angiogenesis
response (A-E). The patient-derived tumor spheroids were generated using fibrin hydrogel. The microfluidic 3D culture system provided

a valuable platform to measure the angiogenesis properties of spheroids after being exposed to HUVECs in the EC channel (A). The reciprocal
interaction between the EC layer and hydrogel-embedded spheroids within the microfluidic 3D culture system (B). The existence of hydrostatic
pressure stimulated tumor spheroids to release angiogenesis-related factors such as VEGF toward the EC channel (C). Tumor cell and EC growth
were monitored using confocal microscopy for 6 days (D). After 14 days, the fluorescein-labeled Ulex Europaeus agglutinin I EC layer advanced
toward Alexa Fluor 594-EpCAM.* tumor spheroid to generate vascularized tumor mass. Scala bar: 10 um. Copyright 2024. [138]. Biomaterials
(Elsevier Publishing Group)

(See figure on next page.)

Fig. 6 Comparison of lymphangiogenesis efficiency in tumor spheroids inside microfluidic chip device exposed to static and dynamic

culture condition (a-e). Schematic illustration of interstitial flow effect on lymphangiogenesis and angiogenesis properties of tumor spheroids
composed of fibrin-embedded HepG2 cells and HUVECs. Tumor spheroids (HepG2 cells + HUVECs) were injected and fixed in the central channel
using fibrin clots containing vascular ECs and lymphatic ECs (a). Confocal images of angiogenesis (red-colored Alexa Fluor® 594 CD317 cells)

and lymphangiogenesis (green-colored Alexa Fluor® 488 podoplanin.” cells) under static and dynamic culture conditions (b) Scale bars: 400 pum).
Spheroid size (c), vascularization area (d), and lymphatic vessel area (e) were measured in conditions with static and dynamic culture systems (n=4).
Data indicated that both lymphangiogenesis and angiogenesis were stimulated in tumor spheroid systems after being exposed to a dynamic
culture system. Non-paired student’s t-test. ***p <0.001. n.s: non-significant. Copyright 2023. [100]. Acta Biomaterialia (Elsevier Publishing Group)
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standard protocols and sophisticated synthesis proto-
cols. It is believed that ECM composition and variation
in supporting substrates can affect the genetic traits,
cellular behavior within the spheroid/tumoroid com-
plex, and response to therapeutics and drug screening
protocols [144, 151]. Compared to the real tumor mass,
the in vitro multicellular systems possess a relatively
simple microstructure with a limited number of ECM
components. The entity of ECM can change during the
culture periods and selection of cell ratio in tumoroid
systems. Therefore, the selection of appropriate cells
with relatively similar tumor mass ratios is mandatory
to establish more realistic models and compare the
in vitro and in vivo data [150]. In most spheroid/tumor-
oid models, the lack of microstructure interconnec-
tivity, ECM alignment, and specific cell types such as
cancer-associated fibroblasts (CAFs), tumor-associated
macrophages (TAMs), and other vascular components
such as pericytes can affect the dynamic growth of can-
cer cells and tumor mass behavior [144, 152]. Unlike
in vivo conditions, spheroids/tumoroids are devoid
of neuroimmunoendocrine interactions which allows
cancer cells to proliferate more actively compared to
other cell types [150]. It is believed that M2 TAMs can
exert immunosuppressive properties with the potential
to change tumor cell migration, drug sensitivity and
ECM components [153]. Whether and how co-cultured
fibroblasts can acquire in vivo-like stable phenotypes
(CAFs) is associated with the production of several
cytokines, and physical interaction with the other cells
[150]. CAFs are actively present in the tumor matrix
and likely produce a large fraction of ECM components
(fibronectin, collagen, etc.) along with certain growth
factors. It has been thought the number of CAFs and
ECM production correlate with stable and continuous
hypoxic conditions and low pH values [153]. The co-
culture of ECs with other cells within the multicellular
system cannot fully mimic tumor parenchyma vascu-
lar networks while constant shear stress and perfusion
should be provided [154]. Direct evidence for low-
content intercellular junction factors, i.e., E-cadherin,
leads to formation of less compact spheroid/tumoroid
system. In most circumstances, the up-regulation of
N-cadherin instead of E-cadherin loosen the cell-to-
cell interaction [146]. Of course, certain ECM compo-
nents such as collagen can facilitate the compactness of
spheroids/tumoroids. Unfortunately, creating a multi-
cellular system with a dense collagen matrix is some-
how impossible and needs intricate synthesis protocols
that may damage the cells [145, 146]. These features
closely affect the penetration and tumoricidal proper-
ties of immune cells [150, 155].
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Conclusions

Tumoroids/spheroids provide a valid cost-effective, fast,
precise, and reproducible in vitro platform to recapitu-
late in vivo-like conditions for the analysis of angiogen-
esis status in response to drugs and other factors [156].
Besides, both multicellular and unicellular tumor sphe-
roids enable us to study the paracrine and juxtacrine
interaction between the homotypic and heterotypic
cells. In most previously conducted experiments, sev-
eral parameters such as tumor cell dynamic, metastasis,
drug screening, etc. have been analyzed more than the
angiogenesis potential. Thus, the current review arti-
cle aims to scrutinize the importance of angiogenesis/
vascularization in the dynamic growth of the tumoroid/
spheroid system. Based on several studies, endothelial
lineage, and/or stem cell sources are used to mimic blood
vessel structure within the multicellular and unicellular
tumor spheroids, and thus type, intensity, and duration of
angiogenesis responses can differ based on the cell com-
ponents and supporting matrices. Like tumoroids com-
posed of different cell lines, patient-derived tumoroids
are also valid analytic tools to find appropriate medica-
tions and screen novel therapies targeting the angiogen-
esis potential. It should not be forgotten that tumoroids/
spheroids have their limitations despite several advan-
tages compared to conventional 2D culture systems. The
entity, structure, and vascular cells involved in the devel-
opment of vascular niches are not completely similar to
in vivo conditions. Thus, additional efforts are needed to
recapitulate different aspects of the tumor microenviron-
ment, such as the inclusion of immune cells recapitula-
tion of appropriate vessel morphologies, or appropriate
basement membrane or ECM composition. Finding the
exact in vivo-like cell-to-cell ratio is another challenge
that restricts the applicability of 3D culture system-based
assays for therapeutic purposes. Commensurate with
these facts, future studies are suggested to address these
issues for the development of powerful culture system
tools comparable to in vivo tumor conditions.
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CSCs Cancer stem cells

CAFs Cancer-associated fibroblasts

ECs Endothelial cells

EPCs Endothelial progenitor cells
EndMT  Endothelial-mesenchymal transition
EMT Epithelial-mesenchymal transition
Exos Exosomes

ECM Extracellular matrix

FGF Fibroblast growth factor
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SMCs Smooth muscle cells



Abbasi-Malati et al. Stem Cell Research & Therapy (2024) 15:267

SCC Squamous cell carcinoma
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TGF-B Transforming growth factor-
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HUVECs  Umbilical cord vein ECs

VEGF Vascular endothelial growth factor
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