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Extracellular vesicles as therapeutic tools 
in regenerative dentistry
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Abstract 

Dental and maxillofacial diseases are always accompanied by complicated hard and soft tissue defects, involving 
bone, teeth, blood vessels and nerves, which are difficult to repair and severely affect the life quality of patients. 
Recently, extracellular vesicles (EVs) secreted by all types of cells and extracted from body fluids have gained more 
attention as potential solutions for tissue regeneration due to their special physiological characteristics and intrinsic 
signaling molecules. Compared to stem cells, EVs present lower immunogenicity and tumorigenicity, cause fewer 
ethical problems, and have higher stability. Thus, EV therapy may have a broad clinical application in regenerative 
dentistry. Herein, we reviewed the currently available literature regarding the functional roles of EVs in oral and maxil-
lofacial tissue regeneration, including in maxilla and mandible bone, periodontal tissues, temporomandibular joint 
cartilage, dental hard tissues, peripheral nerves and soft tissues. We also summarized the underlying mechanisms 
of actions of EVs and their delivery strategies for dental tissue regeneration. This review would provide helpful guide-
lines and valuable insights into the emerging potential of EVs in future research and clinical applications in regenera-
tive dentistry.
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Introduction
The high prevalence of damage or loss in dental and 
maxillofacial tissue has garnered global attention, as it 
greatly impacts the quality of life of patients and imposes 
a substantial financial burden on society [1]. Exogenous 
transplantation or the use of maxillofacial prostheses 
are currently the most common treatments for repairing 

dental and maxillofacial tissue [2]. However, these thera-
pies only serve to halt disease progression and are unable 
to fully restore the normal physiological structure and 
function [3]. As a result, there is a pressing need for new 
treatments that can achieve genuine regeneration of den-
tal and maxillofacial tissues.

Regenerative medicine has emerged as a promising 
approach to replace repaired tissue to restore normal 
biological functions and reduce the reliance on trans-
plantation [4]. In particular, mesenchymal stem cells 
(MSCs) have shown significant potential in this field by 
animal and clinical studies [5]. MSCs possess remarkable 
abilities for self-renewal, multilineage differentiation, and 
robust immunomodulation, making them pivotal players 
in tissue regeneration [6]. However, their use has been 
restricted in the clinic due to concerns regarding uncon-
trollability and potential transformation risks, underscor-
ing the need for alternative cell-free therapies [7]. Recent 
findings have shed light on the fact that MSCs primarily 
exert their effects through the secretion of cytokines or 
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membranous vesicles. These secreted substances regulate 
the microenvironment surrounding damaged tissues and 
orchestrate subsequent regeneration processes via parac-
rine signaling [8].

Extracellular vesicles (EVs) were recently revealed as 
the primary component of paracrine signals of cells [9]. 
They constitute a heterogeneous group of cell secretomes 
and are secreted by almost all cell types. Based on the 
size, EVs can be classified into three subtypes: microvesi-
cles, exosomes, and apoptotic bodies [10]. The Interna-
tional Society for Extracellular Vesicles has collectively 
termed these subtypes as “EVs” [11]. Compared to cells, 
EVs are non-replicable and exhibit lower immunogenicity 
and improved biocompatibility [12]. They play a crucial 
role in promoting the proliferation and differentiation 
of targeted cells and regulating the entire process of tis-
sue regeneration [13, 14]. Previous studies have demon-
strated that EVs can aid their parent cells in performing 
physiological functions [15]. Subsequent investigations 
have further explored the functions and underlying 
mechanisms of EVs [16], and shown that EVs can activate 
specific signaling pathways to facilitate cellular commu-
nication through their unique contents, including pro-
teins, nucleic acids, and signaling peptides [17].

Compared to other organs, the oral cavity has direct 
communication with the external environment, which 
provides a favorable condition for the implantation of 
EVs. This also avoids the issue of EVs traversing the cir-
culatory system, thereby reducing any residual or cumu-
lative effects in non-treated areas. Consequently, the 
application of exogenous EVs in dental regenerative med-
icine has been extensively studied and has shown prom-
ising treatment effects [18] . Therefore, EVs, with their 
non-mutating and non-duplicating characteristics, are 
considered promising tools for dental tissue regeneration 
[19].

In this review, we examine the current literature 
(Fig. 1), regarding the functional roles of EVs in oral and 
maxillofacial tissue regeneration, including their impact 
on maxilla and mandible bone, periodontal tissues, 
temporomandibular joint cartilage, dental hard tissues, 
peripheral nerves, and soft tissues. Additionally, we sum-
marize the underlying mode of actions of EVs (Fig.  2) 
and discuss their delivery strategies in the applications 
of regenerative dentistry. The existing challenges and the 
prospect of the future for EVs in dentistry regeneration 
are also discussed. This literature search was conducted 
in three databases (PubMed, Scopus and Google Scholar). 
English publications were searched using the keywords 
((extracellular vesicles) OR (EVs) OR (exosomes) AND 
(dentistry regeneration) OR (dental tissue regeneration) 
OR (oral tissue regeneration)). After reviewing the titles 
and abstracts, 60 selected publications with full texts 

were selected for detailed analysis. 3 research articles 
were duplicated in the part of mechanism of EV-mediate 
dentistry regeneration.

Origin of EVs and their roles
EVs are nanoscale membrane vesicles and secreted by 
nearly all types of cells [20]. They are formed through 
the inward budding of multivesicular bodies that origi-
nate from late endosomal membrane invagination. These 
vesicles are subsequently released into the extracellular 
microenvironment by fusing with the plasma membrane 
[21]. During the process of EV formation, specific pro-
teins, lipids, and nucleic acids are selectively recruited 
and encapsulated, granting EVs the ability to mediate 
paracrine crosstalk [22]. These proteins include adapter 
protein ALIX, endosome-related protein TSG101, and 
the transmembrane proteins CD9, CD63, and CD81 [23, 
24]. The lipid bilayer of EVs typically comprises choles-
terol, sphingomyelin, and phosphatidylserine, which 
significantly contribute to EV formation and their inter-
action with target cells [25, 26].

EVs interact with target cells through three main mech-
anisms, offering various avenues for studying signal path-
ways and therapeutic targets in different diseases [27]. 
Firstly, EVs engage in information transmission through 
receptor-ligand interactions, even without direct cell 
contact [15]. Secondly, EVs enhance cell adhesion proper-
ties by binding to the target cell membranes [28]. Lastly, 
EVs can fuse with the target cell membrane, delivering 
their contents into the cytoplasm and exerting biologi-
cal effects [29]. The specific mechanisms of interaction 
depend on the composition and properties of EVs, as 
well as the characteristics of their parent cells [30]. Once 
released into the microenvironment, EVs transport their 
bioactive cargoes to specific cells, triggering a cascade 
of signaling pathways. The majority of EV components 
consist of proteins and nucleic acids, including DNA, 
mRNA, miRNA, tRNA, and non-coding RNA. While 
miRNA has been the focus of significant EV research due 
to its functional roles, more recent studies have indicated 
that proteins in EVs, rather than miRNA, play more criti-
cal roles in cell-cell communication.

Dental tissue‑derived EVs
The oral cavity constitutes a multifaceted environment 
encompassing diverse tissues, including jaws, periodon-
tium, gingiva, teeth, oral mucosa, and glands. Saliva and 
gingival crevicular fluid create the fluid milieu within the 
oral cavity. In addition, various coatings envelop these 
tissues, each harboring an array of bacteria, collectively 
forming the bacterial biofilm [31]. All cells from these 
tissues and bacteria can secret EVs to participate in the 
dental tissue development. More importantly, these EVs 
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shape the ecological environment of the oral cavity and 
oral environment in turn affect the stability and bioactiv-
ity of these EVs. However, although all EVs play certain 
roles in the dental tissue development, EVs from stem 
cells derived from different dental tissues are mostly stud-
ied and utilized for dental tissue regeneration due to their 
multi-lineage differentiation and reproductive activity. 
These stem cells include dental pulp stem cells (DPSCs), 
periodontal ligament stem cells (PDLSCs), dental follicle 

progenitor cells (DFCs), gingival mesenchymal stem cells 
(GMSCs), stem cells from the apical papilla (SCAPs), 
alveolar bone-derived mesenchymal stem cells (ABM-
SCs) and stem cells from exfoliated deciduous teeth 
(SHEDs) (Fig. 3). They were utilized in different oral tis-
sue regeneration according to their specific regenerative 
characteristics.

Notably, EVs sourced from DPSCs (DPSC-EVs) have 
garnered significant attention in the field of dentistry 

Fig. 1 Flow chart of literature search for EVs in regenerative dentistry
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regeneration owing to their remarkable osteo/odonto-
inductive capabilities [32, 33]. Furthermore, DPSC-EVs 
have exhibited enhanced anti-necrotic, immunomodu-
latory, and anti-apoptotic properties compared to EVs 
derived from bone marrow mesenchymal stem cells 
(BMMSC-EVs) [34]. On the other hand, EVs originating 
from PDLSCs (PDLSC-EVs) have been demonstrated to 
upregulate the expression of CD31 and VEGFA to pro-
mote angiogenesis. Additionally, they fortify osteogenesis 
through the regulation of insulin, AMPK, and MAPK 
signaling pathways, while also modulating the Th17/Treg 
balance to bolster anti-inflammatory capabilities [35–38]. 
GMSC-EVs and ABMSC-EVs have also emerged as sig-
nificant contributors to bone regeneration. They exhibit 
anti-osteoclastogenic activity and convey miR-1260 to 
inhibit inflammatory bone loss [39, 40]. Furthermore, 

when combined with a small intestinal submucosa-
extracellular matrix, GMSC-EVs facilitate tongue lin-
gual papillae repair and promote the recovery of taste 
buds [41]. Moreover, EVs derived from SCAPs (SCAP-
EVs) hold great promise for dentistry regeneration. They 
enhance dentinogenesis of BMMSCs and are considered 
potential candidates for dentin-pulp regeneration [35]. 
Meanwhile, EVs sourced from SHEDs (SHED-EVs) effec-
tively mitigate inflammation in temporomandibular joint 
diseases.

Effect of EVs in regenerative dentistry
Compared to tissues such as liver, skin, and muscle, oral 
tissues are generally constantly exposed to microorgan-
isms from food, drink, and the oral microbiome and have 
limited blood supply during the regeneration process. 

Fig. 2 EVs parent cells source, EVs source, delivery strategies, functions and mechanisms of EVs in dental tissue regeneration. Abbreviations: EVs, 
extracellular vesicles; GMSC-EVs, gingival mesenchymal stem cell-derived extracellular vesicles; DPSC-EVs, dental pulp stem cell-derived extracellular 
vesicles; PDLSC-EVs, periodontal ligament stem cell-derived extracellular vesicles; DFC-EVs, dental follicle cell-derived extracellular vesicles; 
SCAP-EVs, stem cells from apical papilla-derived extracellular vesicles; SHED-EVs, human exfoliated deciduous teeth stem cell-derived extracellular 
vesicles; Macrophage-EVs, macrophage derived extracellular vesicles; ADMSC-EVs, adipose mesenchymal stem cell-derived extracellular vesicles; 
BMMSC-EVs, bone marrow mesenchymal stem cell-derived extracellular vesicles
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This greatly affect their ability to heal efficiently and 
makes them more vulnerable to infections and inflamma-
tion. Numerous studies have highlighted that EVs derived 
from various cells, particularly stem cells, exhibit benefi-
cial effects such as pro-regenerative, pro-vascularization, 
anti-inflammatory, and anti-apoptotic properties, irre-
spective of their distinctiveness from different sources 
[42]. These minuscule vesicles have exhibited the capac-
ity to regenerate bone, dental tissues, and cartilage, ren-
dering them promising therapeutic agents in the field of 
dental tissue regeneration [43] (Table 1)(Fig. 4).

Maxillofacial tissue regeneration
Maxillofacial diseases, such as congenital cleft palate, 
functional mandibular reconstruction, and conditions 
like odontogenic osteomyelitis or tumors, necessitate 
precise repair and functional restoration of the affected 
areas [44]. Noteworthy studies have demonstrated the 
efficacy of EVs in addressing these challenges [45]. For 
instance, in a model of bisphosphonate-related oste-
onecrosis of the jaw (BRONJ), the introduction of EVs 
derived from adipose mesenchymal stem cells (ADMSC-
EVs) through tail vein injection in rats led to the forma-
tion of new jawbone and improvements in bone structure 
parameters [46]. BMMSC-EVs showcased preventive 
properties against the spread of chronic inflamma-
tion associated with aging cells. They further promoted 

osteogenesis and angiogenesis, effectively averting the 
occurrence of BRONJ [47]. DPSC-EVs implanted in a rat 
mandibular bone defect area also exhibited heightened 
jawbone density and facilitated the formation of new jaw-
bone [48].

In addition to hard tissue regeneration, EVs have dem-
onstrated promise in maxillofacial soft tissue regenera-
tion. GMSC-EVs, when combined with small intestinal 
submucosa extracellular matrix, were implanted in a rat 
critical-sized tongue defect site, resulting in the regen-
eration of epithelial cells and the restoration of taste buds 
and lingual papilla [41]. Moreover, EVs derived from hair 
follicle epidermal neural crest stem cells, in conjunction 
with acellular nerve allografts, were employed to bridge 
facial nerve defects. This intervention led to thicker 
myelination and robust remyelination [49]. Additionally, 
SCAP-EVs enhanced angiogenesis and vascularization in 
a rat hard palate mucosa defect model [50].

Periodontal regeneration
The periodontium, encompassing the gingiva, perio-
dontal ligament, and alveolar bone, serves as the struc-
tural support for teeth [51]. Periodontitis, a widespread 
global issue, is characterized by the progressive deterio-
ration of the periodontium and inflammation [52]. The 
ultimate objective of periodontal tissue regeneration 
is to foster the development of new periodontal bone, 

Fig. 3 EVs from different dental tissue-derived stem cells used for dental tissue regeneration. EVs from different dental tissue-derived stem 
cells are mostly studied and utilized for dental tissue regeneration due to their multi-lineage differentiation and reproductive activity. EVs 
from different dental tissue-derived stem cells are mostly studied and utilized for dental tissue regeneration due to their multi-lineage 
differentiation and reproductive activity. Dental follicle progenitor cells are sourced from the connective tissue surrounding the developing 
tooth germ. Stem cells from the apical papilla are obtained from the apical papilla of incompletely developed teeth. Gingival mesenchymal stem 
cells are found within the gingiva. Stem cells from exfoliated deciduous teeth are harvested from the dental pulp of exfoliated primary teeth. 
Alveolar bone-derived mesenchymal stem cells can be extracted from the alveolar bone. Dental pulp stem cells are isolated from the dental pulp 
of permanent teeth. Periodontal ligament stem cells are sourced from the periodontal ligament of permanent teeth
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complete with fresh periodontal ligaments, and the 
reattachment of the gingiva [53].

Numerous studies have unveiled the remarkable 
regenerative potential of EVs in periodontal tissue 
regeneration. For example, BMMSC-EVs have demon-
strated the ability to stimulate alveolar bone formation 
and repair periodontal ligaments in models of peri-
odontitis [54, 55]. Moreover, EVs released by M2 mac-
rophages have proven effective in preventing alveolar 
bone loss [56]. The injection of EVs from ADMSCs into 
rat periodontal pockets has resulted in the formation of 
cellular periodontal tissue perpendicular to the cemen-
tum and alveolar bone [57, 58]. Moreover, EVs derived 
from dendritic cells have exhibited potential in treating 
degenerative alveolar bone diseases by promoting the 
coverage of soft tissues over the alveolar bone [59].

Emerging evidence suggests that EVs derived from 
dental tissues also contribute significantly to periodon-
tal tissue regeneration. For instance, DPSC-EVs and 
SCAP-EVs have been reported to inhibit alveolar bone 
loss [60–63]. EVs derived from dental follicle progeni-
tor cells (DFC-EVs) have been shown to enhance the 
formation of denser alveolar bone with increased tra-
becular thickness compared to control groups [64, 65]. 
Gingival mesenchymal stem cell-derived EVs (GMSC-
EVs), PDLSC-EVs and SHED-EVs have proven efficient 
in repairing alveolar bone defects, accompanied by the 
development of new blood vessels [66–69].

Given that periodontal diseases often involve inflam-
mation, evaluating the function of EVs under inflam-
matory conditions is essential [70]. Research has 
demonstrated that EVs released from GMSCs treated 
with TNF-α effectively prevent periodontal bone 
resorption [39]. Furthermore, studies have shown 
that lipopolysaccharide (LPS)-preconditioned DFC-
EVs promote the proliferation of PDLSCs and mac-
rophages [71]. Similarly, LPS-preconditioned DFC-EVs 
have been found to be beneficial for the formation of 
integrated periodontal tissue in PDLSCs compared to 
healthy DFC-EVs [72].

Dental pulp regeneration
The dental pulp, the sole soft tissue within a tooth, resides 
within the pulp cavity, encircled by dentin. It comprises 
connective tissue, blood vessels, and nerves, rendering it 
vascularized and innervated [73]. Consequently, endo-
dontic regeneration is a multifaceted process encompass-
ing not only dental pulp regeneration and dentin-pulp 
complex formation but also pulp revascularization and 
neurological recovery [74].

Numerous research studies have shed light on the role 
of EVs in fostering dentin-pulp regeneration. EVs derived 
from various sources, such as SHEDs, DPSCs, SCAPs, 
Hertwig’s epithelial root sheath cells, and Schwann cells, 
have been subcutaneously implanted into mice, result-
ing in the promotion of dentin-pulp regeneration [35, 
75–78]. Rats treated with LPS-preconditioned DPSC-EVs 
exhibited the formation of dental pulp-like tissue replete 
with new blood vessels in a model where dental pulp had 
been removed [79]. In another study, collagen contain-
ing SCAPs were placed at the root tip, and the cavity was 
filled with EVs derived from dental pulp tissue/stem cells, 
leading to the regeneration of dense pulp-like tissue and 
predentin-like tissue [80]. Intriguingly, Li et al. reported 
that apoptotic bodies, typically regarded as indicators of 
cellular end-of-life, spurred the formation of dental pulp-
like tissue replete with abundant blood vessels [81]. As 
mentioned earlier, neurological recovery is also vital for 
dental pulp regeneration, with research highlighting the 
potential effects of EVs on neuroregeneration, thereby 
underscoring the promise of EVs in pulp regeneration 
[82].

Dental hard tissue regeneration and mineralization
Dental hard tissues encompass enamel, dentin, 
and cementum. Enamel is primarily composed of 
hydroxyapatite crystals, whereas dentin and cementum 
are a combination of hydroxyapatite and organic matrix 
[83]. Research has shown that EVs play a role in the for-
mation and mineralization of dental hard tissues [84, 85].

In a rat pulpotomy model, DPSC-EVs prompted the 
creation of dentin tubes and reparative dentin bridges 

Fig. 4 The therapeutic effects of extracellular vesicles on different dental tissue regeneration. a EVs derived from LPS-preconditioned DFCs loden 
on hydrogel applied in the treatment of periodontitis by repairing lost alveolar bone and promoting periodontal tissue regeneration. This figure 
is adapted and is freely accessible from reference [72], Licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). b 
EVs derived from BMMSCs prevent BRONJ by preventing the spread of chronic inflammation and promoting angiogenesis and osteogenesis. 
This figure is adapted and is freely accessible from reference [46], c TDM and EVs isolated from DPSCs promote reparative dentin formation. 
This figure is adapted and is freely accessible from reference [87], Licensed by Sage Publications and Copyright Clearance Center. d EVs derived 
from osteoclasts promote bone regeneration. This figure is adapted and is freely accessible from reference [14], Reprinted under the terms 
of the Creative Commons CC-BY license. Abbreviations: AB, alveolar bone; PL, periodontal ligament; D, cementum; ZOL, zoledronic acid; TDM, dentin 
matrix; D, dentin; P, pulp tissue; DB, dental bridge; BV./TV., bone volume/total volume; OCs-col, osteoclasts on collagen; OC-EVs-col, EVs derived 
from osteoclasts on collagen

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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[86]. Another study illustrated how DPSC-EVs, in con-
junction with dentin matrix, heightened the prolifera-
tion, migration, and odontogenesis of dental pulp cells, 
thus contributing to the continuous formation of repara-
tive dentin [87]. Zhao et al. reported that EVs originating 
from macrophages with different polarization pheno-
types had distinct effects on cementoblast mineralization. 
Specifically, EVs derived from M2 macrophages fostered 
cementum mineralization and curtailed root resorption 
[88]. Jiang et al. posited that EVs facilitated communica-
tion between epithelial and mesenchymal cells. Epithelial 
cell-derived EVs were found to stimulate mesenchymal 
cells to produce dentin sialoprotein (DSP) and partake 
in mineralization, while mesenchymal cell-derived EVs 
induced epithelial cells to generate ameloblastin and 
amelogenin [89]. Moreover, it was proposed that intra-
cellular ameloblast secretory EVs played a role in enamel 
mineralization [84].

Temporomandibular cartilage regeneration
The temporomandibular joint (TMJ) is an intricate joint, 
comprising the mandibular condyle and the articu-
lar surfaces of the temporal bone, both covered with 
dense articular cartilage [90]. Temporomandibular joint 
osteoarthrosis (TMJOA) is a degenerative disease char-
acterized by an imbalance between the synthesis and 
degradation of the condylar matrix mediated by chon-
drocytes [91]. This imbalance leads to the breakdown of 
the condylar matrix, resulting in joint disorganization, 
biomechanical alterations, disruption of the microen-
vironmental homeostasis around cartilage cells, and 
inflammation [92]. Because the TMJ cavity is an enclosed 
joint space with well-defined boundaries, this enclosed 
space provides a contained environment for injected sub-
stances, preventing their immediate dispersion into the 
surrounding tissues. Therefore, it has great potential to 
employ therapeutic EVs for the treatment of TMJOA.

Shen et al. firstly demonstrated that extracellular vesi-
cles derived from BMMSCs under hypoxic conditions 
can enhance the proliferation, migration, and anabolic 
capacity of chondrocytes in vitro. Moreover, they exhib-
ited pro-chondrogenic potential in  vivo [93]. Similarly, 
SHED-EVs have shown the capability to down-regulate 
the expression of proinflammatory factors and matrix 
metalloproteinases, indicating their potential to mitigate 
inflammation in the temporomandibular joint and pre-
vent further cartilage damage [94]. Other than dental 
tissue derived EVs, EVs derived from human embryonic 
mesenchymal stem cells have been observed to enhance 
chondrogenesis, leading to the formation of new hyaline 
cartilage closely resembling healthy tissue in a rat model 
of TMJOA [95].

Mechanisms of EV‑mediate dentistry regeneration
Understanding these mechanisms is essential for har-
nessing the full regenerative potential of EVs. The mecha-
nisms underlying extracellular vesicle-mediated dentistry 
regeneration are a complex and dynamic interplay of cel-
lular and molecular processes. They facilitate key aspects 
of regeneration, including but not limited to osteogene-
sis, odontogenesis, mineralization of dental hard tissues, 
angiogenesis, immunomodulation (Table  2; Figs.  5 and 
6). Through their ability to transfer these bioactive mol-
ecules, EVs modulate various signaling pathways, gene 
expression, and cellular behaviors, ultimately contribut-
ing to the repair and regeneration of dental tissues.

EVs increase odontogenic differentiation
Odontogenic differentiation constitutes a pivotal process 
in tooth development, and emerging research affirms 
the role of extracellular vesicles in inducing odonto-
genic differentiation and upregulating the expression of 
dental-related markers such as dentin sialophosphopro-
tein (DSPP) and dental matrix protein (DMP) [35, 96]. Of 
note, DPSC-EVs have been observed to undergo cellular 
endocytosis in a dose-dependent manner, consequently 
activating the p38/MAPK pathway and intensifying 
odontogenic differentiation [76]. Moreover, DPSC-EVs 
have demonstrated their potential to transport nuclear 
factor I/C (NFIC), a pivotal transcription factor central to 
tooth development. This transport, in turn, promotes the 
proliferation, migration, and dentinogenesis of SCAPs 
[97]. Studies utilizing miRNA sequencing have unveiled 
alterations in miRNA profiles following the uptake of 
DPSC-EVs, underscoring the role of EVs in orchestrating 
odontogenic differentiation through the TGFβ1/Smads 
signaling pathway [98]. In addition, miR-758-5p trans-
ported by DPSC-EVs under inflammatory conditions 
has the capacity to stimulate BMP signaling to ultimately 
govern odontogenic differentiation [99]. Meanwhile, EVs 
originating from Hertwig’s Epithelial Root Sheath Cells 
have been shown to activate the Wnt/β-catenin pathway, 
thereby establishing a conducive microenvironment for 
odontogenic differentiation by fostering the connection 
between epithelial cells and mesenchymal cells [78].

EVs promote osteogenic differentiation
Osteogenic differentiation plays a pivotal role in bone 
formation, including craniofacial and alveolar bone 
remodeling and repair [100]. Several studies have dili-
gently explored the potential roles of EVs in osteogen-
esis. Reports indicate that PDLSC-EVs contributed to 
the alveolar bone regeneration by mitigating the over-
activation of the Wnt signaling pathway and suppress-
ing NF-κB activity of osteoprogenitor cells [68, 101]. 
Meanwhile, DFC-EVs have been shown to activate the 
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MAPK pathway, aiding in the repair of alveolar bone 
defects [99, 100]. In contrast to DFC-EVs, SHED-EVs 
regulate osteogenesis through the AMPK pathway [69]. 
SHED-EVs transport mitochondrial transcription fac-
tor A mRNA, thereby instigating mitochondrial aerobic 
metabolism and consequently augmenting bone regen-
eration [102].

DPSC-EVs, GMSC-EVs, and SCAP-EVs are shown to 
promote the osteogenic differentiation of stem cells via 
the miRNAs they carry [39, 63, 99, 101]. For instance, 
miR-181b-5p found within osteocyte-derived EVs facil-
itates the osteogenic differentiation of PDLSCs through 
the PTEN/AKT pathway [103]. Conversely, miR-129-5p 
within plasma secretory EVs inhibits jawbone osteo-
genesis via the FZD4/β-catenin pathway [104]. Except 
for miRNA, mRNA and proteins in EVs can also con-
tribute to dental bone regeneration by upregulating the 

Fig. 5 The effective components and functions of EVs for dental tissue regeneration. EVs are released upon the fusion of multivesicular bodies 
with plasma menbranes. They aid in dental tissue regeneration by promoting odontogenic differentiation, osteogenesis differentaition, dental hard 
tissue mineralization, angiogenesis and regulating immunomodultion through different cargos, including but not limited to protein, MicroRNA, 
and mRNA

osteogenic differentiations of stem cells. EVs derived 
from M2 macrophages transport IL-10 mRNA, acti-
vating the cellular IL-10/IL-10R pathway directly, 
thereby promoting osteogenesis and preserving bone 
homeostasis [56]. ADMSC-EVs expedite alveolar bone 
repair by transmitting calcitonin gene-related peptide 
(CGRP), a significant neuropeptide expressed during 
bone repair [58]. Meanwhile, umbilical cord mesenchy-
mal stem cell-derived EVs (UMSC-EVs) were reported 
to enhance the osteoblastic differentiation capability of 
PDLSCs via the P13K/AKT pathway [105].

EVs facilitate dental hard tissue mineralization
The mineralization process of dental hard tissue is a 
multifaceted phenomenon characterized by intricate 
interactions among various organic compounds [106]. 
Within this context, EVs serve as reservoirs of numerous 
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Table 2 Underlying mechanisms of EVs in the dental tissue regeneration

Functional effects EVs source EVs cargos Involved signaling pathway Outcome in vitro References

Odontogenesis DPSCs BMP-2, BMP-9 P38 MAPK DSPP [76]

DPSCs miR-27a-5p TGFβ-1/Smads DSP↑, DMP-1 ↑ [98]

DPSCs NFIC – DSPP↑, DMP-1 ↑, ALP↑, NFSC ↑ [97]

DPSCs
(under inflammatory environ-
ment)

miR-758-5p BMP DSPP↑, DMP-1 ↑ [99]

Hertwig’s epithelial root sheath 
cells

Wnt3a Wnt/β-catenin DSPP↑, DMP-1 ↑ [78]

Osteogenesis ADMSCs CGRP - RUNX2↑, ALP↑, OCN↑ [58]

Plasma miR-129-5p FZD4/β-catenin RUNX2↑, ALP↑, OPN↑ [104]

DFCs – PLC/PKC/MAPK ALP↑, OCN↑, OPN↑, MMP-2↑ [65]

DFCs – P38 MAPK RUNX2↑, ALP↑, BSP↑, COL1↑ [64]

DPSCs
(osteogenic-induced condi-
tioned)

hsa-miR-31 – RUNX2↑, COL1↑, OSX↑ [139]

DPSCs
(under inflammatory environ-
ment)

miR-758-5p BMP RUNX2↑, ALP↑, OCN↑ [99]

GMSCs
(TNF-α treated)

miR-1260b NF-κB RANKL/OPG↓ [39]

M2-Macrophage IL-10 IL-10/IL-10R RUNX2↑, ALP↑, OCN↑, COL1a1↑ [56]

Osteocyte miR-181b-5p PTEN/AKT RUNX2↑, BMP-2↑, AKT1↑, 
P13KCA↑

[103]

PDLSCs Gsk3β NF-κB ALP↑, OCN↑, BMP-2↑ [101]

PDLSCs Gsk3β Wnt OCN↑, RUNX2↑ [68]

SCAPs miR-935 – OCN↑, OPN↑ [63]

SHEDs - AMPK RUNX2↑, OPN↑, COL1↑ [69]

SHEDs TFAM mRNA – RUNX2↑, ALP↑, BMP-2↑ [102]

UMSCs – P13k/AKT RUNX2↑, ALP↑, OCN↑ [105]

Mineralization 17IIA11 cell lines – Erk1/2 Ca2+, Pi formation [108]

Ameloblast PHOSPHO1 – Enamel width↑, Interrod 
distance↓

[84]

Incisor epithelial and mesenchy-
mal cells

miR-135a Wnt/β-catenin COLIV↑, laminin↑, ALP↑, DSP↑, 
Bglap↑, Mineral nodule forma-
tion

[89]

T4-4 cell lines IRES – DSPP↑, DMP-1↑,DPP↑ [109]

Angiogenesis DPSCs
(from periodontally diseased 
teeth)

– P38 MAPK VEGF↑, MMP-9↑, KDR↑, [114]

DPSCs TUFM – VEGF↑, ANG-2↑, MMP-9↑, 
HIF-1α↑

[81]

PDLSCs miR-17-5p – VEGFA↑ [111]

SHEDs – AMPK CD31↑, COL1↑ [69]

SCAPs Cdc42 – CD31↑, vascular limen formation [50]

SHEDs miR-26a TGFβ/Smad2/3 VEGF↑, ANG-2↑, PDGF↑, [75]

SHEDs
(hypoxic-preconditioned)

let-7f-5p,
miR-210-5p

AGO/VEGF;
miR-210-3p/ephrinA3

VEGF↑, MMP-9↑, ANGPT1↑ [113]
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factors that contribute to the formation of hydroxyapa-
tite crystals and calcium phosphate [107]. Nevertheless, 
the precise mechanism through which EVs mediate min-
eralization remains the subject of debate and ongoing 
research. For instance, Chaudhary et  al. demonstrated 
that EVs derived from the 17IIA11 cell line transport 
factors that induce enamel mineralization through the 
activation of the Erk1/2 pathway [108]. Another inves-
tigation proposed that miR-135a in EVs promote the 

reciprocal interaction between epithelial and mesenchy-
mal cells, thereby activating the Wnt/β-catenin signaling 
pathway and facilitating the production of dentin matrix 
proteins [89]. Furthermore, researchers have postulated 
that ameloblast secretory EVs engage in interactions with 
orphan phosphatase 1 (PHOSPHO1) and play a role in 
amelogenesis [84]. Similarly, EVs have been found to par-
ticipate in the transport of Dentin Phosphophoryn (DPP) 
to the extracellular matrix, thereby contributing to the 
mineralization process [109].

Table 2 (continued)

Functional effects EVs source EVs cargos Involved signaling pathway Outcome in vitro References

Immunomodulation BMMSCs – OPG-RANKL-RANK Arginase↑, CD163↑,
TGF-β1↑, iNOS↓, CD86↓

[55]

DFCs
(LPS-preconditioned)

– ROS/JNK RANKL/OPG↓ [71]

DPSCs miR-125a-3p TLR, NF-κB IL-1ra↑, IL-10↑,
IL-1β↓, IL-6↓, TNF-α↓

[118]

DPSCs miR-1246 NF-κB p65,
p38 MAPK

CD206↑, Arginase↑, CD163↑,
IL-1β↓, IL-6↓, TNF-α↓, iNOS↓, 
CD86↓

[61]

DPSCs miR-1246 – Th17/Treg↓ [62]

Dendritic cells TGF-β, IL-10 – Th17/Treg↓ [59]

EBCs CD73 AKT/ERK, AMPK MMP13↓, NO↓, s-GAG↑ [92]

GMSCs – NF-κB p65, Wnt5a TNF-α↓, IL-1β↓, IL-10↑ [140]

PDLSCs – NF-κB IL-1β↓ [116]

PDLSCs miR-155-5p – Th17/Treg↓, RORC↓, STRT1↓, 
FOXP3↑

[38]

SHEDs miR-100-5p – IL-6↓, IL-8↓, MMP-1↓, MMP-3↓, 
MMP-9↓, MMP-13↓

[94]

SCAPs miR-935 – IL-6↓, IL-8↓ [63]

Salivary miR-25-3p IL-17↓ [37]

Fig. 6 The mode of action of extracellular vesicles in promoting different dental tissue regeneration. a EVs derived from DPSCs specifically 
activate endogenous EC autophagy by transferring TUFM, thereby causing angiogenesis. The acceleration of vascular reconstruction promotes 
dental pulp regeneration. This figure is adapted and is freely accessible from reference [81], Licensed under a Creative Commons Attribution 4.0 
International License (CC BY 4.0). b EVs derived from DPSCs under an inflammatory microenvironment participate in the regulating of odontogenic 
and osteogenic differentiation by miR-758-5p/LMBR1/BMP2/4 axis. This figure is adapted and is freely accessible from reference [99], Licensed 
under a Creative Commons Attribution 4.0 International License (CC BY 4.0). c EVs derived from GMSCs under inflammation microenvironment 
enhance M2-type macrophage polarization and prevent periodontal bone loss. This figure is adapted and is freely accessible from reference [39], 
Licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Abbreviations: EC, endothelial cells; hDPSC, human dental 
pulp stem cells; TUFM, Tu translation elongation factor, mitochondrial; TFEB, transcription factor EB; VEGF, vascular endothelial growth factor; ANG2, 
angiotensin 2; hDPSC-apoVs, apoptotic vesicles from human dental pulp stem cells; BMP, bone morphogenetic protein; LMBR1, limb development 
membrane protein 1; TNF-α, tumor necrosis factor α; DPSC-EV, EVs from dental pulp stem cells; iDPSC-EVs, EVs from dental pulp stem cells 
under inflammatory environment; PDLSC, periodontal ligament stem cells

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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EVs accelerate angiogenesis
Blood vessels play a pivotal role in delivering vital bioac-
tive elements, encompassing growth factors, nutrients, 
and progenitor cells, to sites of regeneration, thereby 
contributing significantly to the maintenance of homeo-
stasis [110]. Accumulating evidence suggests that EVs 
exhibit the capacity to expedite angiogenesis in the con-
text of dental regeneration [111, 112]. This facilitation 
primarily hinges on the transfer of microRNA (miRNA) 
payloads encapsulated within EVs. For instance, PDLSC-
EVs augmented the vascularization of dental periodontal 
ligaments through the transmission of vascular endothe-
lial growth factor (VEGF) via miR-17-5p [111]. Similarly, 
SHED-EVs transferred miR-26a to initiate the TGF-β/
Smad signaling pathway, thereby fostering angiogenesis 
[75]. Another investigation illustrated that SHED-EVs 
regulated angiogenesis via the activation of the AMPK 
signal pathway [69]. Moreover, SHED-EVs were reported 
to enhance angiogenesis even under hypoxic condi-
tions, accomplished by the transfer of let-7f-5p and miR-
210-3p, which respectively modulate the AGO1/VEGF 
and miR-210-3p/ephrinA3 signaling pathways [113].

In addition to miRNAs, proteins transported by EVs 
significantly contribute to the expediting of angiogen-
esis. SCAP-EVs mediated the action of Cdc42, thereby 
promoting vascularization and aiding in the repair of 
craniofacial soft tissue [50]. DPSC-EVs regulated the 
activation of angiogenesis by modulating the transla-
tion elongation factor Tu via the transcription factor EB 
(TFEB)-autophagy pathway [81]. Additionally, DPSC-EVs 
demonstrated the capacity to promote angiogenesis and 
activate the p38 MAPK pathway, showcasing substantial 
angiogenic potential for pulp regeneration [114].

EVs regulate immunomodulation
Extracellular vesicles play a pivotal role in orchestrating 
immunoregulatory processes, with a significant contri-
bution stemming from the encapsulated miRNAs. For 
instance, miR-100-5p within SHED-EVs [94], miR-935 
in SCAP-EVs [63], and miR-25-3p found in salivary 
secretory EVs [37] have demonstrated the capacity to 
modulate immune responses. Notably, specific miRNAs 
encapsulated within EVs play immunomodulatory roles 
through different signaling pathways. For example, EVs 
derived from embryonic stem cells (EBC-EVs) have been 
shown to suppress inflammation through the activation 
of adenosine receptor-dependent AMPK and AKT/ERK 
signaling pathways [92]. The NF-κB transcription fac-
tor, known for its pivotal role in regulating inflammatory 
responses, is proved to be another key response element 
in the immunomodulation process of EVs [115]. Numer-
ous studies have established that EVs exert influence 
over immune responses in the regenerative dentistry by 

modulating the NF-κB signaling pathway [61, 116–118]. 
In the realm of osteoimmunology, the RANKL (NF-κB 
ligand) and osteoprotegerin (OPG) system bear signifi-
cance [71, 119]. EVs have demonstrated their ability to 
regulate the RANKL-RANK-OPG signaling within the 
context of osteoimmunology in dental bone regenera-
tion [55]. Furthermore, the equilibrium between Th17 
and Treg cells is revealed of importance in modulating 
inflammation to aid in the dental tissue regeneration 
[120]. EVs contribute significantly to this balance by vir-
tue of various factors, including specific miRNAs like 
miR-1246 and miR-155-5p, as well as cytokines such as 
TGF-β and IL-10 [38, 59, 62].

Delivery strategy of EVs
The delivery of extracellular vesicles represents a criti-
cal aspect of their utilization in various therapeutic con-
texts. Effective delivery approaches for EVs are essential 
to harness their regenerative and therapeutic potential. 
Various strategies have been developed to facilitate the 
precise and targeted delivery of EVs to specific tissues or 
cells, ranging from direct injection to more sophisticated 
engineered delivery systems. In the context of regenera-
tive dentistry, delivering EVs to oral tissues has their own 
particularity due to the special oral anatomical and physi-
ological characteristics. To be specific, the oral cavity is 
rich in saliva containing enzymes and chemicals and oral 
tissues are subject to constant mechanical stress due to 
activities such as chewing and speaking. All these factors 
might affect the stability and function of extracellular 
vesicles which have to be taken into consideration in the 
application EVs in regenerative dentistry.

EVs delivery by injection
Due to the nano-size of EVs and well-established clinical 
procedure of intravenous injection, EVs have been ini-
tially and widely utilized through intravenous injection 
in various biomedical and therapeutic applications. In 
the field of regenerative dentistry, intravenous injection 
of EVs is proved to be feasible and effective. For example, 
in a BRONJ rat model, intravenously administered EVs 
were found to effectively modulate genes associated with 
osteogenesis and inflammation in the maxilla to promote 
bone regeneration [116]. However, EVs delivered sys-
temically can become diluted in the bloodstream, which 
may reduce their concentration at the oral sites, poten-
tially reducing the specificity of the treatment. Given the 
special oral anatomical structure, there is a preference for 
employing extracellular vesicles through direct injection 
into the target site in the context of regenerative dentistry 
regeneration. Research studies have provided evidence 
of the effectiveness of locally injected EVs in promoting 
the formation of new epidermal tissue and enhancing 
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vascularization, as demonstrated in a mouse model of 
palatal gingiva wound healing [50]. Moreover, in an 
experimental model of alveolar bone loss, locally injected 
EVs exhibited slower clearance and demonstrated higher 
affinity compared to systemic injection [59]. However, it 
is crucial to acknowledge a significant limitation associ-
ated with the use of injected EVs, namely the stability and 
retention of EVs post-administration, particularly in the 
oral cavity. The special oral environment and the salivary 
flow can result in a notable loss of EVs, which signifi-
cantly affect the therapeutic effectiveness and potential 
applications of injected EVs for the treatment of dental 
diseases.

EVs delivery by carriers
The direct injection of EVs into target sites in the oral 
cavity presents challenges related to their stability and 
retention in  vivo. In contrast, the utilization of carrier-
based delivery systems, such as hydrogels and ceramics, 
offers notable advantages, primarily concerning con-
trolled release and prolonged retention duration. This 
carrier-based EV delivery exhibits significant potential 
for augmenting the therapeutic effectiveness of EVs in the 
field of dental regenerative medicine [121, 122]. Given 
the superior biocompatibility and tunability, hydrogel 
materials are widely used to deliver cells and EVs via 
minimally invasive procedures for tissue regeneration. 
Collagen, a natural hydrogel derived from most tissues, 
stands out as a popular choice for delivering EVs in the 
realm of regenerative dentistry. When incorporated into 
collagen hydrogels, EVs have demonstrated their capacity 
to enhance osteogenesis, odontogenesis, and the regen-
eration of bone and dentin-like tissues across a spec-
trum of oral disease conditions [35, 48, 54, 55, 72]. Given 
that hydrogels have a texture similar to soft tissue, it is 
of great advantage that apply collagen hydrogels in the 
regeneration of dental pulp. Several studies have demon-
strated that collagen hydrogels help promote angiogene-
sis, thus speeding up the rate of dental pulp regeneration 
[76–78, 80]. Gelatin, a collagen derivative, also exhibits 
controlled-release properties for EVs, amplifying their 
effectiveness in promoting dentin formation [97]. Fur-
thermore, alternative hydrogels like chitosan and alginate 
hydrogel have found utility as carriers for EVs in dental 
regeneration endeavors [55, 61, 67, 101]. Additionally, 
synthetic polymers such as PLGA/pDA, PLGA, and PEG-
PLGA-PEG, engineered with precision to control their 
physical and chemical attributes, offer a means of achiev-
ing more predictable and sustained EV release for dental 
tissue regeneration [58, 66, 86]. However, it’s worth not-
ing that the sustained release of EVs primarily relies on 
the physical encapsulation provided by these hydrogels, 
which typically spans several days. Consequently, there 

is a growing interest in developing advanced materials 
capable of enabling long-term EV delivery in the con-
text of regenerative dentistry, given the chronic nature of 
most oral diseases.

On the other hand, ceramics are frequently used to 
deliver EVs for hard tissue regeneration in oral diseases 
due to their mechanical properties such as hardness and 
corrosion resistance and chemical components that is 
calcium and phosphate ions. Hydroxyapatite (HA), which 
has been available on the market for clinical therapy since 
the 1970s, is considered the most conventional ceramics 
for regenerating dental hard tissues [123]. For instance, in 
an ectopic dentin regeneration model, the group utilizing 
EVs with HA exhibited significant formation of dentin-
like tissue [71]. Another noteworthy ceramic material is 
beta-tricalcium phosphate (β-TCP) and it is known for its 
biodegradability. It promotes rapid bone tissue regenera-
tion when used in conjunction with EVs in a periodontitis 
model. This structure facilitates angiogenesis and actively 
contributes to the formation of bone tissue [68, 69].

It is of note that a burst release frequently occurs when 
loading EVs in ceramic materials because EVs are mostly 
adsorbed on to the ceramic surfaces through hydrophilic 
action. The combination of exosome and hybrid scaffolds 
might exert better regenerative effects than organic or 
inorganic materials alone, which needs further investiga-
tions in the regenerative dentistry.

Limitations and future perspectives
While extracellular vesicles have demonstrated signifi-
cant progress in advancing dentistry regeneration [124–
127], their widespread implementation in clinical trials 
is contingent upon addressing several limitations and 
challenges. First, EV composition exhibits dependency 
on various factors, including the cell type, donor age, 
state, and the microenvironment in which parent cells 
reside, all of which influence their functional roles [128]. 
For instance, the immune profiles of mesenchymal stem 
cell-derived EVs (MSC-EVs) have been substantiated age-
dependent variations [129]. Furthermore, EVs derived 
from samples of differing ages exhibit disparate effects 
during the osteogenesis process and display varying 
degrees of efficacy in bone repair [130]. Consequently, it 
is imperative to investigate EVs from diverse contextual 
sources to unravel the underlying mechanisms that intri-
cately govern their therapeutic efficacy.

The other challenge that hampers the potential utiliza-
tion of extracellular vesicles for dentistry regeneration 
is a dependable method for isolating and purification of 
EVs from cells or bodily fluids. Current isolation methods 
encompass ultracentrifugation, size-exclusion chroma-
tography, asymmetrical flow field-flow fractionation, and 
immunoaffinity-based techniques [131]. Comparative 
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analyses of these methods have revealed variations in EV 
particle yield and purity [132]. For instance, one study 
compared the purification of serum-EVs using ultracen-
trifugation and Total Exosome Isolation reagent, with the 
latter displaying superior purity based on miRNA profiles 
[133]. Meanwhile, the conditions of the liquid for EV iso-
lation, such as viscosity, preservation environment, and 
treatment methods, also influence EV purification out-
comes. Nonetheless, a comprehensive comparison and 
optimization strategies for EV purification remains rela-
tively unexplored. Moreover, these methods often incur 
high costs while yielding limited quantities of vesicles, 
thereby impeding their clinical applicability. Therefore, 
more advanced techniques for efficient and standardized 
EV isolation and purification are required for the future 
clinical application of EVs in regenerative dentistry. A rel-
evant issue in this challenge is the standardization of EV 
usage, especially the determination of optimal dosages 
or concentrations. Notably, studies have reported a wide 
range of EV concentration/dosage across different inves-
tigations (Table 1). A general trend in the literature sug-
gests that higher EV doses tend to yield relatively better 
tissue regeneration outcomes [134, 135], yet none of the 
studies provide definitive guidance regarding the optimal 
EV concentration for their respective animal models. To 
ensure consistency and efficacy, it is imperative to estab-
lish good manufacturing practices (isolation and purifica-
tion) and comprehensive standards and guidelines for the 
clinical application of EVs [136].

The management of chronic dental diseases neces-
sitates continuous engagement of extracellular vesi-
cles. However, the sustained presence of EVs and their 
therapeutic effects at injury sites over extended periods 
remains a challenge. To address this, the development of 
a proficient delivery system for EVs offers distinct advan-
tages in augmenting their therapeutic efficacy when 
integrated with modified scaffolds [137]. Consequently, 
forthcoming research endeavors may develop novel EV-
loaded scaffolds, encompassing controlled release pro-
files, in  vivo degradation characteristics, and loading 
efficiency. For instance, injectable microspheres with 
sustained release kinetics of EVs have been devised for 
addressing irregular tissue defects and for periodonti-
tis [138]. More investigation on material-EV interaction 
would aid in optimizing the adaptability and plasticity of 
such scaffolds to ensure their effectiveness to deliver EVs.

Conclusion
Extracellular vesicles have emerged as pivotal elements 
in cellular interactions and hold the potential to revolu-
tionize regenerative dentistry by facilitating tissue regen-
eration, encompassing the maxillofacial, periodontal, 
dental, and temporomandibular cartilage regions. These 

vesicles, sourced from diverse origins, make substantial 
contributions to regenerative dentistry through various 
mechanisms, including the promotion of odontogenesis, 
osteogenesis, dental hard tissue mineralization, angio-
genesis, and modulation of the immune response. Lev-
eraging diverse delivery strategies has allowed for more 
effective utilization of EVs, enhancing their regenerative 
efficacy in the field of dental tissue regeneration. None-
theless, the successful clinical translation of EV-based 
therapies hinges upon addressing several critical chal-
lenges. These include the optimization of EV yield, the 
establishment of a standardized definition for EVs, and 
the development of novel EV delivery strategies.
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