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Abstract

tive dentistry.

Dental and maxillofacial diseases are always accompanied by complicated hard and soft tissue defects, involving
bone, teeth, blood vessels and nerves, which are difficult to repair and severely affect the life quality of patients.
Recently, extracellular vesicles (EVs) secreted by all types of cells and extracted from body fluids have gained more
attention as potential solutions for tissue regeneration due to their special physiological characteristics and intrinsic
signaling molecules. Compared to stem cells, EVs present lower immunogenicity and tumorigenicity, cause fewer
ethical problems, and have higher stability. Thus, EV therapy may have a broad clinical application in regenerative
dentistry. Herein, we reviewed the currently available literature regarding the functional roles of EVs in oral and maxil-
lofacial tissue regeneration, including in maxilla and mandible bone, periodontal tissues, temporomandibular joint
cartilage, dental hard tissues, peripheral nerves and soft tissues. We also summarized the underlying mechanisms

of actions of EVs and their delivery strategies for dental tissue regeneration. This review would provide helpful guide-
lines and valuable insights into the emerging potential of EVs in future research and clinical applications in regenera-
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Introduction

The high prevalence of damage or loss in dental and
maxillofacial tissue has garnered global attention, as it
greatly impacts the quality of life of patients and imposes
a substantial financial burden on society [1]. Exogenous
transplantation or the use of maxillofacial prostheses
are currently the most common treatments for repairing
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dental and maxillofacial tissue [2]. However, these thera-
pies only serve to halt disease progression and are unable
to fully restore the normal physiological structure and
function [3]. As a result, there is a pressing need for new
treatments that can achieve genuine regeneration of den-
tal and maxillofacial tissues.

Regenerative medicine has emerged as a promising
approach to replace repaired tissue to restore normal
biological functions and reduce the reliance on trans-
plantation [4]. In particular, mesenchymal stem cells
(MSCs) have shown significant potential in this field by
animal and clinical studies [5]. MSCs possess remarkable
abilities for self-renewal, multilineage differentiation, and
robust immunomodulation, making them pivotal players
in tissue regeneration [6]. However, their use has been
restricted in the clinic due to concerns regarding uncon-
trollability and potential transformation risks, underscor-
ing the need for alternative cell-free therapies [7]. Recent
findings have shed light on the fact that MSCs primarily
exert their effects through the secretion of cytokines or
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membranous vesicles. These secreted substances regulate
the microenvironment surrounding damaged tissues and
orchestrate subsequent regeneration processes via parac-
rine signaling [8].

Extracellular vesicles (EVs) were recently revealed as
the primary component of paracrine signals of cells [9].
They constitute a heterogeneous group of cell secretomes
and are secreted by almost all cell types. Based on the
size, EVs can be classified into three subtypes: microvesi-
cles, exosomes, and apoptotic bodies [10]. The Interna-
tional Society for Extracellular Vesicles has collectively
termed these subtypes as “EVs” [11]. Compared to cells,
EVs are non-replicable and exhibit lower immunogenicity
and improved biocompatibility [12]. They play a crucial
role in promoting the proliferation and differentiation
of targeted cells and regulating the entire process of tis-
sue regeneration [13, 14]. Previous studies have demon-
strated that EVs can aid their parent cells in performing
physiological functions [15]. Subsequent investigations
have further explored the functions and underlying
mechanisms of EVs [16], and shown that EVs can activate
specific signaling pathways to facilitate cellular commu-
nication through their unique contents, including pro-
teins, nucleic acids, and signaling peptides [17].

Compared to other organs, the oral cavity has direct
communication with the external environment, which
provides a favorable condition for the implantation of
EVs. This also avoids the issue of EVs traversing the cir-
culatory system, thereby reducing any residual or cumu-
lative effects in non-treated areas. Consequently, the
application of exogenous EVs in dental regenerative med-
icine has been extensively studied and has shown prom-
ising treatment effects [18] . Therefore, EVs, with their
non-mutating and non-duplicating characteristics, are
considered promising tools for dental tissue regeneration
[19].

In this review, we examine the current literature
(Fig. 1), regarding the functional roles of EVs in oral and
maxillofacial tissue regeneration, including their impact
on maxilla and mandible bone, periodontal tissues,
temporomandibular joint cartilage, dental hard tissues,
peripheral nerves, and soft tissues. Additionally, we sum-
marize the underlying mode of actions of EVs (Fig. 2)
and discuss their delivery strategies in the applications
of regenerative dentistry. The existing challenges and the
prospect of the future for EVs in dentistry regeneration
are also discussed. This literature search was conducted
in three databases (PubMed, Scopus and Google Scholar).
English publications were searched using the keywords
((extracellular vesicles) OR (EVs) OR (exosomes) AND
(dentistry regeneration) OR (dental tissue regeneration)
OR (oral tissue regeneration)). After reviewing the titles
and abstracts, 60 selected publications with full texts
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were selected for detailed analysis. 3 research articles
were duplicated in the part of mechanism of EV-mediate
dentistry regeneration.

Origin of EVs and their roles

EVs are nanoscale membrane vesicles and secreted by
nearly all types of cells [20]. They are formed through
the inward budding of multivesicular bodies that origi-
nate from late endosomal membrane invagination. These
vesicles are subsequently released into the extracellular
microenvironment by fusing with the plasma membrane
[21]. During the process of EV formation, specific pro-
teins, lipids, and nucleic acids are selectively recruited
and encapsulated, granting EVs the ability to mediate
paracrine crosstalk [22]. These proteins include adapter
protein ALIX, endosome-related protein TSG101, and
the transmembrane proteins CD9, CD63, and CD81 [23,
24]. The lipid bilayer of EVs typically comprises choles-
terol, sphingomyelin, and phosphatidylserine, which
significantly contribute to EV formation and their inter-
action with target cells [25, 26].

EVs interact with target cells through three main mech-
anisms, offering various avenues for studying signal path-
ways and therapeutic targets in different diseases [27].
Firstly, EVs engage in information transmission through
receptor-ligand interactions, even without direct cell
contact [15]. Secondly, EVs enhance cell adhesion proper-
ties by binding to the target cell membranes [28]. Lastly,
EVs can fuse with the target cell membrane, delivering
their contents into the cytoplasm and exerting biologi-
cal effects [29]. The specific mechanisms of interaction
depend on the composition and properties of EVs, as
well as the characteristics of their parent cells [30]. Once
released into the microenvironment, EVs transport their
bioactive cargoes to specific cells, triggering a cascade
of signaling pathways. The majority of EV components
consist of proteins and nucleic acids, including DNA,
mRNA, miRNA, tRNA, and non-coding RNA. While
miRNA has been the focus of significant EV research due
to its functional roles, more recent studies have indicated
that proteins in EVs, rather than miRNA, play more criti-
cal roles in cell-cell communication.

Dental tissue-derived EVs

The oral cavity constitutes a multifaceted environment
encompassing diverse tissues, including jaws, periodon-
tium, gingiva, teeth, oral mucosa, and glands. Saliva and
gingival crevicular fluid create the fluid milieu within the
oral cavity. In addition, various coatings envelop these
tissues, each harboring an array of bacteria, collectively
forming the bacterial biofilm [31]. All cells from these
tissues and bacteria can secret EVs to participate in the
dental tissue development. More importantly, these EVs



Xia et al. Stem Cell Research & Therapy (2024) 15:365

Page 3 of 27

Language: English
Time limit: 2000-2024
Database : PubMed, Scopus. Google Scholar

Key words: ((Extracellular vesicle) OR (EVs) OR (exosomes)) AND ((dentistry) OR (dental regeneration) OR (oral tissue regeneration))

A

Records identified from database searching (n=24062)
PubMed (n=1092), Scopus (n=3070), Google Scholar (n=19900)

A 4

Records screened by titles and abstracts for relevance (n=1629)

A

!

: Records excluded (n= 1563)

! Publications which were not related to
I dentistry such as EV utilization in other
tissues and review articles.

-

1
1
1
3

Full-text articles assesse:

—— —— P -t
d for eligibility (n=66)
MRecords excluded (n=6)
I Studies that did not include in vivo

1 experiments, and in vitro studies that did not
1 mention mechanisms.

Records included for evaluation (n=60)

» Invivo studies showing EV effects (n=42)

+ Invirro studies exploring EV mechanisms (n=45)

» Both in vivo and in vitro studies are involved (n=27)

v

\ 4

Effect of EVs in dentistry regeneration
» Craniofacial bone regeneration (n=4)
» Periodontal tissue regeneration (n=22)
» Dental pulp regeneration (n=8)

» Dental hard tissue regeneration (n=6)
» TMIJ cartilage regeneration (n=2)

Mechanism of EV-mediate dentistry regeneration
» Increase odontogenic differentiation (n=7)

+ Promote osteogenic differentiation (n=14)

+ Facilitate dental hard tissue mineralization (n=4)
+  Accelerate angiogenesis (n=7)

» Regulate immunomodulation (n=16)

Fig. 1 Flow chart of literature search for EVs in regenerative dentistry

shape the ecological environment of the oral cavity and
oral environment in turn affect the stability and bioactiv-
ity of these EVs. However, although all EVs play certain
roles in the dental tissue development, EVs from stem
cells derived from different dental tissues are mostly stud-
ied and utilized for dental tissue regeneration due to their
multi-lineage differentiation and reproductive activity.
These stem cells include dental pulp stem cells (DPSCs),
periodontal ligament stem cells (PDLSCs), dental follicle

progenitor cells (DFCs), gingival mesenchymal stem cells
(GMSCs), stem cells from the apical papilla (SCAPs),
alveolar bone-derived mesenchymal stem cells (ABM-
SCs) and stem cells from exfoliated deciduous teeth
(SHEDs) (Fig. 3). They were utilized in different oral tis-
sue regeneration according to their specific regenerative
characteristics.

Notably, EVs sourced from DPSCs (DPSC-EVs) have
garnered significant attention in the field of dentistry



Xia et al. Stem Cell Research & Therapy (2024) 15:365

Page 4 of 27

Cells source _penaliissue | EVS source GMsc-Evs T EVs delivery
derived cells
DPSC- EVs
— / o Injection
Immune cells ‘}“ Y PDLSC-EVs J
Dental tissue derived cells
q‘ & DFC-EVs
- SCAP- EVs
Adipose
mesenchymal ‘
stem cells SHED- EVs Scaffold
Bone marrow Immune cells _— @ %’l\’_fsmf’h“gc"
mesenchymal :
stem cells Adipose mesenchymal — ADMSC- EVs
stem cells
Bone marrow mesenchymal —_— BMMSC- EVs
stem cells
Mechanism EVs function
Odontogenic Osteogenic
differentiation differentiation
7z N ) - i X _
{ | . By y |
e ‘ \ \‘: A \ ’ |
‘ 1““‘ fw 1}:Z [{ \,’ ‘, A ‘/‘\
Teds i ” I‘_.r - ‘_‘.\ (; v |
A\ B e e [7a\|
1 Gon \||“ .3 _"] [} w ;jf .“:l
¢ /- -\ \
Den_lal hard l!SSUC 2 = E | Regulate . Pcnodomaltlssuc Dental p“lP
mineralization immunomodulation
’ Angiogenesis l

Fig. 2 EVs parent cells source, EVs source, delivery strategies, functions and mechanisms of EVs in dental tissue regeneration. Abbreviations: EVs,
extracellular vesicles; GMSC-EVs, gingival mesenchymal stem cell-derived extracellular vesicles; DPSC-EVs, dental pulp stem cell-derived extracellular
vesicles; PDLSC-EVs, periodontal ligament stem cell-derived extracellular vesicles; DFC-EVs, dental follicle cell-derived extracellular vesicles;
SCAP-EVs, stem cells from apical papilla-derived extracellular vesicles; SHED-EVs, human exfoliated deciduous teeth stem cell-derived extracellular
vesicles; Macrophage-EVs, macrophage derived extracellular vesicles; ADMSC-EVs, adipose mesenchymal stem cell-derived extracellular vesicles;
BMMSC-EVs, bone marrow mesenchymal stem cell-derived extracellular vesicles

regeneration owing to their remarkable osteo/odonto-
inductive capabilities [32, 33]. Furthermore, DPSC-EVs
have exhibited enhanced anti-necrotic, immunomodu-
latory, and anti-apoptotic properties compared to EVs
derived from bone marrow mesenchymal stem cells
(BMMSC-EVs) [34]. On the other hand, EVs originating
from PDLSCs (PDLSC-EVs) have been demonstrated to
upregulate the expression of CD31 and VEGFA to pro-
mote angiogenesis. Additionally, they fortify osteogenesis
through the regulation of insulin, AMPK, and MAPK
signaling pathways, while also modulating the Th17/Treg
balance to bolster anti-inflammatory capabilities [35-38].
GMSC-EVs and ABMSC-EVs have also emerged as sig-
nificant contributors to bone regeneration. They exhibit
anti-osteoclastogenic activity and convey miR-1260 to
inhibit inflammatory bone loss [39, 40]. Furthermore,

when combined with a small intestinal submucosa-
extracellular matrix, GMSC-EVs facilitate tongue lin-
gual papillae repair and promote the recovery of taste
buds [41]. Moreover, EVs derived from SCAPs (SCAP-
EVs) hold great promise for dentistry regeneration. They
enhance dentinogenesis of BMMSCs and are considered
potential candidates for dentin-pulp regeneration [35].
Meanwhile, EVs sourced from SHEDs (SHED-EVs) effec-
tively mitigate inflammation in temporomandibular joint
diseases.

Effect of EVs in regenerative dentistry

Compared to tissues such as liver, skin, and muscle, oral
tissues are generally constantly exposed to microorgan-
isms from food, drink, and the oral microbiome and have
limited blood supply during the regeneration process.
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Fig. 3 EVs from different dental tissue-derived stem cells used for dental tissue regeneration. EVs from different dental tissue-derived stem

cells are mostly studied and utilized for dental tissue regeneration due to their multi-lineage differentiation and reproductive activity. EVs

from different dental tissue-derived stem cells are mostly studied and utilized for dental tissue regeneration due to their multi-lineage
differentiation and reproductive activity. Dental follicle progenitor cells are sourced from the connective tissue surrounding the developing

tooth germ. Stem cells from the apical papilla are obtained from the apical papilla of incompletely developed teeth. Gingival mesenchymal stem
cells are found within the gingiva. Stem cells from exfoliated deciduous teeth are harvested from the dental pulp of exfoliated primary teeth.
Alveolar bone-derived mesenchymal stem cells can be extracted from the alveolar bone. Dental pulp stem cells are isolated from the dental pulp
of permanent teeth. Periodontal ligament stem cells are sourced from the periodontal ligament of permanent teeth

This greatly affect their ability to heal efficiently and
makes them more vulnerable to infections and inflamma-
tion. Numerous studies have highlighted that EVs derived
from various cells, particularly stem cells, exhibit benefi-
cial effects such as pro-regenerative, pro-vascularization,
anti-inflammatory, and anti-apoptotic properties, irre-
spective of their distinctiveness from different sources
[42]. These minuscule vesicles have exhibited the capac-
ity to regenerate bone, dental tissues, and cartilage, ren-
dering them promising therapeutic agents in the field of
dental tissue regeneration [43] (Table 1)(Fig. 4).

Maxillofacial tissue regeneration

Maxillofacial diseases, such as congenital cleft palate,
functional mandibular reconstruction, and conditions
like odontogenic osteomyelitis or tumors, necessitate
precise repair and functional restoration of the affected
areas [44]. Noteworthy studies have demonstrated the
efficacy of EVs in addressing these challenges [45]. For
instance, in a model of bisphosphonate-related oste-
onecrosis of the jaw (BRONJ), the introduction of EVs
derived from adipose mesenchymal stem cells (ADMSC-
EVs) through tail vein injection in rats led to the forma-
tion of new jawbone and improvements in bone structure
parameters [46]. BMMSC-EVs showcased preventive
properties against the spread of chronic inflamma-
tion associated with aging cells. They further promoted

osteogenesis and angiogenesis, effectively averting the
occurrence of BRONJ [47]. DPSC-EVs implanted in a rat
mandibular bone defect area also exhibited heightened
jawbone density and facilitated the formation of new jaw-
bone [48].

In addition to hard tissue regeneration, EVs have dem-
onstrated promise in maxillofacial soft tissue regenera-
tion. GMSC-EVs, when combined with small intestinal
submucosa extracellular matrix, were implanted in a rat
critical-sized tongue defect site, resulting in the regen-
eration of epithelial cells and the restoration of taste buds
and lingual papilla [41]. Moreover, EVs derived from hair
follicle epidermal neural crest stem cells, in conjunction
with acellular nerve allografts, were employed to bridge
facial nerve defects. This intervention led to thicker
myelination and robust remyelination [49]. Additionally,
SCAP-EVs enhanced angiogenesis and vascularization in
a rat hard palate mucosa defect model [50].

Periodontal regeneration

The periodontium, encompassing the gingiva, perio-
dontal ligament, and alveolar bone, serves as the struc-
tural support for teeth [51]. Periodontitis, a widespread
global issue, is characterized by the progressive deterio-
ration of the periodontium and inflammation [52]. The
ultimate objective of periodontal tissue regeneration
is to foster the development of new periodontal bone,
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complete with fresh periodontal ligaments, and the
reattachment of the gingiva [53].

Numerous studies have unveiled the remarkable
regenerative potential of EVs in periodontal tissue
regeneration. For example, BMMSC-EVs have demon-
strated the ability to stimulate alveolar bone formation
and repair periodontal ligaments in models of peri-
odontitis [54, 55]. Moreover, EVs released by M2 mac-
rophages have proven effective in preventing alveolar
bone loss [56]. The injection of EVs from ADMSCs into
rat periodontal pockets has resulted in the formation of
cellular periodontal tissue perpendicular to the cemen-
tum and alveolar bone [57, 58]. Moreover, EVs derived
from dendritic cells have exhibited potential in treating
degenerative alveolar bone diseases by promoting the
coverage of soft tissues over the alveolar bone [59].

Emerging evidence suggests that EVs derived from
dental tissues also contribute significantly to periodon-
tal tissue regeneration. For instance, DPSC-EVs and
SCAP-EVs have been reported to inhibit alveolar bone
loss [60—63]. EVs derived from dental follicle progeni-
tor cells (DFC-EVs) have been shown to enhance the
formation of denser alveolar bone with increased tra-
becular thickness compared to control groups [64, 65].
Gingival mesenchymal stem cell-derived EVs (GMSC-
EVs), PDLSC-EVs and SHED-EVs have proven efficient
in repairing alveolar bone defects, accompanied by the
development of new blood vessels [66—69].

Given that periodontal diseases often involve inflam-
mation, evaluating the function of EVs under inflam-
matory conditions is essential [70]. Research has
demonstrated that EVs released from GMSCs treated
with TNF-a effectively prevent periodontal bone
resorption [39]. Furthermore, studies have shown
that lipopolysaccharide (LPS)-preconditioned DFC-
EVs promote the proliferation of PDLSCs and mac-
rophages [71]. Similarly, LPS-preconditioned DFC-EVs
have been found to be beneficial for the formation of
integrated periodontal tissue in PDLSCs compared to
healthy DFC-EVs [72].

(See figure on next page.)
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Dental pulp regeneration

The dental pulp, the sole soft tissue within a tooth, resides
within the pulp cavity, encircled by dentin. It comprises
connective tissue, blood vessels, and nerves, rendering it
vascularized and innervated [73]. Consequently, endo-
dontic regeneration is a multifaceted process encompass-
ing not only dental pulp regeneration and dentin-pulp
complex formation but also pulp revascularization and
neurological recovery [74].

Numerous research studies have shed light on the role
of EVs in fostering dentin-pulp regeneration. EVs derived
from various sources, such as SHEDs, DPSCs, SCAPs,
Hertwig’s epithelial root sheath cells, and Schwann cells,
have been subcutaneously implanted into mice, result-
ing in the promotion of dentin-pulp regeneration [35,
75-78]. Rats treated with LPS-preconditioned DPSC-EVs
exhibited the formation of dental pulp-like tissue replete
with new blood vessels in a model where dental pulp had
been removed [79]. In another study, collagen contain-
ing SCAPs were placed at the root tip, and the cavity was
filled with EVs derived from dental pulp tissue/stem cells,
leading to the regeneration of dense pulp-like tissue and
predentin-like tissue [80]. Intriguingly, Li et al. reported
that apoptotic bodies, typically regarded as indicators of
cellular end-of-life, spurred the formation of dental pulp-
like tissue replete with abundant blood vessels [81]. As
mentioned earlier, neurological recovery is also vital for
dental pulp regeneration, with research highlighting the
potential effects of EVs on neuroregeneration, thereby
underscoring the promise of EVs in pulp regeneration
[82].

Dental hard tissue regeneration and mineralization
Dental hard tissues encompass enamel, dentin,
and cementum. Enamel is primarily composed of
hydroxyapatite crystals, whereas dentin and cementum
are a combination of hydroxyapatite and organic matrix
[83]. Research has shown that EVs play a role in the for-
mation and mineralization of dental hard tissues [84, 85].
In a rat pulpotomy model, DPSC-EVs prompted the
creation of dentin tubes and reparative dentin bridges

Fig. 4 The therapeutic effects of extracellular vesicles on different dental tissue regeneration. a EVs derived from LPS-preconditioned DFCs loden
on hydrogel applied in the treatment of periodontitis by repairing lost alveolar bone and promoting periodontal tissue regeneration. This figure

is adapted and is freely accessible from reference [72], Licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). b

EVs derived from BMMSCs prevent BRONJ by preventing the spread of chronic inflammation and promoting angiogenesis and osteogenesis.

This figure is adapted and is freely accessible from reference [46], ¢ TDM and EVs isolated from DPSCs promote reparative dentin formation.

This figure is adapted and is freely accessible from reference [87], Licensed by Sage Publications and Copyright Clearance Center. d EVs derived

from osteoclasts promote bone regeneration. This figure is adapted and is freely accessible from reference [14], Reprinted under the terms

of the Creative Commons CC-BY license. Abbreviations: AB, alveolar bone; PL, periodontal ligament; D, cementum; ZOL, zoledronic acid; TDM, dentin
matrix; D, dentin; P, pulp tissue; DB, dental bridge; BV./TV.,, bone volume/total volume; OCs-col, osteoclasts on collagen; OC-EVs-col, EVs derived

from osteoclasts on collagen
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Z0L+PBS ZOL+EVs

Fig. 4 (Seelegend on previous page.)
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[86]. Another study illustrated how DPSC-EVs, in con-
junction with dentin matrix, heightened the prolifera-
tion, migration, and odontogenesis of dental pulp cells,
thus contributing to the continuous formation of repara-
tive dentin [87]. Zhao et al. reported that EVs originating
from macrophages with different polarization pheno-
types had distinct effects on cementoblast mineralization.
Specifically, EVs derived from M2 macrophages fostered
cementum mineralization and curtailed root resorption
[88]. Jiang et al. posited that EVs facilitated communica-
tion between epithelial and mesenchymal cells. Epithelial
cell-derived EVs were found to stimulate mesenchymal
cells to produce dentin sialoprotein (DSP) and partake
in mineralization, while mesenchymal cell-derived EVs
induced epithelial cells to generate ameloblastin and
amelogenin [89]. Moreover, it was proposed that intra-
cellular ameloblast secretory EVs played a role in enamel
mineralization [84].

Temporomandibular cartilage regeneration
The temporomandibular joint (TM]) is an intricate joint,
comprising the mandibular condyle and the articu-
lar surfaces of the temporal bone, both covered with
dense articular cartilage [90]. Temporomandibular joint
osteoarthrosis (TMJOA) is a degenerative disease char-
acterized by an imbalance between the synthesis and
degradation of the condylar matrix mediated by chon-
drocytes [91]. This imbalance leads to the breakdown of
the condylar matrix, resulting in joint disorganization,
biomechanical alterations, disruption of the microen-
vironmental homeostasis around cartilage cells, and
inflammation [92]. Because the TM]J cavity is an enclosed
joint space with well-defined boundaries, this enclosed
space provides a contained environment for injected sub-
stances, preventing their immediate dispersion into the
surrounding tissues. Therefore, it has great potential to
employ therapeutic EVs for the treatment of TMJOA.
Shen et al. firstly demonstrated that extracellular vesi-
cles derived from BMMSCs under hypoxic conditions
can enhance the proliferation, migration, and anabolic
capacity of chondrocytes in vitro. Moreover, they exhib-
ited pro-chondrogenic potential in vivo [93]. Similarly,
SHED-EVs have shown the capability to down-regulate
the expression of proinflammatory factors and matrix
metalloproteinases, indicating their potential to mitigate
inflammation in the temporomandibular joint and pre-
vent further cartilage damage [94]. Other than dental
tissue derived EVs, EVs derived from human embryonic
mesenchymal stem cells have been observed to enhance
chondrogenesis, leading to the formation of new hyaline
cartilage closely resembling healthy tissue in a rat model
of TMJOA [95].
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Mechanisms of EV-mediate dentistry regeneration
Understanding these mechanisms is essential for har-
nessing the full regenerative potential of EVs. The mecha-
nisms underlying extracellular vesicle-mediated dentistry
regeneration are a complex and dynamic interplay of cel-
lular and molecular processes. They facilitate key aspects
of regeneration, including but not limited to osteogene-
sis, odontogenesis, mineralization of dental hard tissues,
angiogenesis, immunomodulation (Table 2; Figs. 5 and
6). Through their ability to transfer these bioactive mol-
ecules, EVs modulate various signaling pathways, gene
expression, and cellular behaviors, ultimately contribut-
ing to the repair and regeneration of dental tissues.

EVs increase odontogenic differentiation

Odontogenic differentiation constitutes a pivotal process
in tooth development, and emerging research affirms
the role of extracellular vesicles in inducing odonto-
genic differentiation and upregulating the expression of
dental-related markers such as dentin sialophosphopro-
tein (DSPP) and dental matrix protein (DMP) [35, 96]. Of
note, DPSC-EVs have been observed to undergo cellular
endocytosis in a dose-dependent manner, consequently
activating the p38/MAPK pathway and intensifying
odontogenic differentiation [76]. Moreover, DPSC-EVs
have demonstrated their potential to transport nuclear
factor I/C (NFIC), a pivotal transcription factor central to
tooth development. This transport, in turn, promotes the
proliferation, migration, and dentinogenesis of SCAPs
[97]. Studies utilizing miRNA sequencing have unveiled
alterations in miRNA profiles following the uptake of
DPSC-EVs, underscoring the role of EVs in orchestrating
odontogenic differentiation through the TGFB1/Smads
signaling pathway [98]. In addition, miR-758-5p trans-
ported by DPSC-EVs under inflammatory conditions
has the capacity to stimulate BMP signaling to ultimately
govern odontogenic differentiation [99]. Meanwhile, EVs
originating from Hertwig’s Epithelial Root Sheath Cells
have been shown to activate the Wnt/p-catenin pathway,
thereby establishing a conducive microenvironment for
odontogenic differentiation by fostering the connection
between epithelial cells and mesenchymal cells [78].

EVs promote osteogenic differentiation

Osteogenic differentiation plays a pivotal role in bone
formation, including craniofacial and alveolar bone
remodeling and repair [100]. Several studies have dili-
gently explored the potential roles of EVs in osteogen-
esis. Reports indicate that PDLSC-EVs contributed to
the alveolar bone regeneration by mitigating the over-
activation of the Wnt signaling pathway and suppress-
ing NF-kB activity of osteoprogenitor cells [68, 101].
Meanwhile, DFC-EVs have been shown to activate the
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Fig. 5 The effective components and functions of EVs for dental tissue regeneration. EVs are released upon the fusion of multivesicular bodies
with plasma menbranes. They aid in dental tissue regeneration by promoting odontogenic differentiation, osteogenesis differentaition, dental hard
tissue mineralization, angiogenesis and regulating immunomodultion through different cargos, including but not limited to protein, MicroRNA,

and mRNA

MAPK pathway, aiding in the repair of alveolar bone
defects [99, 100]. In contrast to DFC-EVs, SHED-EVs
regulate osteogenesis through the AMPK pathway [69].
SHED-EVs transport mitochondrial transcription fac-
tor A mRNA, thereby instigating mitochondrial aerobic
metabolism and consequently augmenting bone regen-
eration [102].

DPSC-EVs, GMSC-EVs, and SCAP-EVs are shown to
promote the osteogenic differentiation of stem cells via
the miRNAs they carry [39, 63, 99, 101]. For instance,
miR-181b-5p found within osteocyte-derived EVs facil-
itates the osteogenic differentiation of PDLSCs through
the PTEN/AKT pathway [103]. Conversely, miR-129-5p
within plasma secretory EVs inhibits jawbone osteo-
genesis via the FZD4/B-catenin pathway [104]. Except
for miRNA, mRNA and proteins in EVs can also con-
tribute to dental bone regeneration by upregulating the

osteogenic differentiations of stem cells. EVs derived
from M2 macrophages transport IL-10 mRNA, acti-
vating the cellular IL-10/IL-10R pathway directly,
thereby promoting osteogenesis and preserving bone
homeostasis [56]. ADMSC-EVs expedite alveolar bone
repair by transmitting calcitonin gene-related peptide
(CGRP), a significant neuropeptide expressed during
bone repair [58]. Meanwhile, umbilical cord mesenchy-
mal stem cell-derived EVs (UMSC-EVs) were reported
to enhance the osteoblastic differentiation capability of
PDLSCs via the P13K/AKT pathway [105].

EVs facilitate dental hard tissue mineralization

The mineralization process of dental hard tissue is a
multifaceted phenomenon characterized by intricate
interactions among various organic compounds [106].
Within this context, EVs serve as reservoirs of numerous
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Table 2 Underlying mechanisms of EVs in the dental tissue regeneration
Functional effects  EVs source EVs cargos  Involved signaling pathway Outcome in vitro References
Odontogenesis DPSCs BMP-2, BMP-9 P38 MAPK DSPP [76]
DPSCs miR-27a-5p  TGF(-1/Smads DSP1, DMP-1 1 [98]
DPSCs NFIC - DSPPT, DMP-1 1, ALPT, NFSC t [97]
DPSCs miR-758-5p  BMP DSPPT, DMP-1 1 [99]
(under inflammatory environ-
ment)
Hertwig's epithelial root sheath ~ Wnt3a Wnt/B-catenin DSPPT, DMP-1 1 [78]
cells
Osteogenesis ADMSCs CGRP - RUNX2%, ALPT, OCN?T [58]
Plasma miR-129-5p  FZD4/B-catenin RUNX2%1, ALPT, OPN?T [104]
DFCs - PLC/PKC/MAPK ALPT, OCNT, OPN®T, MMP-21 [65]
DFCs - P38 MAPK RUNX21T, ALPT, BSPT, COL11T [64]
DPSCs hsa-miR-31 - RUNX21, COL11, OSX?® [139]
(osteogenic-induced condi-
tioned)
DPSCs miR-758-5p BMP RUNX2T, ALPT, OCN?® [99]
(under inflammatory environ-
ment)
GMSCs miR-1260b NF-kB RANKL/OPGY [39]
(TNF-a treated)
M2-Macrophage I-10 IL-10/IL-10R RUNX21, ALPT, OCN?T, COL1a1t  [56]
Osteocyte miR-181b-5p  PTEN/AKT RUNX21, BMP-21, AKT11, [103]
P13KCA®
PDLSCs Gsk3f NF-kB ALP?, OCNT, BMP-21 [101]
PDLSCs Gsk3pB Wnt OCNT, RUNX21 [68]
SCAPs miR-935 - OCNT, OPN?T [63]
SHEDs - AMPK RUNX2%, OPN?, COL11T [69]
SHEDs TFAM mRNA - RUNX21, ALPT, BMP-21 [102]
UMSCs - P13k/AKT RUNX2%, ALPT, OCN*T [105]
Mineralization 1711A11 cell lines - Erk1/2 Ca”*, Piformation [108]
Ameloblast PHOSPHO1 - Enamel width?, Interrod [84]
distancel
Incisor epithelial and mesenchy-  miR-135a Wnt/B-catenin COLIVT, laminin®, ALP®, DSPT, [89]
mal cells Bglapt, Mineral nodule forma-
tion
T4-4 cell lines IRES - DSPP1, DMP-11,DPP? [109]
Angiogenesis DPSCs - P38 MAPK VEGF?T, MMP-91, KDR?, [114]
(from periodontally diseased
teeth)
DPSCs TUFM - VEGFT, ANG-21, MMP-91, [81]
HIF-1at
PDLSCs miR-17-5p - VEGFA?T [111]
SHEDs - AMPK CD31%, coL1t [69]
SCAPs Cdc42 - CD311, vascular limen formation  [50]
SHEDs miR-26a TGFR/Smad2/3 VEGF?, ANG-21, PDGFT, [75]
SHEDs let-7f-5p, AGO/VEGF; VEGFT, MMP-91, ANGPT11 [113]
(hypoxic-preconditioned) miR-210-5p  miR-210-3p/ephrinA3
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Table 2 (continued)

Page 19 of 27

Functional effects EVs source EVs cargos Involved signaling pathway Outcome in vitro References
Immunomodulation  BMMSCs - OPG-RANKL-RANK Arginase®, CD1631, [55]

TGF-B11,INOSY, CD86V

DFCs - ROS/INK RANKL/OPGY [71]

(LPS-preconditioned)

DPSCs miR-125a-3p  TLR, NF-kB I-1rat, IL-10%, [118]
IL-1RY, IL-6¥, TNF-a¥

DPSCs miR-1246 NF-kB p65, CD206%, Arginaset, CD163%, [61]

p38 MAPK IL-1RY, IL-6¥, TNF-al, iNOSY,

CDs6l

DPSCs miR-1246 - Th17/Tregd [62]

Dendritic cells TGF-B,I-10 - Th17/Tregd [59]

EBCs CD73 AKT/ERK, AMPK MMP13Y, NOY, s-GAG? [92]

GMSCs - NF-kB p65, Wnt5a TNF-ad, IL-184, I-101 [140]

PDLSCs - NF-kB I-1BY [116]

PDLSCs miR-155-5p - Th17/Tregd, RORCY, STRT1Y, [38]
FOXP3t

SHEDs miR-100-5p - I-64, IL-8%, MMP-14, MMP-31, [94]
MMP-94, MMP-13{

SCAPs miR-935 - I-64, IL-8¥ [63]

Salivary miR-25-3p =174 [37]

factors that contribute to the formation of hydroxyapa-
tite crystals and calcium phosphate [107]. Nevertheless,
the precise mechanism through which EVs mediate min-
eralization remains the subject of debate and ongoing
research. For instance, Chaudhary et al. demonstrated
that EVs derived from the 17IIA11 cell line transport
factors that induce enamel mineralization through the
activation of the Erkl/2 pathway [108]. Another inves-
tigation proposed that miR-135a in EVs promote the

(See figure on next page.)

reciprocal interaction between epithelial and mesenchy-
mal cells, thereby activating the Wnt/p-catenin signaling
pathway and facilitating the production of dentin matrix
proteins [89]. Furthermore, researchers have postulated
that ameloblast secretory EVs engage in interactions with
orphan phosphatase 1 (PHOSPHO1) and play a role in
amelogenesis [84]. Similarly, EVs have been found to par-
ticipate in the transport of Dentin Phosphophoryn (DPP)
to the extracellular matrix, thereby contributing to the
mineralization process [109].

Fig. 6 The mode of action of extracellular vesicles in promoting different dental tissue regeneration. a EVs derived from DPSCs specifically
activate endogenous EC autophagy by transferring TUFM, thereby causing angiogenesis. The acceleration of vascular reconstruction promotes
dental pulp regeneration. This figure is adapted and is freely accessible from reference [81], Licensed under a Creative Commons Attribution 4.0
International License (CC BY 4.0). b EVs derived from DPSCs under an inflammatory microenvironment participate in the regulating of odontogenic
and osteogenic differentiation by miR-758-5p/LMBR1/BMP2/4 axis. This figure is adapted and is freely accessible from reference [99], Licensed
under a Creative Commons Attribution 4.0 International License (CC BY 4.0). ¢ EVs derived from GMSCs under inflammation microenvironment

enhance M2-type macrophage polarization and prevent periodontal bone loss. This figure is adapted and is freely accessible from reference [39],
Licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Abbreviations: EC, endothelial cells; hDPSC, human dental
pulp stem cells; TUFM, Tu translation elongation factor, mitochondrial; TFEB, transcription factor EB; VEGF, vascular endothelial growth factor; ANG2,
angiotensin 2; hDPSC-apoVs, apoptotic vesicles from human dental pulp stem cells; BMP, bone morphogenetic protein; LMBR1, limb development
membrane protein 1; TNF-a, tumor necrosis factor a; DPSC-EV, EVs from dental pulp stem cells; iDPSC-EVs, EVs from dental pulp stem cells

under inflammatory environment; PDLSC, periodontal ligament stem cells
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EVs accelerate angiogenesis

Blood vessels play a pivotal role in delivering vital bioac-
tive elements, encompassing growth factors, nutrients,
and progenitor cells, to sites of regeneration, thereby
contributing significantly to the maintenance of homeo-
stasis [110]. Accumulating evidence suggests that EVs
exhibit the capacity to expedite angiogenesis in the con-
text of dental regeneration [111, 112]. This facilitation
primarily hinges on the transfer of microRNA (miRNA)
payloads encapsulated within EVs. For instance, PDLSC-
EVs augmented the vascularization of dental periodontal
ligaments through the transmission of vascular endothe-
lial growth factor (VEGF) via miR-17-5p [111]. Similarly,
SHED-EVs transferred miR-26a to initiate the TGF-f3/
Smad signaling pathway, thereby fostering angiogenesis
[75]. Another investigation illustrated that SHED-EVs
regulated angiogenesis via the activation of the AMPK
signal pathway [69]. Moreover, SHED-EVs were reported
to enhance angiogenesis even under hypoxic condi-
tions, accomplished by the transfer of let-7f-5p and miR-
210-3p, which respectively modulate the AGO1/VEGF
and miR-210-3p/ephrinA3 signaling pathways [113].

In addition to miRNAs, proteins transported by EVs
significantly contribute to the expediting of angiogen-
esis. SCAP-EVs mediated the action of Cdc42, thereby
promoting vascularization and aiding in the repair of
craniofacial soft tissue [50]. DPSC-EVs regulated the
activation of angiogenesis by modulating the transla-
tion elongation factor Tu via the transcription factor EB
(TFEB)-autophagy pathway [81]. Additionally, DPSC-EVs
demonstrated the capacity to promote angiogenesis and
activate the p38 MAPK pathway, showcasing substantial
angiogenic potential for pulp regeneration [114].

EVs regulate immunomodulation

Extracellular vesicles play a pivotal role in orchestrating
immunoregulatory processes, with a significant contri-
bution stemming from the encapsulated miRNAs. For
instance, miR-100-5p within SHED-EVs [94], miR-935
in SCAP-EVs [63], and miR-25-3p found in salivary
secretory EVs [37] have demonstrated the capacity to
modulate immune responses. Notably, specific miRNAs
encapsulated within EVs play immunomodulatory roles
through different signaling pathways. For example, EVs
derived from embryonic stem cells (EBC-EVs) have been
shown to suppress inflammation through the activation
of adenosine receptor-dependent AMPK and AKT/ERK
signaling pathways [92]. The NF-«B transcription fac-
tor, known for its pivotal role in regulating inflammatory
responses, is proved to be another key response element
in the immunomodulation process of EVs [115]. Numer-
ous studies have established that EVs exert influence
over immune responses in the regenerative dentistry by
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modulating the NF-«B signaling pathway [61, 116—118].
In the realm of osteoimmunology, the RANKL (NF-«xB
ligand) and osteoprotegerin (OPG) system bear signifi-
cance [71, 119]. EVs have demonstrated their ability to
regulate the RANKL-RANK-OPG signaling within the
context of osteoimmunology in dental bone regenera-
tion [55]. Furthermore, the equilibrium between Th17
and Treg cells is revealed of importance in modulating
inflammation to aid in the dental tissue regeneration
[120]. EVs contribute significantly to this balance by vir-
tue of various factors, including specific miRNAs like
miR-1246 and miR-155-5p, as well as cytokines such as
TGE-p and IL-10 [38, 59, 62].

Delivery strategy of EVs

The delivery of extracellular vesicles represents a criti-
cal aspect of their utilization in various therapeutic con-
texts. Effective delivery approaches for EVs are essential
to harness their regenerative and therapeutic potential.
Various strategies have been developed to facilitate the
precise and targeted delivery of EVs to specific tissues or
cells, ranging from direct injection to more sophisticated
engineered delivery systems. In the context of regenera-
tive dentistry, delivering EVs to oral tissues has their own
particularity due to the special oral anatomical and physi-
ological characteristics. To be specific, the oral cavity is
rich in saliva containing enzymes and chemicals and oral
tissues are subject to constant mechanical stress due to
activities such as chewing and speaking. All these factors
might affect the stability and function of extracellular
vesicles which have to be taken into consideration in the
application EVs in regenerative dentistry.

EVs delivery by injection

Due to the nano-size of EVs and well-established clinical
procedure of intravenous injection, EVs have been ini-
tially and widely utilized through intravenous injection
in various biomedical and therapeutic applications. In
the field of regenerative dentistry, intravenous injection
of EVs is proved to be feasible and effective. For example,
in a BRONJ rat model, intravenously administered EVs
were found to effectively modulate genes associated with
osteogenesis and inflammation in the maxilla to promote
bone regeneration [116]. However, EVs delivered sys-
temically can become diluted in the bloodstream, which
may reduce their concentration at the oral sites, poten-
tially reducing the specificity of the treatment. Given the
special oral anatomical structure, there is a preference for
employing extracellular vesicles through direct injection
into the target site in the context of regenerative dentistry
regeneration. Research studies have provided evidence
of the effectiveness of locally injected EVs in promoting
the formation of new epidermal tissue and enhancing
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vascularization, as demonstrated in a mouse model of
palatal gingiva wound healing [50]. Moreover, in an
experimental model of alveolar bone loss, locally injected
EVs exhibited slower clearance and demonstrated higher
affinity compared to systemic injection [59]. However, it
is crucial to acknowledge a significant limitation associ-
ated with the use of injected EVs, namely the stability and
retention of EVs post-administration, particularly in the
oral cavity. The special oral environment and the salivary
flow can result in a notable loss of EVs, which signifi-
cantly affect the therapeutic effectiveness and potential
applications of injected EVs for the treatment of dental
diseases.

EVs delivery by carriers

The direct injection of EVs into target sites in the oral
cavity presents challenges related to their stability and
retention in vivo. In contrast, the utilization of carrier-
based delivery systems, such as hydrogels and ceramics,
offers notable advantages, primarily concerning con-
trolled release and prolonged retention duration. This
carrier-based EV delivery exhibits significant potential
for augmenting the therapeutic effectiveness of EVs in the
field of dental regenerative medicine [121, 122]. Given
the superior biocompatibility and tunability, hydrogel
materials are widely used to deliver cells and EVs via
minimally invasive procedures for tissue regeneration.
Collagen, a natural hydrogel derived from most tissues,
stands out as a popular choice for delivering EVs in the
realm of regenerative dentistry. When incorporated into
collagen hydrogels, EVs have demonstrated their capacity
to enhance osteogenesis, odontogenesis, and the regen-
eration of bone and dentin-like tissues across a spec-
trum of oral disease conditions [35, 48, 54, 55, 72]. Given
that hydrogels have a texture similar to soft tissue, it is
of great advantage that apply collagen hydrogels in the
regeneration of dental pulp. Several studies have demon-
strated that collagen hydrogels help promote angiogene-
sis, thus speeding up the rate of dental pulp regeneration
[76-78, 80]. Gelatin, a collagen derivative, also exhibits
controlled-release properties for EVs, amplifying their
effectiveness in promoting dentin formation [97]. Fur-
thermore, alternative hydrogels like chitosan and alginate
hydrogel have found utility as carriers for EVs in dental
regeneration endeavors [55, 61, 67, 101]. Additionally,
synthetic polymers such as PLGA/pDA, PLGA, and PEG-
PLGA-PEG, engineered with precision to control their
physical and chemical attributes, offer a means of achiev-
ing more predictable and sustained EV release for dental
tissue regeneration [58, 66, 86]. However, it’s worth not-
ing that the sustained release of EVs primarily relies on
the physical encapsulation provided by these hydrogels,
which typically spans several days. Consequently, there
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is a growing interest in developing advanced materials
capable of enabling long-term EV delivery in the con-
text of regenerative dentistry, given the chronic nature of
most oral diseases.

On the other hand, ceramics are frequently used to
deliver EVs for hard tissue regeneration in oral diseases
due to their mechanical properties such as hardness and
corrosion resistance and chemical components that is
calcium and phosphate ions. Hydroxyapatite (HA), which
has been available on the market for clinical therapy since
the 1970s, is considered the most conventional ceramics
for regenerating dental hard tissues [123]. For instance, in
an ectopic dentin regeneration model, the group utilizing
EVs with HA exhibited significant formation of dentin-
like tissue [71]. Another noteworthy ceramic material is
beta-tricalcium phosphate (B-TCP) and it is known for its
biodegradability. It promotes rapid bone tissue regenera-
tion when used in conjunction with EVs in a periodontitis
model. This structure facilitates angiogenesis and actively
contributes to the formation of bone tissue [68, 69].

It is of note that a burst release frequently occurs when
loading EVs in ceramic materials because EVs are mostly
adsorbed on to the ceramic surfaces through hydrophilic
action. The combination of exosome and hybrid scaffolds
might exert better regenerative effects than organic or
inorganic materials alone, which needs further investiga-
tions in the regenerative dentistry.

Limitations and future perspectives

While extracellular vesicles have demonstrated signifi-
cant progress in advancing dentistry regeneration [124—
127], their widespread implementation in clinical trials
is contingent upon addressing several limitations and
challenges. First, EV composition exhibits dependency
on various factors, including the cell type, donor age,
state, and the microenvironment in which parent cells
reside, all of which influence their functional roles [128].
For instance, the immune profiles of mesenchymal stem
cell-derived EVs (MSC-EVs) have been substantiated age-
dependent variations [129]. Furthermore, EVs derived
from samples of differing ages exhibit disparate effects
during the osteogenesis process and display varying
degrees of efficacy in bone repair [130]. Consequently, it
is imperative to investigate EVs from diverse contextual
sources to unravel the underlying mechanisms that intri-
cately govern their therapeutic efficacy.

The other challenge that hampers the potential utiliza-
tion of extracellular vesicles for dentistry regeneration
is a dependable method for isolating and purification of
EVs from cells or bodily fluids. Current isolation methods
encompass ultracentrifugation, size-exclusion chroma-
tography, asymmetrical flow field-flow fractionation, and
immunoaffinity-based techniques [131]. Comparative
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analyses of these methods have revealed variations in EV
particle yield and purity [132]. For instance, one study
compared the purification of serum-EVs using ultracen-
trifugation and Total Exosome Isolation reagent, with the
latter displaying superior purity based on miRNA profiles
[133]. Meanwhile, the conditions of the liquid for EV iso-
lation, such as viscosity, preservation environment, and
treatment methods, also influence EV purification out-
comes. Nonetheless, a comprehensive comparison and
optimization strategies for EV purification remains rela-
tively unexplored. Moreover, these methods often incur
high costs while yielding limited quantities of vesicles,
thereby impeding their clinical applicability. Therefore,
more advanced techniques for efficient and standardized
EV isolation and purification are required for the future
clinical application of EVs in regenerative dentistry. A rel-
evant issue in this challenge is the standardization of EV
usage, especially the determination of optimal dosages
or concentrations. Notably, studies have reported a wide
range of EV concentration/dosage across different inves-
tigations (Table 1). A general trend in the literature sug-
gests that higher EV doses tend to yield relatively better
tissue regeneration outcomes [134, 135], yet none of the
studies provide definitive guidance regarding the optimal
EV concentration for their respective animal models. To
ensure consistency and efficacy, it is imperative to estab-
lish good manufacturing practices (isolation and purifica-
tion) and comprehensive standards and guidelines for the
clinical application of EVs [136].

The management of chronic dental diseases neces-
sitates continuous engagement of extracellular vesi-
cles. However, the sustained presence of EVs and their
therapeutic effects at injury sites over extended periods
remains a challenge. To address this, the development of
a proficient delivery system for EVs offers distinct advan-
tages in augmenting their therapeutic efficacy when
integrated with modified scaffolds [137]. Consequently,
forthcoming research endeavors may develop novel EV-
loaded scaffolds, encompassing controlled release pro-
files, in vivo degradation characteristics, and loading
efficiency. For instance, injectable microspheres with
sustained release kinetics of EVs have been devised for
addressing irregular tissue defects and for periodonti-
tis [138]. More investigation on material-EV interaction
would aid in optimizing the adaptability and plasticity of
such scaffolds to ensure their effectiveness to deliver EVs.

Conclusion

Extracellular vesicles have emerged as pivotal elements
in cellular interactions and hold the potential to revolu-
tionize regenerative dentistry by facilitating tissue regen-
eration, encompassing the maxillofacial, periodontal,
dental, and temporomandibular cartilage regions. These
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vesicles, sourced from diverse origins, make substantial
contributions to regenerative dentistry through various
mechanisms, including the promotion of odontogenesis,
osteogenesis, dental hard tissue mineralization, angio-
genesis, and modulation of the immune response. Lev-
eraging diverse delivery strategies has allowed for more
effective utilization of EVs, enhancing their regenerative
efficacy in the field of dental tissue regeneration. None-
theless, the successful clinical translation of EV-based
therapies hinges upon addressing several critical chal-
lenges. These include the optimization of EV yield, the
establishment of a standardized definition for EVs, and

the development of novel EV delivery strategies.

Abbreviations

MSCs Mesenchymal stem cells

EVs Extracellular vesicles

ADMSCs Adipose mesenchymal stem cells

ABMSCs Alveolar bone-derived mesenchymal stem cells

BMMSCs Bone marrow mesenchymal stem cells

DPSCs Dental pulp stem cells

DFCs Dental follicle progenitor cells

GMSCs Gingival mesenchymal stem cells

PDLSCs Periodontal ligament stem cells

SCAPs Stem cells from the apical papilla

SHEDs Stem cells from exfoliated deciduous teeth

UMSCs Umbilical cord mesenchymal stem cells

ADMSC-EVs Adipose mesenchymal stem cell-derived extracellular
vesicles

ABMSC-EVs Alveolar bone-derived mesenchymal stem cell-derived
extracellular vesicles

BMMSC-EVs Bone marrow mesenchymal stem cell-derived extracellu-
lar vesicles

DPSC-EVs Dental pulp stem cell-derived extracellular vesicles

DFC-EVs Dental follicle cell-derived extracellular vesicles

GMSC-EVs Gingival mesenchymal stem cell-derived extracellular
vesicles

PDLSC-EVs Periodontal ligament stem cell-derived extracellular
vesicles

SCAP-EVs Stem cells from apical papilla-derived extracellular
vesicles

SHED-EVs Human exfoliated deciduous teeth stem cell-derived

Macrophage-EVs
EBC-EVs

extracellular vesicles
Macrophage derived extracellular vesicles
Embryonic stem cells

MSC-EVs Mesenchymal stem cell-derived EVs
LPS Lipopolysaccharide

BRONJ Bisphosphonate-related osteonecrosis of the jaw
T™J Temporomandibular joint

TMJOA Temporomandibular joint osteoarthrosis
AB Alveolar bone

PL Periodontal ligament

Z0L Zoledronic acid

DM Dentin matrix

DB Dental bridge

DSPP Dentin sialophosphoprotein

DMP Dentin matrix protein

CGRP Calcitonin gene-related peptide
PHOSPHO1 Orphan phosphatase 1

DPP Dentin phosphophoryn

miRNA MicroRNA

VEGF Vascular endothelial growth factor
TFEB Transcription factor EB

EC Endothelial cells

OPG Osteoprotegerin

HA Hydroxyapatite
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