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joint deformities, infections, atelectasis, pneumonia, 
venous thromboembolism, dysphagia, chronic pain, pres-
sure ulcer, and psychological distress such as depression 
[7, 8], thereby accounting for a substantial proportion of 
the worldwide injury burden of lost productivity and high 
healthcare costs [5]. Currently, no effective treatment is 
available to mitigate long-term functional impairments 
attributed to SCI. Available therapies, such as anti-
inflammatory medications, have limited efficacy since 
they are rapidly eliminated by cerebrospinal fluid, and 
their bioactivity is diminished [9, 10]. This is partly due 
to a limited understanding of the intricate pathophysi-
ological processes that occur after SCI and a lack of safe 
and efficient instruments to regulate the already known 
therapeutic targets [11].

Pathophysiology of SCI
In large, SCI can be classified into primary and second-
ary phases [12]. Primary SCI results from physical forces 
exerted during an initial traumatic event. These forces 

Introduction
Spinal cord injury (SCI) is one of the most serious neuro-
logical disorders, with a global incidence of 1.2–5.8 and 
0.2–13.0 cases per 100 000 population in developed and 
developing countries, respectively [1–6]. Approximately 
90% of SCIs are caused by traumatic events, such as traf-
fic accidents, falls, or acts of violence [6]. SCI results in 
enduring impairments, including paralysis, sensory loss, 
and long-term complications, including muscle atrophy, 
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Abstract
Patients with spinal cord injury (SCI) have permanent devastating motor and sensory disabilities. Secondary SCI 
is known for its complex progression and presents with sophisticated aberrant inflammation, vascular changes, 
and secondary cellular dysfunction, which aggravate the primary damage. Since their initial discovery, the 
potent neuroprotective effects and powerful delivery abilities of exosomes (Exos) have been reported in different 
research fields, including SCI. In this study, we summarize therapeutic advances related to the application of 
Exos in preclinical animal studies. Subsequently, we discuss the mechanisms of action of Exos derived from 
diverse cell types, including neurogenesis, angiogenesis, blood–spinal cord barrier preservation, anti-apoptosis, 
and anti-inflammatory potential. We also evaluate the relationship between the Exo delivery cargo and signaling 
pathways. Finally, we discuss the challenges and advantages of using Exos to offer innovative insights regarding the 
development of efficient clinical strategies for SCI.
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induce dislocation of the vertebral column, as well as 
destruction of the vasculature, and compromise the 
integrity of the blood–spinal cord barrier (BSCB). Follow-
ing the primary injury, a series of secondary injury events 
occur, leading to an increase in the volume of spinal cord 
damage and irritating neurological deficits. During this 
secondary injury cascade, cell dysfunction and death 
in the spinal cord occur due to cell permeabilization, 
pro-apoptotic signaling, and ischemia injury resulting 
from the breakdown of the microvascular supply. These 
events occur within minutes of the injury. Additionally, 
inflammatory cells, such as macrophages, microglia, T 
cells, and neutrophils, migrate to the area of injury due 
to the disruption of the BSCB [13]. Secondary neurode-
generative alterations, such as the degeneration of axons 
and changes in the gray matter caused by the injury or 
compression, extend both toward the head (rostrally) 
and tail (caudally) from the location of the initial dam-
age. Moreover, the overstimulation of excitatory amino 
acid receptors leads to excitotoxicity, which causes neu-
ron and glial cell death through both necrotic and apop-
totic processes [14–17]. Given the above, SCI functional 
recovery depends on growing neuroplasticity to enhance 
sprouting and regeneration of spared and injured axons, 
angiogenesis, preserving the integrity of the BSCB, limit-
ing apoptosis, and decreasing inflammation to boost the 
potency of residual nerve connections and facilitate the 
development of new connections between neurons [18].

Characterization and role of exosomes (Exos)
Exos are among the most popular research foci as poten-
tial therapeutic agents for overcoming the convoluted 
pathophysiology process of SCI. Exos are generated by 
the inward budding of endosomal compartments that 
later fuse with the plasma membrane, a heterogeneous 
group of membrane-surrounded particles released by all 
cell types with a diameter of 30–150 nm [19–21]. The iso-
lation methods of Exos progressed as time and technique 
advanced, from conventional ultracentrifugation, size-
based filtration, size-exclusion chromatography, polymer 
precipitation, and immunoaffinity methods to modern 
microfluidic-based isolation techniques [22]. Exos has 
been developed as a new strategy for the non-invasive 
diagnosis and monitoring of diseases, used as disease 
markers. Furthermore, Exos can be used as potential 
non-cell therapeutics. By exchanging functional contents 
between cells, Exos play fundamental roles in maintain-
ing homeostasis and combatting stress [23]. Additionally, 
Exos can be engineered to deliver various therapeutic 
cargos, including short-interfering RNAs (siRNAs), mes-
senger RNAs (mRNAs), microRNAs (miRNAs), antisense 
oligonucleotides, chemotherapeutic agents, immune 
modulators, and other bioactive molecules, directly to 
the desired target [24, 25].

Effects of exos on SCI
In SCI, Exos support many healing mechanisms that have 
neuroprotective effects by stimulating the regeneration of 
vessels and nerves and promoting white matter remodel-
ing in the insulted central nerve system (CNS) [26–28]. 
Exos exhibit numerous other advantages, such as good 
encapsulation and ready penetration of the blood–brain 
barrier to access the CNS. Furthermore, Exos are impor-
tant elements of the cellular secretome and are promising 
options for cell-free therapies because of their potential 
therapeutic bioactivity, natural compatibility with the 
body, and ability to target specific cells. This approach 
helps address concerns regarding the immune response 
and uncontrolled proliferation or differentiation of cel-
lular transplants. Exos combine the advantages of cell 
and nanotechnology in drug delivery [29–32]. Although 
Exos have advantages in treating SCI, several challenges 
exist as follows: the potency of Exos large-scale produc-
tion remains challenging; the off-target effects of Exos 
remain; systemic clearance limits reach and efficacy of 
Exos; negatively charged cell membranes and repulsion 
of Exos induce inefficient uptake; and lysosomal degrada-
tion [33, 34].

Current Exo research in SCI treatment mostly focuses 
on those derived from various stem cell sources as the 
regenerative abilities of the source cells [35–37]. To pro-
vide new researchers on Exo with a succinct, up-to-date 
foundation on SCI, we also included Exos that origi-
nate from microglia, macrophages, regulatory T cells 
(Tregs), Schwann cells (SCs), bone marrow mesenchy-
mal stem cells (BMDMs), plasma, and other substances, 
which have a beneficial effect on nerve reconstruction 
by facilitating axonal regeneration and eliminating dam-
aged debris, as well as transporting proteins that actively 
inhibit inflammation [38–46]. Overall, Exos originating 
from various cells, including mesenchymal stem cells 
(MSCs), have broad application prospects for SCI [31, 
40–42, 46].

In this review, we discuss how Exos protect neurons, 
including the underlying processes and other relevant 
aspects of Exo treatment for SCI. Currently, the promis-
ing treatments for SCI are mostly related to Exos derived 
from MSCs [47, 48]. We focus on the specific mecha-
nisms exerted by different Exos isolated from various 
progenitor cells rather than stem cells in the complex 
pathophysiology of SCI, including human epidural adi-
pose cells, neural stem cells (NSCs), Schwann cells, mac-
rophages, and plasma. We also discuss the prospects and 
challenges of non-stem cell-derived Exos (Fig.  1). Fur-
thermore, the Exos have been classified into five major 
functions according to their characteristics and cargos, 
serving as therapeutic strategies for axonal disruption, 
vascular injury, BSCB disconnection, cell death, and 
inflammation, as primarily revealed through substantial 
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preclinical animal research. Additionally, we discuss 
new strategies and information, including origin, effect, 
cargo, and the current deep molecular mechanisms of 
Exo-based treatment and the potential for improving 
treatment efficiency and preventing long-term disease 
progression to facilitate the transition to clinical trials. 
Moreover, we compare the Exos and animal model heter-
ogenous in different studies. This review will help facili-
tate research on using Exos for the efficient management 
of SCI in the future.

Mechanisms of exo-mediated treatment for SCI
Therapeutic strategies tailored to the pathophysiology of 
SCI are promising for clinical translation. Nevertheless, 
SCI is a complex condition that involves multiple aspects. 
To obtain a better therapeutic outcome, it is necessary 
to address the simultaneous and subsequent pathogenic 
processes that occur throughout the evolution of the 
secondary damage (Fig.  2) [13, 16]. Therefore, there is 
an urgent need for a multitarget therapeutic approach 
to counteract secondary injury progression. Exos have 
shown potential for protection due to their wide-ranging 
effectiveness and have been extensively studied in various 
preclinical models of SCI.

Fig. 1  Origin and cargo of Exos and the underlying signaling mechanisms in SCI treatment, including neurogenesis, angiogenesis, BSCB preservation, 
anti-apoptosis, and anti-inflammation. (By Figdraw). BSCB blood–spinal cord barrier; SCI spinal cord injury
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Recent research indicates that Exos, together with 
other payloads, such as RNAs, proteins, and medicine, 
have a strong protective effect. This effect can modify the 
functioning of recipient cells in the spinal cord system. 
Furthermore, the bioactivity and biological composition 

of Exos are contingent on the phenotype of the parent 
cell from which they are derived and might exhibit vari-
ability in response to stimuli and the local microenviron-
ment. Here, we summarized published studies on SCI 
treatment with Exos by promoting axonal regeneration 

Fig. 2  Mechanism Underlying SCI Changes. Primary and secondary neurodegenerative processes following SCI. The injury leads to the degeneration of 
the sensory and motor pathways by either anterograde or retrograde axonal degeneration and accompanying demyelination; distant neurons undergo 
trans-synaptic degeneration. Reproduced with permission [13]. 2019, Lancet Neurology. SCI spinal cord injury; MRI magnetic resonance imaging

 



Page 5 of 27Li et al. Stem Cell Research & Therapy          (2024) 15:335 

and angiogenesis while limiting BSCB disruption, apop-
tosis, and inflammation in the progression of compli-
cated pathology changes in secondary injury post-SCI.

Promoting neurogenesis
Adult neurogenesis is essential for maintaining CNS 
homeostasis and reacting to neurogenic insults. Never-
theless, the adult mammalian spinal cord does not pos-
sess the inherent ability for neurogenesis [49]. Nerve 
regeneration and neurotrophicity are crucial elements 
in SCI repair and are significant areas of research in SCI 
treatment [50]. Notably, Exos exhibit considerable poten-
tial in SCI neurogenesis therapy [51]. Evidence shows that 
purified Exos isolated from MSCs and BMDMs, among 
others, can engage with recipient cells when injected 
intravenously. This treatment significantly improves blad-
der dysfunction and motor movement in animal models 
after SCI by activating NSC differentiation and increas-
ing axonal outgrowth (Fig. 3A) [25, 39, 52, 53].

Growth-associated protein 43 (GAP-43) is a synaptic 
protein whose expression is significantly elevated dur-
ing the differentiation of NSCs into cortical neurons. 
Enhanced production of the neuron-specific proteins 
microtubule-associated protein 2 (MAP-2) and beta-
tubulin III (Tuj1) is vital for the process of NSC differ-
entiation [54–56]. Li et al. [57] demonstrated that Exos 
loaded with overexpressed neuronal growth factor (Exo-
oe-NGF) obtained from bone marrow-derived stem cells 
(BMSCs) enhance the process of NSC differentiation 
into neuronal cells. Additionally, these Exos promote the 
neuronal axonal regeneration following SCI that spans a 
spinal cord cross-section measuring 2 mm in length. This 
leads to improved locomotor functional recovery, as dis-
played by a substantial increase in the Basso, Beattie, and 
Bresnahan (BBB) score compared with SCI mice. This 
improvement is supported by the upregulated expres-
sion of GAP-43, Tuj1, and MAP-2. Jia et al. [58] reported 
that the levels of Sonic Hedgehog and glioma-associated 
oncogene homolog 1 increase substantially after injecting 
BMSC-Exos, along with an increase in GAP-43 expres-
sion and the promotion of functional recovery. Moreover, 
injection with miR-29b Exos and the miR-29b groups 
significantly promoted SCI (spinal cord contusive injury) 
characteristics, including increased BBB scores and the 
numbers of NF200 and GAP-43-positive neurons [59]. 
Furthermore, Cheng et al. [60] discovered that methac-
rylated gelatin (GelMA)-Exos stimulated neurogenesis, 
reduced glial scarring in injury sites, improved the differ-
entiation of Tuj-1-positive neurons, and enhanced axonal 
outgrowth. Consequently, GelMA-Exos facilitated loco-
motor functional recovery after SCI (spinal cord contu-
sive injury).

The gene regulatory networks that trigger NSC differ-
entiation at an early stage have been elucidated in part 

through research on the mechanisms underlying neuro-
nal differentiation and axon regeneration (Fig.  3B) [61]. 
Based on this, Exos originated from miR-26a-modified 
MSCs were used to enhance neurogenesis and restrict 
glial scar formation by activating the phosphatase and 
tensin homolog deleted on chromosome ten (PTEN)/
protein kinase B (AKT)/mammalian target of rapamycin 
(mTOR) signaling cascade (Fig.  3C) [62]. As the extra-
cellular signal-related kinase (ERK)/cAMP response 
element-binding (CREB) and wingless/integrated (Wnt)/
β-catenin pathway also participates in the regulation of 
neurogenesis (Fig.  4A) [63–65], HpMSC-derived Exos 
could enhance the proliferation of NSCs by activating the 
MEK/ERK/CREB signaling pathway and increasing the 
levels of phosphorylation in MAPK/ERK kinase (MEK), 
ERK, and CREB [63]. Moreover, neuronal differentiation 
triggered by the novel paclitaxel-delivered MExos–col-
lagen scaffold via the Wnt/β-catenin signaling pathway 
could effectively instruct NSCs to differentiate into neu-
rons, thereby promoting neuronal regeneration and min-
imizing scar formation (Fig. 4B) [65, 66].

Additionally, exosomal miRNAs perform an essential 
function in neuron protection in the initial stages of SCI 
and promote functional recovery. MiR-133b-modified 
Exos inhibit ras homolog family member A expression 
and activate ERK1/2, signal transducer and activator of 
transcription 3 (STAT3), and CREB, thereby reducing 
the lesion area, preserving neuronal tissues, and stimu-
lating nerve fiber regeneration after a SCI caused by an 
aneurysm clip [67]. MiR-151-3p, which targets phos-
pho-protein 53 (p53), is abundant in microglia-derived 
Exos; this miRNA suppresses the p53/cyclin-dependent 
kinase inhibitor 1  A (p21)/cyclin-dependent kinase 1 
(CDK1) signaling pathway, reduces neuronal apoptosis, 
and promotes axonal regrowth [38]. The expression lev-
els of miR-199a-3p/145-5p are relatively high in Exos. 
MiR-mediated knockdown of Cblb, which is specifically 
targeted by miR-199a-3p, and Cbl, which is specifically 
targeted by miR-145-5p, subsequently activates the NGF/
tropomyosin receptor kinase A (TrkA) downstream path-
ways AKT and ERK (Fig.  4C) [68]. MiR-431-3p deliv-
ered by Exos from a subtype of BMSCs (CD271+CD56+ 
BMSC) significantly caused an exacerbation in the 
length of axon extension and an increase in the number 
of branches in the axons of the dorsal root ganglion by 
targeting Repulsive Guidance Molecule Family Mem-
ber A [69]. EGFR+NSC, a subpopulation of endogenous 
NSC-enriched exosomal miR-34a-5p, can facilitate axo-
nal regeneration at the injured site by directly binding to 
HDAC6 and inhibiting expression [37]. Moreover, Exos 
secreted by oxygen- and glucose-deprived astrocytes 
increased Exo-associated miR-92b-3p to exert a neuro-
protective effect [70].
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Exos promote neurogenesis through PTEN/phos-
phatidylinositide 3-kinases (PI3K)/AKT/mTOR, 
Wnt/β-catenin, MEK/ERK/STAT3/CREB, and NGF/
TrkA signaling cascades [71–73]. This creates a favor-
able environment for neurite outgrowth, accelerates 
NSC differentiation, promotes neuronal survival and 

axon regeneration, and attenuates glial scar formation 
(Table 1).

Promoting angiogenesis
To accelerate regeneration following SCI, neurogen-
esis must be coupled with angiogenesis. In addition to 
the regeneration of nerve cells, the assistance of the 

Fig. 3  Characteristics of Exos and the Underlying Signaling Mechanisms for Neurogenesis. A) The specific characteristics of Exos that can deliver various 
types of DNA/RNA/siRNA, protein, and drugs. Reproduced with permission [25]. Copyright 2015, Journal of Controlled Release. B) After axotomy, injured 
adult CNS neurons present with low regenerative capacity; diverse molecular mechanisms promote axons to become the high regenerative type. Modi-
fied from 2018, Annual Review of Cell and Developmental Biology [61]. (By Figdraw.) C) MSC-derived Exos promote axonal regeneration via the phosphatase 
and tensin homolog (PTEN)/AKT/mammalian target of rapamycin (mTOR) pathway following SCI. Reproduced with permission [62]. Copyright 2021, Stem 
Cell Research & Therapy. SCI spinal cord injury; CNS central nervous system; MSC mesenchymal stem cell
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surrounding microenvironment, including blood ves-
sels and the extracellular matrix, is necessary for restor-
ing neural function. Specifically, rejuvenated blood vessel 
formation plays a significant role in tissue repair [83]. The 
vasculature can serve as a supportive structure and guide 
axonal sprouting after injury, thereby promoting axo-
nal guidance [84]. Moreover, vascularization following 
SCI facilitates nourishment for restoring and sustaining 
neuronal network stability, which in turn is favorable for 
functional recovery after SCI [85]. Notably, the adminis-
tration of MSC-Exos significantly promotes angiogenesis 
[86].

After SCI, the injured spinal column becomes hypoxic 
[87]. The preservation of endothelial cells ensures lim-
ited secondary injury to the blood vessels following SCI, 
enabling the provision of vital oxygen and nutrients 
required for the repair of microenvironment and nerve 
circuits. Vascular endothelial cells, which are an essential 
part of the blood vessel wall, increase the absorption of 
Exos produced by hypoxia-treated MSCs. Mu et al. [31] 

found that hypo-Exo-treated rats had improved loco-
motor functional recovery. The hypoxia-inducible fac-
tor 1-alpha (HIF-1a) content was significantly increased 
in hypoxia-stimulated Exos (hypo-Exos), leading to 
the upregulation of vascular endothelial growth fac-
tor (VEGF) in the Exo treatment system, indicating the 
immense potential of prominent angiogenesis in SCI (a 
4.0 ± 0.5-mm spinal cord cross-section and fragments 
were removed) and repair (Fig.  5A). Regarding VEGF, 
NSC-Exos are highly expressed VEGF-A and can facili-
tate the angiogenic capabilities of spinal cord micro-
vascular endothelial cells (SCMECs); promote SCMEC 
migration, tube formation, and proliferation; mediate 
pro-angiogenic effects; and promote tissue healing [88]. 
Exos from M2 macrophages enhance angiogenesis and 
functional recovery following SCI; this is partially attrib-
uted to the activation of the HIF-1/VEGF signaling path-
way [89]. Exos that originate from miR-126-modified 
MSCs enhance the process of microvascular regenera-
tion and human umbilical vein endothelial cell (HUVEC) 

Fig. 4  Neurogenesis Following SCI. A) Exos extracted from human placental MSCs enhance the proliferation of endogenous neural progenitor cells 
(NPCs) and promote their differentiation into mature neurons through the activation of MEK/ERK/CREB phosphorylation. Reproduced with permission 
[63]. Copyright 2021, Stem Cell Research & Therapy. B) Exos extracted from human umbilical cord-derived MSCs (hUC-MSCs) loaded on a multifunctional 
collagen scaffold (LBMP) promote endogenous NSC migration and differentiation. Reproduced with permission [66]. Copyright 2021, Advanced Health-
care Materials. C) Exos extracted from hUC-MSCs promote neurite outgrowth. Exos secrete high levels of miRNA-199a-3p/145-5p, which specifically target 
Cblb and Cbl mRNAs to prevent TrkA degradation. Sustained activation of phosphorylated ERK (p-ERK) and p-AKT results in the sustainable expression of 
NEU-N, neurofilament H (NF-H), and β-tubulin-III. Reproduced with permission [68]. Copyright 2021, Stem Cell Research & Therapy. SCI spinal cord injury; 
MSC mesenchymal stem cell; NSC neural stem cell
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Author 
(year)

Pub-
lica-
tion 
year

Cell source Biological/medical improvement (Effect) Highlighted Exo-
associated cargo

Suggested mechanism

Zhou et 
al. [74]

2022 Bone marrow-derived 
stem cells (BMSCs)

Promoted axonal regeneration and survival of neu-
rons. Accelerated locomotor functional recovery.

Downregulated caspase 
1 expression and reduced 
IL-1β release.

Zhou et 
al. [39]

2022 Primary M2 microglia Promoted axonal regeneration and reduced spinal 
cord neuron pyroptosis. Accelerated locomotor 
functional recovery.

miR-672-5p Inhibited the AIM2/
ASC/caspase-1/IL-1β/18 
signaling pathway.

Zhou et 
al. [63]

2021 Human placenta mes-
enchymal stem cells 
(hpMSCs)

Promoted the proliferation of endogenous neural 
stem cells (NSCs). Accelerated locomotor functional 
recovery.

Activated the MEK/ERK/
CREB signaling pathway.

Zhang et 
al. [66]

2021 Human umbilical cord-
derived mesenchymal 
stem cells (hUC-MSCs)

Enhanced neural regeneration and reduced scar de-
position. Accelerated locomotor functional recovery.

Paclitaxel (PTX) Endogenous NSC recruit-
ment and differentiation

Wang et 
al. [68]

2021 hUC-MSCs Inhibited neuronal apoptosis and the inflammatory 
response. Accelerated locomotor functional recovery.

miR-199a-3p/145-5p MiR-199a-3p and miR-
145-5p directly targeted 
Cblb and cbl and acti-
vated the NGF/TrkA/AKT/
ERK pathway.

Sun et al. 
[69]

2024 CD271 + CD56 + BMSC Promoted axonal regeneration in dorsal root ganglion 
axons.

miR-431-3p Regulated the miR-431-
3p/repulsive guidance 
molecule family member 
A (RGMA) axis.

Sheng et 
al. [75]

2021 BMSCs Improved axon regrowth. Accelerated locomotor 
functional recovery.

Promoted macrophage 
phagocytic activ-
ity through the MARCO 
receptor.

Qin et al. 
[37]

2024 EGFR+NSC Promoted neurite regrowth. Accelerated locomotor 
functional recovery.

miR-34a-5p MiR-34a-5p/HDAC6 axis 
contributed to micro-
tubule stabilization and 
autophagy induction.

Ma et al. 
[76]

2019 NSCs Promoted neural proliferation and regeneration. At-
tenuated apoptosis and neuroinflammation.

Insulin growth fac-
tor-1 (I
GF-1)

Regulated miR-219a-2-
3p/YY and finally inhib-
ited the NF-κB pathway.

Luo et al. 
[77]

2021 BMSCs Improved axon regrowth and attenuated apoptosis. 
Promoted vascular regeneration. Restrained glial 
scar formation and neuroinflammation. Accelerated 
locomotor functional recovery.

G protein-coupled
receptor kinase 2 
interacting protein 1 
(GIT1)

Activated the PI3K/AKT 
pathway.

Lu et al. 
[78]

2019 BMSCs Enhanced neuronal survival and regeneration. Ac-
celerated locomotor functional recovery.

Suppressed NF-κB p65 
signaling in pericytes.

Liu et al. 
[79]

2019 BMSCs Promoted axonal regeneration and angiogenesis. Re-
strained glial scar formation and neuroinflammation-
inhibited apoptosis. Accelerated locomotor functional 
recovery.

Suppressed NO release in 
microglia. Suppressed the 
activation of A1 neuro-
toxic reactive astrocytes.

Li et al. 
[57]

2022 BMSCs Promoted axonal regeneration. Accelerated NSC 
differentiation. Reduced glial scar formation and at-
tenuated neuronal apoptosis. Accelerated locomotor 
functional recovery.

NGF Upregulated expression 
of Tuj1, GAP-43, and 
MAP-2.

Li et al. 
[38]

2021 Microglia Promoted axonal regrowth and suppressed neuronal 
apoptosis. Accelerated locomotor functional recovery.

miR-151-3p Regulated miR-151-3p/
p53/p21/CDK1 signaling 
cascade.

Li et al. 
[67]

2018 BMSCs Promoted axonal regeneration. Accelerated locomo-
tor functional recovery.

miR-133b Activated ERK/STAT3/
CREB signaling pathways.

Jia et al. 
[58]

2021 BMSCs Increased neurogenesis and attenuated apoptosis. 
Accelerated locomotor functional recovery.

Sonic Hedgehog 
(Shh)

Regulated Ptch/Smo/
Gil-1 pathway.

Huang et 
al. [52]

2021 BMSCs Promoted neurofilament regeneration. Inhibited the 
neuroinflammation and neuronal apoptosis. Acceler-
ated locomotor functional recovery.

miR-494 NA

Table 1  Neurogenesis effect following exos treatment in SCI Animal models
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Fig. 5  Angiogenesis of Exos. A) Hypoxia-stimulated MSC-derived Exos encapsulated in hydrogel promote microvascular and nerve regeneration at the 
spinal lesion through the upregulation of VEGF. Modified from 2022, Biomaterials Science [31]. (By Figdraw). B) MF-NVs (macrophage membrane-fused 
Exo-mimetic nanovesicles) target the SCI lesion by binding to ischemic endothelium to exert multiple protective effects. Reproduced with permission 
[91]. Copyright 2020, International Journal of Molecular Sciences. C) BMSC-derived Exos cultured with macrophages to obtain EEMs. EEMs loaded on hy-
drogel promote axonal regeneration and angiogenesis in the injured spinal cord. Thus, EEMs accelerate microvasculature regeneration of the spinal cord. 
Reproduced with permission [94]. Copyright 2021, Frontiers in Cellular Neuroscience. D) Hydrogel-loaded M2-Exos facilitate microvascular regeneration 
and diminish the lesion area by activating the Wnt/β-catenin pathway following SCI. Reproduced with permission [85]. Copyright 2021, Acta Biomate-
rialia. SCI spinal cord injury; MSC mesenchymal stem cell; BMSC bone marrow mesenchymal stem cells; EEM Exo-educated macrophage; VEGF vascular 
endothelial growth factor

 

Author 
(year)

Pub-
lica-
tion 
year

Cell source Biological/medical improvement (Effect) Highlighted Exo-
associated cargo

Suggested mechanism

Huang et 
al. [80]

2020 BMSCs Promoted neurogenesis and angiogenesis and inhib-
ited cell apoptosis. Accelerated locomotor functional 
recovery.

miR-126 Regulated the SPRED1/
PIK3R2 signaling pathway.

Guo et 
al. [81]

2019 BMSCs Promoted axonal growth and neovascularization. 
Reduced glial scar. Accelerated locomotor functional 
recovery.

Phosphatase and 
tensin homolog 
small interfering RNA 
(ExoPTEN)

MSC-ExoPTEN silenced 
PTEN expression and up-
regulated mTOR activity.

Fan et al. 
[82]

2022 BMSCs Promoted axonal growth and enhanced local NSC 
recruitment. Inhibited neuroinflammation. Acceler-
ated locomotor functional recovery.

Regulated the NF-κB 
pathway and the PTEN/
PI3K/AKT/mTOR pathway.

Cheng et 
al. [60]

2021 BMSCs Promoted axonal growth and attenuated glial scars. 
Accelerated locomotor functional recovery.

NA

Chen et 
al. [62]

2021 BMSCs Promoted axonal regeneration and attenuated glia 
scarring.

miR-26a Activated the PTEN/AKT/
mTOR pathway.

Table 1  (continued) 
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migration by suppressing Sprouty-related EVH1 domain-
containing protein 1 and phosphoinositide-3-kinase 
regulatory subunit 2 (PIK3R2) expression [80]. These 
proteins function as inhibitors of the VEGF pathway [90].

Moreover, several studies have shown that Exos pro-
mote blood vessel formation independent of VEGF. For 
example, macrophage membrane-fused Exo-mimetic 
nanovesicles (MF-NVs) target the ischemic endothelium 
and promote angiogenesis (Fig.  5B) [91]. SCs-Exos pro-
mote angiogenesis by delivering integrin-β1 through the 
effect of control VE-cadherin localization and blood ves-
sel stability [92]. The administration of human placenta-
derived MSC-Exos (hpMSC-Exos) enhances the process 
of tube formation and HUVEC migration; moreover, 
BMS scores improved significantly in the hPMSCs-Exos 
group [93]. Treatment with Exo-educated macrophages 
(EEMs), defined as M2-like macrophages generated using 
Exos isolated from BMSCs, significantly improved the 
angiogenic activity of HUVECs and facilitated the devel-
opment of axonal growth in cortical neurons (Fig.  5C) 
[94].

The JNK/c-Jun, Wnt/β-catenin, and PTEN/mTOR 
signaling pathways participate in the regulation of 
angiogenesis. Specifically, unlike those prepared from 
untreated hMSCs, iron oxide nanoparticle-incorporated 
Exo-mimetic nanovesicles (NV-IONPs) actuate the JNK 
and c-Jun signaling pathway, and accumulated NV-
IONPs enhance blood vessel formation [95]. In turn, the 
M2-Exo-derived ubiquitin isopeptidase OTULIN can 
activate the Wnt/β-catenin signaling pathway by upreg-
ulating the expression of β-catenin, which in turn trig-
gers the upregulation of angiogenesis-related genes in 
SCMECs. These genes are known to be modulated by the 
Wnt/β-catenin signaling pathway (Fig.  5D) [85]. Subse-
quently, the use of MSC-Exos containing siRNA (ExoP-
TEN) reduces PTEN expression and promotes axonal 
growth and neovascularization [81]. Ultimately, cerebro-
spinal fluid-derived extracellular vesicles from pigs with 
SCI promote angiogenesis by activating the PI3K/AKT 
signaling pathway [96].

In angiogenesis, Exos interact with the PTEN/PI3K/
AKT/mTOR, Wnt/β-catenin, and JNK/c-Jun pathways to 
promote SCMEC migration, tube formation, and prolif-
eration. Particularly, JNK is tightly linked to the release of 
growth factors; similarly, c-Jun participates in the VEGF 
receptor 2 signaling axis (Table 2), [97, 98].

Preserving the integrity of the BSCB
The BSCB is crucial in preserving the stability of the 
microenvironment in the spinal cord; accordingly, BSCB 
disruption is detrimental to locomotor function recovery. 
Consistent with this, preserving the integrity of the BSCB 
can enhance spinal cord tissue repair and lead to move-
ment improvement following SCI [99, 100].

BMSC-Exos help preserve the integrity of BSCB and 
enhance the process of motor recovery after SCI, partly 
by regulating tissue inhibitors of the matrix metallopro-
teinase 2 (TIMP2)/matrix metalloproteinase (MMP) sig-
naling pathway. TIMP2 in BMSC-Exos alleviates BSCB 
damage by suppressing the MMP pathway, thereby pro-
tecting the expression of cell junction proteins (e.g., 
claudin-5, occludin, zonula occludens-1 (ZO-1), and 
β-catenin) [100, 101]. Moreover, extracellular vesicles 
that originate from MSCs can boost the levels of trans-
forming growth factor-beta (TGF-β), TGF-β receptors, 
and tight junction proteins and decrease the permeabil-
ity of the BSCB. These vesicles achieved an average BBB 
score of 7.96 ± 0.83, which was greater than that of the 
Vehicle group (4.74 ± 0.67) [102]. NSC-Exos containing 
FTY720, an immunomodulatory agent, can preserve the 
integrity of the endothelial barrier of SCMECs within a 
hypoxic environment via the PTEN/PI3K/AKT pathway 
[103]. Additionally, pericytes are crucial constituents 
of the neurovascular structure and present with various 
regulatory effects in preserving the BSCB integrity [104]. 
BMSC-Exos strengthen the BSCB integrity by preventing 
aberrant pericyte migration and improving pericyte cov-
erage at the barrier. This is achieved by downregulating 
the nuclear factor-kappa B (NF-κB) pathway [78]. More-
over, BMSC-Exos can protect BSCB and alleviate edema 
by suppressing pericyte pyroptosis through the inhibition 
of the Nod1 inflammasome. This improves the coverage 
of the pericyte and results in better functional recovery 
following injury [74]. High expression of MiR-210-5p 
in pericyte-derived Exos can inhibit the Janus kinase 
(JAK1)/STAT3 signaling pathway. This inhibition helps to 
regulate lipid peroxidation levels, improve mitochondrial 
function, and regulate endothelial barrier function [105].

To preserve the BSCB, Exos regulate the PTEN/PI3K/
AKT/mTOR, JAK/STAT3, and TIMP2/MMP signal-
ing pathways to limit the reduction of cell junction pro-
teins, upregulate TGF-β and its receptor, inhibit pericyte 
migration, improve the rate of pericyte coverage, and 
inhibit pericyte pyroptosis (Table 3) [74, 100].

Inhibiting apoptosis
SCI is characterized by axonal disruption and neuronal 
apoptosis and results in profound motor and sensory 
impairments [106]. Increasing evidence indicates that 
axonal growth and neuronal apoptosis are important 
areas of focus during SCI treatment. MiRNAs, which 
play critical roles in regulating cellular activities, are the 
predominant nucleic acids found in Exos and have been 
shown to positively influence the outcome of SCI.

Following SCI, treatment with MSC-miR-338-5p 
increases cyclic AMP (cAMP) accumulation and cAMP-
mediated repressor activator protein 1 (Rap1) activation. 
The eventual PI3K/AKT pathway activation reduces cell 
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apoptosis and enhances the survival of neurons [107]. 
BMSC-miR-181c inhibits PTEN and NF-κB signaling, 
ultimately decreasing the inflammation process and 
cell apoptosis in the spinal cord tissue and improving 
SCI (spinal cord contusive injury) [108]. MSC-miR-21/
miR-19b depletes PTEN mRNA/protein, significantly 

promotes axon growth, prevents neuronal apoptosis fol-
lowing nerve injury, and promotes functional recovery; 
it has also been shown to raise BBB scores in rats with 
SCI [109]. MSC-miR-21 enhances the locomotor recov-
ery of rats with contusive SCI by inhibiting cell death 
through the miR-21/PTEN/programmed cell death 

Table 2  Angiogenesis effect following exos treatment in SCI Animal models
Author 
(year)

Pub-
lica-
tion 
year

Cell source Biological/medical improvement (Effect) Highlighted 
Exo-associated 
cargo

Suggested mechanism

Zhong et 
al. [88]

2020 Neural stem 
cells (NSCs)

Increased microvascular density. Accelerated locomotor func-
tional recovery.

Vascular endo-
thelial growth 
factor-A (VEGF-A)

Enriched VEGF-A pro-
moted tissue healing.

Zhang et 
al. [93]

2020 hpMSCs Accelerated locomotor functional recovery. Enhanced 
angiogenesis

Proangiogenic effects on 
endothelial cells.

Mu et al. 
[31]

2022 Hypoxia-
stimulated 
hUC-MSCs

Promoted angiogenesis. Accelerated locomotor functional 
recovery.

Hypoxia-
inducible factor 
1-alpha

Hypoxia-inducible fac-
tor 1-alpha stimulated 
overexpression of VEGF in 
endothelial cells.

Luo et al. 
[85]

2021 BMDMs (M2) Promoted vascular regeneration. Accelerated locomotor func-
tional recovery.

Ubiquitin thioes-
terase otulin 
(OTULIN) protein

OTULIN activated Wnt/β-
catenin signaling in spinal 
cord microvascular endo-
thelial cells (SCMECs).

Luo et al. 
[77]

2021 BMSCs Promoted vascular regeneration and axonal regeneration. Ame-
liorated glial scar formation and neuroinflammation. Inhibited 
apoptosis. Accelerated locomotor functional recovery.

G 
protein-coupled
receptor kinase 
2 interacting 
protein 1 (GIT1)

GIT1 activated the PI3K/
AKT pathway.

Li et al.
[96]

2023 Cerebrospinal 
fluid from 
Female Bama 
miniature pigs

Enhanced vascular regeneration. Accelerated locomotor func-
tional recovery.

Activated the PI3K/AKT 
pathway.

Liu et al. 
[79]

2019 BMSCs Promoted vascular regeneration and axonal regeneration. Ame-
liorated glial scar formation and neuroinflammation. Inhibited 
apoptosis. Accelerated locomotor functional recovery.

Suppressed NO release in 
microglia; suppressed the 
activation of A1 neuro-
toxic reactive astrocytes.

Lee et al. 
[91]

2020 Macrophage 
membrane-
fused 
umbilical cord 
blood-derived 
MSCs

Enhanced blood vessel formation. Inhibited apoptosis and 
inflammation, prevented axonal loss, and decreased glial scar 
formation. Accelerated locomotor functional recovery.

Promoted macrophage 
polarization to M2.

Kim et al. 
[95]

2018 hMSCs Enhanced blood vessel formation. Inhibited apoptosis and 
inflammation. Accelerated locomotor functional recovery.

Iron oxide 
nanoparticles 
(IONPs)

Activated the JNK and 
c-Jun signaling cascade.

Huang et 
al. [89]

2022 M2 
macrophage

Promoted vascular regeneration. Accelerated locomotor func-
tional recovery.

Activated the HIF-1/VEGF 
signaling pathway.

Huang et 
al. [92]

2022 Schwann cells Promoted vascular regeneration. Accelerated locomotor func-
tional recovery.

integrin-β1 Delivered integrin-β1 to 
endothelial cells.

Huang et 
al. [86]

2017 BMSCs Promoted vascular regeneration. Attenuated cellular apoptosis 
and inflammation. Accelerated locomotor functional recovery.

Downregulated Bax 
TNF-α and IL-1β and up-
regulated Bcl-2 and IL-10.

Huang et 
al. [80]

2020 BMSCs Promoted vascular regeneration and neurogenesis and inhib-
ited cell apoptosis. Accelerated locomotor functional recovery.

miR-126 MiR-126 regulated the 
SPRED1/PIK3R2 pathway.

Guo et al. 
[81]

2019 BMSCs Promoted vascular regeneration and enhanced axonal growth. 
Reduced glial scar formation.

Phosphatase and 
tensin homolog 
small interfering 
RNA (ExoPTEN)

MSC-ExoPTEN regulated 
the PTEN/mTOR pathway.
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4 signaling pathway and activates the JAK/STAT sig-
naling pathways [110, 111]. Exos that originate from 
hypoxia-conditioned adipose tissue-derived stromal cells 
(ADSCs) (Hypo-Exos) that are enriched in miR-499a-5p 
significantly reduce neuronal apoptosis by regulating the 
c-jun N-terminal kinase 3 (JNK3)/c-jun apoptotic sig-
naling pathway by targeting JNK3 [112]. Conversely, low 
miR-429 expression in SCI (spinal cord contusive injury) 
plasma Exos promotes neuronal apoptosis by facilitating 
PTEN expression and affecting PI3K/AKT signaling [46], 
whereas human neuroepithelial stem cell-miR-29b down-
regulates PTEN/caspase-3 expression and subsequently 
suppresses neuronal apoptosis [113]. BMSC-miR-455-5p 
directly targets neurite outgrowth inhibitor A (Nogo-A), 
a myelin-associated axonal growth inhibitory protein, to 
promote autophagy and inhibit neuronal apoptosis [114]. 
Exo-miR-494 suppresses inflammation factors and cell 
apoptosis in the insulted region [52], while MiR-126 Exos 
enhance neurogenesis and inhibit apoptosis following 
SCI (spinal cord contusive injury) [80].

Additionally, Exos inhibit apoptosis via multiple sig-
naling pathways. G protein-coupled receptor kinase 2 
interacting protein 1 (GIT1)-BMSC-Exos alleviate neu-
ronal apoptosis by promoting PI3K/AKT signaling path-
way activation [77]. Li et al. [115] demonstrated that 
BMSCs-Exos efficiently triggered the upregulation of the 
Wnt/β-catenin signaling cascade, resulting in a signifi-
cant decrease of Bax, cleaved caspase-3, and cleaved cas-
pase-9. hUC-MSC-derived Exos reduced apoptosis via 
the Bcl-2/Bax pathway, facilitated the low-density lipo-
protein receptor-related protein 6/Wnt/β-Catenin signal-
ing cascade, and enhanced the level of c-myc and Cyclin 
D1 in damaged lesions after SCI [116]. Moreover, cellu-
lar damage can be mitigated by enhancing autophagy by 
administering treatments targeting the constituents of 

the lesion [117]. BMSC-Exos can inhibit cell apoptosis by 
activating autophagy by enhancing the autophagy-related 
proteins microtubule-associated protein 1  A/1B-light 
chain 3 IIB and beclin-1 expression, enabling autophago-
some formation and promoting the potential efficacy of 
locomotor recovery in rats with SCI (spinal cord contu-
sive injury) [118].

Overall, Exos exert antiapoptotic effects in various 
pathological conditions mainly through the PTEN/PI3K/
AKT/mTOR, Wnt/β-catenin, JNK/c-Jun, JAK/STAT, 
Bcl-2/Bax, and caspase signaling pathways to inhibit 
endoplasmic reticulum (ER) stress and promote autoph-
agy (Table 4) [119, 120].

Regulating inflammation
Excessive neuroinflammation impedes neuronal regen-
eration, thereby contributing to the poor prognosis of 
patients with SCI [41, 127]. Severe neuroinflammation 
hinders the ability of axonal regeneration in the lesion 
site to rebuild connections with neighboring neurons, 
which leads to long-lasting neurological deficits [61, 128]. 
Notably, the inhibitory effect of inflammatory and scar-
ring activities observed following the application of pro-
genitor cells in SCI are mediated by their secreted Exos 
[129].

Exos are paracrine factors released by progenitor cells, 
which inhibit dysregulated neuroinflammatory cascades. 
Exos transport and discharge anti-inflammatory mol-
ecules such as berberine, miR-181c, LncGm37494, and 
insulin growth factor-1 (IGF-1) [44, 76, 108, 130]. These 
molecules can reduce the level of reactive oxygen spe-
cies (ROS) and inflammatory cytokines at the lesion site 
of the spinal cord tissue during the initial stages of sec-
ondary damage [79, 129, 131]. Additionally, exosomal 
miRNAs can be exchanged between different immune 

Table 3  BSCB protection effect following exo treatment in SCI animal models
Author 
(year)

Pub-
lica-
tion 
year

Cell source Biological/medical improvement (Effect) Highlighted 
Exo-associ-
ated cargo

Suggested mechanism

Zhou et al.
[74]

2022 Bone marrow-
derived stem 
cells (BMSCs)

Decreased blood–spinal cord barrier (BSCB) leakage. 
Promoted axonal regeneration. Accelerated locomotor 
functional recovery.

Reduced caspase 1 expression 
and inhibited IL-1β release.

Xin et al.
[101]

2021 BMSCs Preserved the integrity of the BSCB. Accelerated locomotor 
functional recovery.

Regulated the TIMP2/MMP 
pathway.

Nakazaki et 
al. [102]

2021 BMSCs Reduced BSCB permeability. Stabilized the BSCB. Acceler-
ated locomotor functional recovery.

Upregulated TGF-β, TGF-β recep-
tors, and tight junction proteins.

Lu et al.
[78]

2019 BMSCs Preserved the integrity of the BSCB and suppressed the 
migration of pericytes. Enhanced neuronal survival and 
regeneration. Accelerated locomotor functional recovery.

Regulated NF-κB p65 signaling 
in pericytes.

Gao et al.
[105]

2023 OGD-exposed 
Pericyte(Mouse 
brain microvas-
culature-derived 
pericytes)

Improved BSCB integrity. Accelerated locomotor functional 
recovery.

miR‑210 Inhibited the JAK1/STAT3 
signaling pathway. Improved 
mitochondrial function and 
inhibited lipid peroxidation in 
vascular endothelial cells.



Page 13 of 27Li et al. Stem Cell Research & Therapy          (2024) 15:335 

Author 
(year)

Pub-
lica-
tion 
year

Cell source Biological/medical improvement (Effect) Highlighted Exo-
associated cargo

Suggested mechanism

Zhu et al. 
[121]

2023 Schwann cells Reduced neuronal apoptosis and inhibited the 
inflammatory response.

Combine with 
Methylprednisolone

Inhibited the TLR4/NF-κB and 
MAPK pathways and promoted 
the AKT/mTOR pathway.

Zhang et 
al. [108]

2021 BMSCs Reduced neuronal apoptosis and inhibited the 
inflammatory response.

miR-181c Inhibited PTEN and suppressed 
the NF-κB signaling pathway.

Zhang et 
al. [107]

2021 BMSCs Reduced neuronal apoptosis and promoted neuronal 
survival.

miR-338-5p Regulated cAMP/Cnr1/Rap and 
activated the PI3K/AKT pathway.

Wang et 
al. [122]

2018 BMSCs Reduced neuronal apoptosis. Inhibited the inflamma-
tory response.

Inhibited nuclear translocation of 
NF-κB p65.

Wang et 
al. [68]

2021 hUC-MSCs Inhibited neuronal apoptosis and the inflammatory 
response. Accelerated locomotor functional recovery.

miR-199a-3p/145-5p NA

Xu et al. 
[109]

2019 Human 
mesenchymal 
cells (hMSCs)

Inhibited neuronal apoptosis. Accelerated locomotor 
functional recovery.

miR-21/miR‐19b MiR-199a-3p and miR-145-5p 
directly targeted Cblb and cbl 
and activated the NGF/TrkA/AKT/
ERK pathway.

Luo et al. 
[77]

2021 BMSCs Inhibited neuronal apoptosis. Promoted vascular 
regeneration, limited glial scar formation and neu-
roinflammation, and promoted axonal regeneration. 
Accelerated locomotor functional recovery.

G protein-coupled 
receptor kinase 2 
interacting protein 1 
(GIT1)

MiR-21/miR-19 regulated PTEN.

Ren et al. 
[42]

2023 Schwann cells Inhibited neuronal apoptosis. Improved inflammatory 
microenvironment. Accelerated locomotor functional 
recovery.

MFG-E8 Regulated the SOCS3/STAT3 
signaling pathway.

Liang et 
al. [112]

2022 ADSCs under 
hypoxic 
conditions

Inhibited neuronal apoptosis. Accelerated locomotor 
functional recovery.

miR-499a-5p (under 
oxygen-glucose depri-
vation and reperfusion 
condition)

Regulated the JNK3/c-jun-apop-
totic signaling pathway.

Liu et al. 
[79]

2019 BMSCs Inhibited neuronal apoptosis. Promoted vascular 
regeneration, decreased glial scar deposition and in-
flammatory response, and accelerated axonal regen-
eration. Accelerated locomotor functional recovery.

Suppressed NO release in 
microglia; suppressed the activa-
tion of A1 neurotoxic reactive 
astrocytes.

Liu et al. 
[123]

2021 BMSCs Inhibited neural apoptosis. Suppressed inflamma-
tion and oxidative stress. Accelerated locomotor 
functional recovery.

Long non-coding RNA 
tectonic family mem-
ber 2 (TCTN2)

TCTN2 targeted the miR-329-3p/
IGF1R pathway.

Li et al.
[57]

2022 BMSCs Inhibited neuronal apoptosis. Accelerated NSC dif-
ferentiation and axonal regeneration and reduced 
glial scar formation. Accelerated locomotor functional 
recovery.

NGF Enhanced expression of Tuj1, 
GAP-43, and MAP-2.

Li et al.
[38]

2021 Microglia Inhibited neuronal apoptosis and promoted axonal 
regrowth. Accelerated locomotor functional recovery.

miR-151-3p MiR-151-3p regulated the p53/
p21/CDK1 signaling cascade.

Li et al. 
[115]

2019 BMSCs Inhibited neuronal apoptosis. Accelerated locomotor 
functional recovery.

Activated Wnt/β-catenin signal-
ing pathway, suppressed the 
expression of Bax, and cleaved 
caspase-3 and caspase-9 but pro-
moted the expression of Bcl-2.

Lee et al. 
[91]

2020 Macrophage 
membrane-
fused 
umbilical cord 
blood-derived 
MSCs

Inhibited neuronal apoptosis. Attenuated inflamma-
tion, enhanced angiogenesis, and decreased fibrosis. 
Accelerated locomotor functional recovery.

Promoted M2 macrophage 
polarization.

Kim et al. 
[95]

2018 hMSCs Inhibited neuronal apoptosis. Enhanced blood vessel 
formation and attenuated inflammation. Accelerated 
locomotor functional recovery.

Iron oxide nanopar-
ticles (IONPs)

Activated the JNK and c-Jun 
signaling cascade.

Kang et 
al. [110]

2019 MSCs Inhibited neuronal apoptosis. Accelerated locomotor 
functional recovery.

miR-21 MiR-21 inhibited the expression 
of PTEN/PDCD4.

Table 4  Anti-apoptosis effect following exos treatment in SCI animal models
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cells and repress gene expression, with such Exo-medi-
ated intercellular communication potentially influencing 
immune cell maturation [24, 131]. Exosomal miRNAs 
regulate target cells and may be crucial for modulating 

biological processes [41, 132]. MiR-544-modified BMSC-
Exos markedly suppress the generation of the inflam-
matory cytokines interleukin 1α (IL-1α), tumor necrosis 
factor-alpha (TNF-α), IL-17β, and IL-36β at lesion site of 

Author 
(year)

Pub-
lica-
tion 
year

Cell source Biological/medical improvement (Effect) Highlighted Exo-
associated cargo

Suggested mechanism

Kang et 
al. [113]

2020 Human 
neuroepithe-
lial stem cells 
(HNESCs)

Inhibited neuronal apoptosis. Accelerated locomotor 
functional recovery.

miR-29b MiR-29b downregulated the 
expression of PTEN/caspase-3 
pathway.

Kang et 
al. [116]

2022 hUC-MSCs Inhibited neuronal apoptosis. Suppressed inflam-
matory response. Accelerated locomotor functional 
recovery.

Increased BCL-2, decreased Bax 
and reduced cleaved caspase 
9, and activated the LRP‑6/
Wnt/β-catenin-c-myc, cyclin D1 
(CCND1) signaling pathway.

Jia et al. 
[58]

2021 BMSCs Inhibited neuronal apoptosis. Improved neurogenesis. 
Accelerated locomotor functional recovery.

Sonic Hedgehog (Shh) Shh regulated the Ptch/Smo/
Gil-1 pathway.

Ji et al. 
[111]

2019 BMSCs Inhibited neuronal apoptosis. Accelerated locomotor 
functional recovery.

miR-21 NA

Huang et 
al. [124]

2021 BMSCs Inhibited neuronal apoptosis. Inhibited inflamma-
tion-attenuated glial scar. Accelerated locomotor 
functional recovery.

siRNA specifically si-
lenced the connective 
tissue growth factor 
(Ctgf) gene

Exo-siRNA inhibited Ctgf 
expression.

Huang et 
al. [52]

2021 BMSCs Inhibited neuronal apoptosis. Promoted neurofila-
ment regeneration and inhibited inflammation. Ac-
celerated locomotor functional recovery.

miR-494 NA

Huang et 
al. [86]

2017 BMSCs Inhibited neuronal apoptosis. Attenuated inflam-
mation and promoted angiogenesis. Accelerated 
locomotor functional recovery.

Decreased Bax, TNF-α, and IL-1β. 
Upregulated Bcl-2 and IL-10.

Huang et 
al. [80]

2020 BMSCs Inhibited neuronal apoptosis. Promoted neurogenesis 
and angiogenesis. Accelerated locomotor functional 
recovery.

miR-126 MiR-126 inhibited SPRED1 and 
PIK3R2.

Huang et 
al. [46]

2022 Plasma Inhibited the apoptosis of nerve cells. miR-429 MiR-429 regulated the PTEN/
PI3K/AKT axis.

He et al. 
[125]

2022 BMSCs Inhibited neuronal apoptosis. Inhibited inflammation, 
cytokines, and ER stress marker protein. Accelerated 
locomotor functional recovery.

miR-9-5p MiR-9-5p inhibited HDAC5-
mediated FGF2 deacetylation 
and promoted fibroblast growth 
factor 2 (FGF2) expression.

Gu et al. 
[118]

2020 BMSCs Inhibited neural apoptosis by promoting autophagy. 
Accelerated locomotor functional recovery.

Enhanced the level of autoph-
agy-related proteins LC3IIB 
and Beclin-1. Decreased the 
expression of cleaved caspase-3 
and enhanced the expression 
of Bcl-2.

Gao et al. 
[44]

2021 IL-4-treated 
peritoneal 
macrophages

Inhibited neuronal apoptosis. Accelerated locomotor 
functional recovery.

Berberine Regulated macrophage polariza-
tion and reduced inflamma-
tory and apoptotic cytokines 
(TNF-α, IL-1 β, IL-6, caspase 9, and 
caspase 8).

Chen et 
al. [103]

2021 NSCs Inhibited neuronal apoptosis. Reduced inflamma-
tory infiltration. Accelerated locomotor functional 
recovery.

FTY720 Regulated the PTEN/AKT path-
way, decreased the expression of 
Bax and AQP-4, and upregulated 
the expression of claudin-5 and 
Bcl-2.

Chang et 
al. [126]

2021 BMSCs Inhibited neuronal apoptosis. Promoted M2-phe-
notype polarization and inhibited the inflammatory 
response. Accelerated locomotor functional recovery.

miR-125a Negatively regulated IRF5 
expression.

Table 4  (continued) 
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spinal cord tissues following SCI (spinal cord contusive 
injury) [133]. BMSC-Exo-miR-494 effectively suppresses 
inflammation and apoptosis in the affected region [52]. 
Furthermore, BMSC-derived exosomal miR-9-5p has 
been reported to enhance BBB scores at days 1, 3, 7, 14, 
and 28 post-treatment compared with the sham group 
by promoting fibroblast growth factor 2 expression by 
downregulating histone deacetylase 5-mediated deacety-
lation, thereby ameliorating inflammation and ER stress 
(Fig.  6A) [125]. Exos can also act as safe and efficient 
siRNA delivery vectors that can traverse the BSCB to 
convey biological genetic information. Exo-siRNA, which 
can specifically silence the connective tissue growth fac-
tor gene, significantly quenches inflammatory response 
and hinders neural cell apoptosis along with A1 astrocyte 
activation and glial scar deposition [124].

Recent studies have further demonstrated that exo-
somal miRNAs inhibit both canonical and noncanoni-
cal inflammatory signaling pathways. BMSC-Exos can 
suppress the apoptosis and inflammatory response 
after injury and promote locomotor recovery by down-
regulating the Toll-like receptor 4 (TLR4)/myeloid 

differentiation primary response gene 88 (MyD88)/
NF-κB signaling pathway [136]. MiR-181c in BMSC-Exos 
inhibits PTEN and the NF-κB expression on the decrease 
of I kappa B kinase alpha/beta (IKKα/β) phosphorylation 
and p65 expression in microglia nuclei, thereby medi-
ating inflammation [108]. BMSC-Exos exert a protec-
tive effect in SCI (right semicircular spinal cord severed 
model) by suppressing the production and release of 
complement mRNA, as well as SCI-activated NF-κB (as 
indicated by significantly downregulated levels of p-p65 
and p-IκBα) by binding to microglia [137]. MSC-Exos 
promote hind limb function recovery, and miR-145-5p 
expression is increased at the lesion site of SCI, lead-
ing to the suppression of the TLR4/NF-κB pathway and 
thereby suppressing the inflammatory reaction [138]. Liu 
et al. [79] and Wang et al. [122] clarified that MSCs-Exos 
treatment significantly improved the BBB score and that 
MSC-Exos reduced SCI (spinal cord contusive injury)-
induced neurotoxic reactive A1 astrocyte activation fol-
lowing traumatic SCI. Wang et al. [122] also found that 
A1 astrocyte diminish was likely induced by suppressing 
the nuclear translocation of NFκB p65; the BBB score 

Fig. 6  Exos Extracted From MSCs Mitigate Inflammation Following SCI. A) Exos derived from BMSCs release miR-9-5p and mitigate neuronal inflam-
mation following SCI. Reproduced with permission [125]. Copyright 2022, Molecular Immunology. B) HMSC-derived Exos immobilized in hydrogel can 
eliminate ROS and inflammatory factors, promoting nerve repair in SCI. Reproduced with permission [134]. Copyright 2020, Nano Letters. C) EXO-C@P 
accelerates locomotor function recovery through M2 macrophage polarization and injury volume restriction of SCI. Reproduced with permission [135]. 
Copyright 2021, Materials Science & Engineering C, Materials for Biological Applications. SCI spinal cord injury; MSC mesenchymal stem cell; BMSC bone mar-
row mesenchymal stem cells; HMSC human mesenchymal cell

 



Page 16 of 27Li et al. Stem Cell Research & Therapy          (2024) 15:335 

in the MSC-Exo treatment group was 14.450 ± 0.411. 
Hypo-Exos from MSCs mediate microglial polarization 
via enriched miR-216a-5p to modulate TLR4/NF-κB/
PI3K/AKT signaling cascades. Hypoxia Exos from MSCs 
(HExos) enrich miR-216a-5p, which can modulate the 
TLR4/NF-κB/PI3K/AKT signaling pathway and mediate 
microglial polarization [139]. The overexpression of miR-
544 in BMSC-Exos reduces inflammation following SCI 
(spinal cord contusive injury) [133].

NSC-derived Exos formed in the presence of IGF-1 
upregulate miR-219a-2-3 expression to inhibit the yin 
yang 1/NF-κB pathway, thereby inhibiting inflammation 
and promoting neuroprotective effects following SCI 
(spinal cord contusive injury) [76]. Human epidural adi-
pose tissue-derived MSCs can reverse thrombospondin 
4 (THBS4) and B-cell lymphoma 3 (Bcl3) levels in SCI 
(clip compression injury); specifically, THBS4 supports 
local vascular inflammation, while BCL3 is aggregated 
at the nucleus and controls the activity of NF-κB in gene 
transcription [140]. Exos derived from long non-coding 
RNA (lncRNA) tectonic family member 2-modified 
MSCs attenuate inflammation via the miR-329-3p/IGF1R 
axis [123]. MSC-Exo lncGm36569, which acts as both an 
inhibitor and mimic of miR-5627-5p, inhibits neural cell 
ferroptosis via the miR-5627-5p/ferroptosis suppressor 
protein 1 axis [53].

Exos secreted by immune cells other than MSCs 
can also inhibit inflammation. Schwann cell-derived 
Exos (SCDEs) can enhance normal function restora-
tion in mice following SCI by reducing the accumula-
tion of chondroitin sulfate proteoglycan (CSPG). This is 
achieved by boosting TLR2 levels of astrocytes via the 
NF-κB/PI3K signaling cascade [43]. Peripheral macro-
phage (PM)-Exos activate microglial autophagy by down-
regulating the PI3K/AKT/mTOR signaling cascade [40]. 
MiR-126-3p originated from hypoxia-preconditioned 
VSC 4.1 neuron-derived Exos alleviate the hypersensitiv-
ity to pain caused by infrared radiation by restoring miR-
126-3p expression in the affected site after SCI. This, in 
turn, regulates the activity of the PIK3R2-mediated PI3K 
and NF-κB pathways [141, 142].

Additionally, studies have explored different aspects 
of traditional mechanical research, including Exo appli-
cation methods, modifications, and cell phagocytosis. 
Romanelli et al. [143] reported that intralesional applica-
tion of Exos secreted by human umbilical cord mesen-
chymal stromal cells was more potent than intravenous 
administration regarding the restriction of the inflamma-
tory process and glial scarring following SCI (spinal cord 
contusive injury). HMSC-derived Exos loaded on pep-
tide-modified adhesive hydrogel (Exo-pGel) effectively 
mitigate inflammation and oxidation (Fig.  6B) [134]. 
EXO-C@Ps, incorporating a CAQK peptide to convey 
CRISPR/Cas9 components with the ability to edit the 

genome to upregulate soluble TNF receptor-1 (sTNFR1) 
at the lesion site, neutralize TNF-α and quench the 
inflammatory process activated by TNF-α (Fig. 6C) [135]. 
MF-NVs efficiently target ischemic and inflammatory 
organs and attenuate apoptosis and inflammation [91]. 
Finally, BMSC-Exos increase the expression of collag-
enous structure receptors (MARCOs) on macrophages, 
resulting in improved phagocytosis of engulfed myelin 
debris (Fig. 7) [75].

Additionally, pyroptosis, an innate immune 
response, is regulated by Exos in patients with SCI. 
M2 microglial Exos (M2-Exos) rich in miR-672-5p can 
downregulate the absent in melanoma 2 (AIM2)/apopto-
sis-associated speck-like protein containing a C-terminal 
caspase recruitment domain (ASC)/caspase-1 signaling 
pathway by blocking AIM2 activity, thereby preventing 
neuronal pyroptosis [39]. Tregs target NF-κB-activating 
protein via exosomal miR-709 to reduce microglia pyrop-
tosis [41].

Macrophage/microglia activity constitutes an impor-
tant factor in adjusting inflammatory responses in SCI. 
Modified macrophages release various Exos to regulate 
the inflammation response (Fig. 8A) [25]. Targeted inter-
vention in SCI involves inhibiting the recruitment and 
proliferation of macrophages and preventing macrophage 
polarization. These processes contribute significantly to 
tissue regeneration and homeostasis maintenance [144, 
145]. Exos derived from various cell types can suppress 
the inflammation process in the spinal tissue microen-
vironment after SCI and prevent M1 cells and reactive 
astrocyte activation. Additionally, Exos can facilitate 
microglia polarization to the M2 type, which has anti-
inflammatory properties. Furthermore, Exos can extend 
the duration of M2 cell stay in the spinal cord [39, 42, 
45, 146–148]. MSC-derived Exos specifically promote 
M2 polarization at the injury site after SCI (spinal cord 
contusive injury) [146] and HUC-MSC-Exos trigger the 
polarization of BMDMs to the M2 phenotype [149]. Den-
tal pulp stem cell-derived Exos can decrease M1 polar-
ization via the ROS-mitogen-activated protein kinase 
(MAPK)-NF-κB-P65 signaling pathway in SCI (spinal 
cord contusive injury) treatment; at 28 days post-SCI, the 
Exo-treated group presented with greater BMS scores 
(phosphate-buffered saline vs. Exos: 2.333 ± 1.155 vs. 
4.667 ± 0.577) [147]. MiR-222-3P upregulation in endo-
thelial progenitor cell Exos decreases proinflammatory 
macrophages and increases anti-inflammatory macro-
phages by activating the suppressor of the cytokine sig-
naling 3 (SOCS3)/JAK2/STAT3 pathway; consequently, 
the ERC-Exos group showed better BMS scores [150]. 
BMSC-Exo-enriched miR-125a downregulates interferon 
regulatory factor 5 expression to promote M2-phenotype 
polarization [126]. LncRNA-Gm37494 overexpressed 
in hypoxia-pretreated ADSCs inhibits miR-130b-3p and 
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enhances peroxisome proliferator-activated receptor 
gamma expression to promote microglial M1/M2 polar-
ization, which suppresses inflammation by inhibiting 
the STAT/NF-κB pathways [130]. Exos produced from 
MSCs replicate the effects of a single MSC infusion on 
many factors, such as the enhanced expression of M2 
macrophage markers [102]. HExos enriched in miR-
216a-5p promote M2 polarization via the TLR4/NF-κB/
PI3K/AKT signaling cascades [139]. BMSC-derived exo-
somal microRNA-124-3p ameliorates SCI (spinal cord 
ischemia injury) by inhibiting ER to nucleus signaling 1 
and promoting M2 polarization [151]. Berberine-loaded 
M2 macrophage-derived Exos (Exos-Ber) induce macro-
phage/microglia phenotype polarization, consequently 
decreasing the amount of inflammatory cytokines TNF-
α, IL-1β, and IL-6 (Fig. 8B) [44]. M2 macrophage-derived 
Exos inhibit the inflammatory response through macro-
phage polarization via the miR-23a-3p/PTEN/PI3K/AKT 
network [45]. MFG-E8, the main component of SCDEs, 
upregulates M2 polarization via the SOCS3/STAT3 sig-
naling cascade [42]. Nevertheless, PM-Exos promote 
M2 polarization (Fig.  8C) [40]. Additionally, neural tis-
sue-like electroconductive hydrogels carrying BMSC-
Exos promote microglial M2 polarization via the NF-κB 

pathway and promote axonal regeneration via the PTEN/
PI3K/AKT/mTOR pathway (Fig. 9) [82]. Moreover, Exos 
derived from Schwann cells loaded on hydrogel (NFs@
MP-HAh@Exo) suppressed the inflammation process 
through M2 polarization and promoted neurons survival 
after SCI via the TLR4/NF-κB, MAPK, and AKT/mTOR 
pathways (Fig. 10) [121].

To attain anti-inflammatory effects, Exos inhibit com-
plement mRNA synthesis and release, neuronal and 
microglial pyroptosis, neuronal cell ferroptosis, and 
excessive accumulation of lipid peroxides and suppress 
the activation of astrocytes to the A1 type. Exos also pro-
mote microglial autophagy, macrophage polarization, 
and myelin debris phagocytosis. Finally, the expression of 
proinflammatory cytokines is decreased. These numer-
ous anti-inflammatory effects are achieved mainly by 
modulating the TLR4/MyD88/NF-kB signaling pathway, 
which regulates the inflammation process by stimulating 
ROS secretion and proinflammatory cytokines, including 
TNF-γ, IL-1, and interferon-γ, thereby eliciting secondary 
neurotoxicity effects [152]. In summary, Exos and their 
cargo can modulate diverse important molecular signal-
ing pathways to mitigate the pathological microenviron-
ment following SCI (Table 5).

Fig. 7  BMSC-Exo Hydrogel Promotes the Macrophage Phagocytosis Effect after SCI. A) BMSC-Exo administration mixed with hydrogel upregulates 
MARCO, which in turn enhances the ability of macrophage to clear myelin debris that promotes the regeneration of axons following SCI. B) Hematoxylin 
& eosin (H&E) staining shows that BMSC-Exo-Hydrogel diminishes the SCI area following SCI in vivo. C) Immunofluorescence images show that BMSC-
Exo-Hydrogel improves axon growth following SCI in vivo. Reproduced with permission [75]. Copyright 2021, Frontiers in Cell and Developmental Biology. 
SCI spinal cord injury; BMSC bone marrow mesenchymal stem cells
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Conclusions and future prospects
Exos have attracted significant interest as cell-free 
therapies owing to their fascinating biological proper-
ties. Increasing evidence from preclinical studies has 
confirmed the neuroprotective properties of Exos. On 
administration, Exos can specifically target and accumu-
late at spinal cord lesion sites and accelerate locomotor 
functional recovery. These beneficial effects have been 
mainly attributed to neurogenesis, angiogenesis, preser-
vation of the BSCB, and anti-apoptotic and anti-inflam-
matory effects.

A thorough understanding of the potential mechanisms 
of action of Exos will facilitate their clinical application. 
Currently, Exos have successfully made the journey to 
being effectively applied in several Phase I trials [153–
155]. However, several challenges remain regarding the 
establishment of the optimal application of Exos for SCI 
treatment. For example, several aspects are inconsistent 
between studies including the Exos isolation methods, 
application dosage, route of delivery, and treatment time 
points (Table S1). Additionally, SCI models have been 
developed using different methods (contusion injury, 
crush injury, clip compression injury, circular and semi-
circular spinal cord severed injury, and ischemia injury); 
moreover, the parameters of contusion and crush injuries 

vary, as well as SCI animal models, including both rats 
and mice (Table S2).

Improving the yield and purity of Exos is the most 
important priority since it remains the main bottleneck 
limiting their practical application. Although ultracentri-
fugation is considered the “gold standard” and is widely 
used in the field [25], this technology presents vari-
ous limitations, including the simultaneous isolation of 
contaminants that are not exosomal in nature, limited 
reproducibility, low yield of RNA, potential damage to 
Exos, and insufficient capacity to process a large num-
ber of samples, making it unsuitable for clinical appli-
cations [156]. Establishing the application dosage and 
delivery method is also important, as these vary widely 
among studies. Additionally, the rapid clearance of Exos 
by host cells, their short half-life in vivo, and inefficient 
drug delivery to target tissues continue to impede Exos 
aggregation in the SCI area [155, 157, 158]. Combining 
the inherent advantages of Exos with a targeted medica-
tion has emerged as a new and potentially transformative 
therapeutic strategy that could significantly impact the 
future of SCI treatment. The remaining strategic chal-
lenges include the selection of a therapeutic agent, meth-
ods for loading cargo into Exos, enhancement of Exos 
stability, tissue targeting, and effective delivery of cargo 
to recipient cells that can utilize inherent Exo properties, 

Fig. 8  Exos Inhibit Inflammation and Accelerate Macrophage Polarization to M2. A) The path from Exos derived from macrophage drug formulations 
to patient application. Reproduced with permission [25]. Copyright 2015, Journal of Controlled Release. B) M2 macrophage-derived Exos loaded with 
berberine quench inflammatory factors. Reproduced with permission [44]. Copyright 2021, Acta Biomaterialia. C) Macrophage-derived Exos accelerate 
microglial polarization to the anti-inflammation type by enhancing autophagy. Reproduced with permission [40]. Copyright 2021, International Journal 
of Biological Sciences
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such as immune modulation, regeneration promotion, 
and pathogen suppression [155]. Hence, it is impera-
tive to optimize and enhance the Exo-loading capacity 
and techniques for improving targeting [159]. Particu-
larly, culture conditions, including the cell type, passage 
number, number of cells seeded to initiate culture, and 
medium composition, influence not only Exos but also 
cargo levels [160]. Finally, a standardized animal model 
remains to be developed as current contusion parameters 
for the NYU-III weight-drop apparatus are discrepant 
between studies regarding height and weight, while ani-
mal model heterogeneity causes inconsistencies in SCI 

severity. Overall, these factors significantly influence the 
therapeutic effect, with the inter-study variability render-
ing the final curative results difficult to interpret.

In summary, although Exo-based therapeutics have 
been successful in numerous trials, some obstacles 
remain to be overcome before Exos can be tested clini-
cally on a larger scale. Determining how Exos target 
specific cells and understanding the distinct physiologi-
cal roles of different Exo subtypes will help facilitate the 
progress of Exos in the field of drug delivery.

Fig. 9  Exo-loaded Electroconductive Hydrogel Exerts Potent Protective Effects Following SCI. A) Exo-loaded electroconductive hydrogel creates a favor-
able environment for neurogenesis, axonal regeneration, and inflammation inhibition. B) Exo-loaded electroconductive hydrogel accelerating dorsal root 
ganglia grown on the hydrogel. Scale bars: 100 μm. C) Neuronal and oligodendrocyte differentiation of NSCs is enhanced, while astrocyte differentiation 
is inhibited; moreover, axon outgrowth is increased via the PTEN/PI3K/AKT/mTOR pathway. Microglia M2 polarization is promoted by the NF-𝜅B pathway. 
Reproduced with permission [82]. Copyright 2022, Advanced Science. NSC neural stem cell; SCI spinal cord injury
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Fig. 10  Nanofibers Containing MP (Methylprednisolone) and Exos Loaded on Hydrogel (NFs@MP-HAh@Exo) Inhibit Neuronal Apoptosis and the Inflam-
matory Reaction. A) NFs@MP-HAh@Exo regulate macrophage polarization. B) Immunofluorescence and hematoxylin & eosin stain images show that 
NFs@MP-HAh@Exo promote shrinkage of the SCI cavity in the injured lesion area after SCI. C) Immunofluorescence images show that NFs@MP-HAh@Exo 
promote axonal regeneration after SCI. D) Immunofluorescence images show that NFs@MP-HAh@Exo alleviate inflammation after SCI. Reproduced with 
permission [121]. Copyright 2023, ACS Nano. SCI spinal cord injury
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Author 
(year)

Pub-
lica-
tion 
year

Cell source Biological/medical improvement (Effect) Highlighted Exo-
associated cargo

Suggested mechanism

Zhu et al. 
[121]

2023 Schwann cells Inhibited the inflammation process and reduced 
neuronal apoptosis.

Combine with 
Methylprednisolone

Inhibited the TLR4/NF-κB and 
MAPK pathways and promoted 
the AKT/mTOR pathway.

Zhang et 
al. [108]

2021 BMSCs Inhibited inflammation and apoptosis in the spinal 
cord.

miR-181c Inhibited PTEN and suppression 
of the NF-κB signaling pathway.

Zhao et 
al. [137]

2019 BMSCs Inhibited the inflammatory response. Accelerated 
locomotor functional recovery.

Inhibited complement mRNA 
expression and nuclear factor-
kappa B (NF-κB) upregulation by 
binding to microglia.

Zhang et 
al. [40]

2021 Peripheral 
macrophages

Inhibited the inflammatory response. Accelerated 
locomotor functional recovery.

Activated microglial autophagy 
through the inhibition of the 
PI3K/AKT/mTOR signaling 
pathway.

Yuan et 
al. [150]

2023 Endothe-
lial progenitor 
cells (EPCs)

Promoted macrophage anti‑inflammatory polariza-
tion and attenuated tissue damage. Accelerated 
locomotor functional recovery.

miR-222-3P MiR-222-3P mimic activated the 
SOCS3/JAK2/STAT3 pathway.

Xiong et 
al. [41]

2022 Regulatory T 
(Treg) cells

Reduced microglia pyroptosis. Accelerated locomo-
tor functional recovery.

miR-709 MiR-709 targeted the NKAP/
NF-κB signaling pathway to 
reduce microglia pyroptosis.

Wang et 
al. [135]

2021 hUC-MSCs Inhibited the concentration of proinflammatory fac-
tors. Accelerated locomotor functional recovery.

(1) Polypeptide (CAQK 
peptide); (2) CRISPR/
Cas9 components

Exos secreted soluble tumor ne-
crosis factor receptor-1 (sTNFR1), 
which neutralized TNF-α.

Wang et 
al. [122]

2018 BMSCs Inhibited the inflammatory response and exerted 
neuroprotective effects. Inhibited neuronal apoptosis.

Reduced A1 astrocytes activation 
by inhibiting the nuclear translo-
cation of NF-κB p65.

Wang et 
al. [68]

2021 hUC-MSCs Inhibited the inflammatory response and neuro-
nal apoptosis. Accelerated locomotor functional 
recovery.

miR-199a-3p/145-5p MiR-199a-3p and miR-145-5p 
directly targeted Cblb and cbl 
and activated the NGF/TrkA/AKT/
ERK pathway.

Sung et 
al. [140]

2022 Human epi-
dural adipose 
tissue-derived 
MSCs (hEpi 
AD–MSCs)

Reduced the inflammatory response. Accelerated 
locomotor functional recovery.

Regulated the Thbs4/Bcl3/NF-κB 
pathway.

Sun et al. 
[149]

2018 hUC-MSCs Reduced the inflammatory response. Accelerated 
locomotor functional recovery.

Triggered M2 polarization and 
downregulated inflammatory 
cytokines, such as TNF-α, MIP-1α, 
IL-6, and IFN-γ.

Sheng et 
al. [75]

2021 BMSCs Reduced the inflammatory response and promoted 
axon regrowth. Accelerated locomotor functional 
recovery.

Promoted macrophage phago-
cytic activity through the MARCO 
receptor.

Shao et 
al. [130]

2020 Adipose 
tissue-derived 
mesenchymal 
stem/stromal 
cells
(ADSCs) under 
hypoxia

Reduced the inflammatory response. Accelerated 
locomotor functional recovery.

LncGm37494 Regulated the LncGm37494/miR-
130b-3p/PPARγ pathway.

Romanel-
li et al. 
[129]

2019 hUC-MSCs Reduced the inflammatory response and afforded 
anti-scarring effects. Accelerated locomotor func-
tional recovery.

Reduced IL-1β, IL-6, and NLRP3.

Romanel-
li et al. 
[143]

2021 Human 
umbilical cord 
mesenchymal 
stromal cells

Reduced the inflammatory response and scarring. 
Accelerated locomotor functional recovery.

Reduced IL-1β and IL-6 
expression.

Table 5  Anti-inflammatory effect following exo treatment in SCI Animal models
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Author 
(year)

Pub-
lica-
tion 
year

Cell source Biological/medical improvement (Effect) Highlighted Exo-
associated cargo

Suggested mechanism

Ren et al. 
[42]

2023 Schwann cells Reduced the inflammatory response and inhibited 
neuronal apoptosis. Accelerated locomotor func-
tional recovery.

MFG-E8 Regulated the SOCS3/STAT3 
signaling pathway.

Pan et al. 
[43]

2021 Schwann cells Reduced the inflammatory response and glial scar. 
Accelerated locomotor functional recovery.

Increased the TLR2 expression on 
astrocytes via the NF-κB/PI3K axis.

Peng et 
al. [45]

2021 BMDMs Reduced the inflammatory response. Accelerated 
locomotor functional recovery.

miRNA-23a-3p Regulated the miR-23a-3p/PTEN/
PI3K/AKT axis.

Ma et al. 
[76]

2019 NSCs Reduced the inflammatory response, attenuated 
apoptosis, and promoted neural proliferation and 
regeneration. Accelerated locomotor functional 
recovery.

Insulin growth fac-
tor-1 (I
GF-1)

Inhibited YY1 expression via the 
miR-219a-2-3p/NF-κB pathway.

Luo et al. 
[77]

2021 BMSCs Reduced the inflammatory response, promoted vas-
cular regeneration, diminished glial scar deposition, 
and inhibited apoptosis and promoted axonal regen-
eration. Accelerated locomotor functional recovery.

G protein-coupled
receptor kinase 2 
interacting protein 1 
(GIT1)

GIT1 enhanced the P-AKT level 
and activated the PI3K/AKT 
pathway.

Liu et al. 
[79]

2019 BMSCs Reduced the inflammatory response, promoted 
vascular regeneration, diminished glial scar deposi-
tion and neuroinflammation-inhibited apoptosis, and 
promoted axonal regeneration. Accelerated locomo-
tor functional recovery.

Suppressed NO release in 
microglia; suppressed the activa-
tion of A1 neurotoxic reactive 
astrocytes.

Liu et al. 
[139]

2020 BMSCs under 
hypoxia

Reduced the inflammatory response. Accelerated 
locomotor functional recovery.

miR-216a-5p Regulated microglia M1/M2 
polarization via the TLR4/NF-κB/
PI3K/AKT signaling cascades.

Liu et al. 
[123]

2021 BMSCs Reduced the inflammatory response and suppressed 
neuronal apoptosis and oxidative stress. Accelerated 
locomotor functional recovery.

Long non-coding 
RNA tectonic family 
member 2 (TCTN2)

Regulated the miR-329-3p/IGF1R 
pathway.

Liu et al. 
[147]

2022 Dental pulp 
stem cell-
derived Exos

Reduced the inflammatory response. Accelerated 
locomotor functional recovery.

Regulated the MAPK–NFκB P65 
signaling pathway.

Li et al. 
[134]

2020 Human 
placenta 
amniotic 
membrane 
MSCs

Reduced the inflammatory response. Accelerated 
locomotor functional recovery.

Mitigated oxidation.

Li et al. 
[133]

2020 BMSCs Reduced the inflammatory response and promoted 
neuronal survival. Accelerated locomotor functional 
recovery.

miR-544 Decreased expression of pro-
inflammatory cytokines (IL-1α, 
TNF-α, IL-17β, and IL-36β).

Lee et al. 
[91]

2020 Macrophage 
membrane-
fused 
umbilical cord 
blood-derived 
MSCs

Reduced the inflammatory response, attenuated 
apoptosis, enhanced angiogenesis, and decreased 
fibrosis. Accelerated locomotor functional recovery.

Promoted M2 polarization.

Lankford 
et al. 
[146]

2018 BMSCs Reduced the inflammatory response. Accelerated 
locomotor functional recovery.

Increased production of anti-
inflammatory cytokines or block-
age of M2 macrophages from 
converting to an M1 proinflam-
matory activation state.

Kim et al. 
[95]

2018 hMSCs Reduced the inflammatory response and apoptosis 
and enhanced blood vessel formation. Accelerated 
locomotor functional recovery.

Iron oxide nanopar-
ticles (IONPs)

Activated the JNK and c-Jun 
signaling cascades.

Kang et 
al. [116]

2022 hUC-MSCs Reduced the inflammatory response and apoptosis. 
Accelerated locomotor functional recovery.

Increased Bcl-2, decreased Bax, 
and cleaved caspase 9. Activated 
the LRP‑6/Wnt/β-catenin-c-myc, 
cyclin D1 (CCND1) signaling 
pathway.

Table 5  (continued) 
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lica-
tion 
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Cell source Biological/medical improvement (Effect) Highlighted Exo-
associated cargo

Suggested mechanism

Jiang et 
al. [138]

2021 BMSCs Reduced the inflammatory response. Accelerated 
locomotor functional recovery.

miR-145-5p Regulated the TLR4/NF-κB signal-
ing pathway.

Huang et 
al. [124]

2021 BMSCs Reduced the inflammatory response; attenuated 
neuronal apoptosis, reactive astrocytes, and glial 
scar formation. Accelerated locomotor functional 
recovery.

siRNA specifically si-
lenced the connective 
tissue growth factor 
(Ctgf) gene

Inhibited the expression of the 
Ctgf gene in astrocytes.

Huang et 
al. [52]

2021 BMSCs Reduced the inflammatory response and promoted 
neurofilament regeneration-inhibited neuronal apop-
tosis. Accelerated locomotor functional recovery.

miR-494 NA

Huang et 
al. [86]

2017 BMSCs Reduced the inflammatory response, attenuated 
cellular apoptosis, and promoted angiogenesis. Ac-
celerated locomotor functional recovery.

Decreased Bax and TNF-α and 
IL-1β and upregulated Bcl-2 and 
IL-10.

He et al. 
[125]

2022 BMSCs Reduced the inflammatory response and inhibited 
apoptosis and endoplasmic reticulum (ER) stress. Ac-
celerated locomotor functional recovery.

miR-9-5p Inhibited HDAC5-mediated FGF2 
deacetylation and upregulated 
fibroblast growth factor 2 (FGF2).

Guo et al. 
[81]

2019 BMSCs Reduced the inflammatory response, enhanced 
axonal regeneration, and albeit limited microgliosis 
and astrogliosis. Accelerated locomotor functional 
recovery.

Phosphatase and 
tensin homolog 
small interfering RNA 
(ExoPTEN)

Upregulated cytoplasmic mam-
malian target of rapamycin 
(mTOR) activity.

Gao et al. 
[44]

2021 IL-4-treated 
peritoneal 
macrophages

Reduced the inflammatory and apoptosis response. 
Accelerated locomotor functional recovery.

Berberine Reduced inflammatory and 
apoptotic cytokines (TNF-α, IL-1 
β, IL-6, caspase 9, and caspase 8).

Fan et al. 
[136]

2021 BMSCs Inhibited the inflammation process and apoptosis. 
Accelerated locomotor functional recovery.

Inhibited the TLR4/MyD88/NF-κB 
signaling pathway.

Fan et al.
[82]

2022 BMSCs Reduced the inflammatory response and promoted 
axonal regeneration. Accelerated locomotor func-
tional recovery.

Regulated the NF-𝜿B pathway 
and PTEN/PI3K/AKT/mTOR 
pathway.

Chen et 
al. [103]

2021 NSCs Reduced the inflammatory response and inhibited 
apoptosis and ameliorated hindlimb function and 
oxygen insufficiency. Accelerated locomotor func-
tional recovery.

FTY720 Regulated the PTEN/AKT path-
way. Decreased the expression of 
Bax and AQP-4. Upregulated the 
expression of claudin-5 and Bcl-2.

Chang et 
al. [126]

2021 BMSCs Reduced the inflammatory response and apoptosis. 
Accelerated locomotor functional recovery.

miR-125a Regulated IRF5 expression.

Table 5  (continued) 
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