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Introduction: No comparative study of adipose-derived stem cells (ADSCs) and bone marrow mesenchymal stem
cells (BMSCs) by using superparamagnetic iron oxide nanoparticles (SPIOs)-labeling and magnetic resonance

Methods: We studied the biological activity and MRI of ADSCs by labeling them with SPIOs and comparing them
with BMSCs. After incubating the cells in culture medium with different levels of SPIOs (control group: 0 pg/ml;
Groups 1 to 3: 25, 50, and 100 pg/ml) for 24 hours, we compared ADSCs with BMSCs in terms of intracellular iron
content, labeling efficiency, and cell viability. Stem cells in the culture medium containing 50 pg/ml SPIOs were
induced into osteoblasts and fat cells. Adipogenic and osteogenic differentiation potentials were compared. R,*

Results: The results showed that labeling efficiency was highest in Group 2. Intracellular iron content and R,*
values increased with increasing concentrations of SPIOs, whereas cell viability decreased with increasing
concentrations of SPIOs, and adipogenic and osteogenic differentiation potentials decreased. However, we found
no significant difference between the two kinds of cells for any of these indexes.

Conclusions: ADSCs can be labeled and traced as easily as BMSCs in vitro. Given their abundance and higher
proliferative capacity, as was previously shown, ADSCs may be better suited to stem cell therapy than are BMSCs.

Keywords: Adipose-derived stem cells, Bone marrow mesenchymal stem cells, Superparamagnetic iron oxide

Introduction

Mesenchymal stem cells (MSCs) appear to be ideally
suited for therapeutic use in tissue repair and many
other diseases that are able to differentiate into various
types of tissue cells derived from other embryonic layers
[1-3]. Bone marrow mesenchymal stem cells (BMSCs)
were the first MSCs used for laboratory research [4].
However, conventional bone marrow procurement pro-
cedures are distressing for the patient and yield a low
number of MSCs. Bone marrow fat increases with age,
which often means a sufficient number of MSCs cannot
be extracted. Many studies have thus investigated alter-
native sources to bone marrow for MSCs.
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Adipose tissue, like bone marrow, is derived from the
embryonic mesenchyme and represents a rich source of
MSCs [5]. Many studies have compared various aspects
of cell biology between the two kinds of stem cells.
Taléns-Visconti et al. [4] showed that adipose-derived
stem cells (ADSCs) have a similar hepatogenic differenti-
ation potential to that of BMSCs, but a longer culture
period and higher proliferative capacity. Nakao et al. [3]
found that ADSCs facilitate the homing of mouse stem
cells to bone marrow better than do BMSCs. Kern et al.
[6] found that the proliferative capacity of ADSCs was
the highest of all the MSCs. Some researchers have
found that ADSCs have lower immunogenicity and im-
munosuppressive effects, implying a lower rejection and
higher success rate in transplantation [7,8]. Furthermore,
the number of ADSCs is large and is not affected by age [9],
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but all the comparisons are in biology aspects. It is not
enough for cell choice just to compare the characteristics of
these two kinds of stem cells.

Central to the success of stem cell therapy is the ability
of cells to migrate and engraft. Magnetic resonance im-
aging (MRI) is useful for evaluating the ability of cells to
migrate and engraft [10-16]. SPIOs have been used to
label cells, allowing researchers to monitor cell migration
by using MRI in experiments [17-21]. BMSCs were the
first kind of MSCs to be labeled with superparamagnetic
iron oxide particles (SPIOs) and successfully traced in vivo
[10,11,19]. Many studies have also used SPIO labeling and
MRI to study ADSCs [22-24]. However, a comparative
study of ADSCs and BMSCs by using SPIO labeling and
MRI has not been performed.

This study investigated whether ADSCs can be labeled
and traced as easily as BMSCs, examining the intracellu-
lar iron content, labeling efficiency, cell viability,
adipogenic and osteogenic differentiation potentials, and
MRI of SPIO-labeled ADSCs and compared these with
BMSCs, to help guide the selection of cells for stem cell
therapy.

Methods

Preparation of SPIOs

SPIOs were prepared according to the method devel-
oped by Racuciu et al. [25] with some modifications. In
brief, an aqueous solution of 4.16 g FeCl,.4H,O and
10.44 g FeCl3.6H,O in 380 ml demineralized water was
mixed under vigorous and continuous stirring with 40
ml 25% NH,OH as the precipitant. The precipitated
black powder was vibrated ultrasonically for 30 minutes.
Five grams of citric acid in 10 ml water was then added
to the powder, and the temperature was increased to 90°C
with stirring for 60 minutes. The resulting black powder
was washed several times until neutral and removed by
decanting. The iron content was measured by using a total
iron reagent set (Pointe Scientific, Canton, MI, USA). The
shape and bare core size of SPIOs were measured with
transmission electron microscopy (TEM) (JEM-1230;
JEOL, Japan). The diameter and polydispersity index
(PDI) of SPIOs were measured with Zetasizer Nano (S90,
Malvern, UK).

Preparation of adipose-derived stem cells

ADSCs were prepared according to the method devel-
oped by Zuk et al. [5] with some modifications. In brief,
subcutaneous adipose tissue (3 to 4 g) was obtained
from the inguinal regions of male Sprague—Dawley (SD,
Vital River, Beijing, China) rats. The adipose tissue was
minced and digested with collagenase I (2 mg/ml;
Worthington Biochemical Corp, Lakewood, NJ, USA) at
37°C for 30 to 60 minutes. The digested adipose tissue
was filtered twice with a 100-pm and then a 25-um
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nylon membrane to eliminate the undigested fragments.
The cellular suspension was centrifuged at 1,000 g for 10
minutes. The cell pellets were resuspended in cell-culture
medium (CCM, DMEM+10%FBS) and cultivated for 24
hours at 37°C in 5% CO,. Unattached cells and debris were
removed, and fresh CCM containing 15% fetal bovine
serum (FBS, Gibco, arlsruhe, Germany) was added to the
adherent cells, which were cultured at 37°C in 5% CO,.
Cell-surface markers were measured with flow cytometry
(Beckman FC500, CA, USA). Passage 4 cells were used for
the following experiments.

Preparation of bone marrow stem cells

BMSCs were isolated from bone marrow as described previ-
ously [26]. In brief, the bone marrow was harvested from
the femurs and tibiae of the same male SD rats as for the
ADSCs. Bone marrow cells were resuspended in phosphate-
buffered saline (PBS, Gibco) to a final volume of 10 ml and
layered over an equal volume of 1.077 g/ml Percoll solution
(Pharmacia, Piscataway, NJ, USA). After centrifugation at
2,000 rpm for 20 minutes, the mononuclear cells were re-
covered and transferred to a 100-mm culture flask (Corning,
Schiphol-Rijk, the Netherlands) and incubated (37°C, 5%
humidified CO,) with low-glucose Dulbecco Modified Eagle
Medium (DMEM, Gibco) containing 0.2 mmol/ml L-
glutamine (Gibco), 100 U/ml penicillin (Gibco), 100 pg/
ml streptomycin (Gibco), 10 ng/ml epidermal growth fac-
tor (EGE, PeproTech, Rocky Hill, NJ, USA), and 10% fetal
calf serum (PAA, Pasching, Austria). Nonadherent cells
were removed after 24 hours. Cell-surface markers were
measured with flow cytometry. Passage 3 or 4 cells were
used for the following experiments.

Magnetic labeling

SPIOs were preincubated in CCM and antibiotics for 60
minutes at room temperature. The concentrations of
SPIOs in cell-culture medium were 25 pg/ml (Group 1),
50 pg/ml (Group 2), and 100 pg/ml (Group 3), whereas
a medium without SPIOs was used for the control
group. The two kinds of stem cells were incubated in
CCM (37°C, 5% humidified CO,) for 24 hours.

Prussian blue staining

Prussian blue staining was used to detect the presence of
iron oxide nanoparticles. Cells of Groups 1 to 3 were
fixed in 4% paraformaldehyde for 30 minutes and then
detected with Prussian blue staining. In brief, fixed cells
were washed 3 times with PBS, incubated for 30 minutes
with 2% potassium ferrocyanide in 6% hydrochloric acid,
and then rewashed 3 times with PBS. Labeled cells were
examined under a light microscope to determine intra-
cellular iron oxide distribution.
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Iron content

Cells labeled as described were washed with culture
medium and then washed 3 times with PBS, resuspended
in 37% HCI, and incubated at 70°C for 30 minutes. Iron
content was determined by using a total iron reagent set.
The average iron content per cell was then calculated.

Viability

To determine cell viability, cells of each group were ini-
tially seeded in 96-well plates at 5,000 cells per well. After
incubation for 72 hours, cells of each group were assessed
by using a standard 3-(4,5)-dimethylthialzo(-z-yl)-2,5-
di-phenyltetrazoliumbromide (MTT) assay (Sigma-Aldrich,
St. Louis, MO, USA) for 4 hours. The supernatant fluid
was discarded, and 150 pl dimethyl sulfoxide (DMSO,
Sigma-Aldrich) was added to every well for 10 minutes
with shaking. The light absorption of all cells was mea-
sured with an enzyme-linked immunosorbent assay
(ELISA) reader (BioTek, VT, USA). Results were expressed
as relative ratios versus unlabeled cells.

Differentiation

Adipogenic and osteogenic differentiation were measured
to assess the effect of SPIOs on the transdifferentiation
potential of cells. Cells in Group 2 and the control group
were subjected to two types of induction (adipogenic and
osteogenic).

Cells for osteogenic differentiation were seeded in six-
well plates at 10° cells per well with CCM. After they
reached 60% to 80% confluence, the culture medium
was replaced by bone cell-induction culture medium
containing 10% FBS, 100 U/ml penicillin/streptomycin, 50
pg/ml L-ascorbate-2-phosphate (Sigma-Aldrich), 0.1 pM
dexamethasone, and 10 mM [-glycerophosphate in
DMEM. The cells were cultured for 2 more weeks. Alizarin

Page 3 of 10

red was used to detect matrix mineralization of osteogenic
differentiation [18]. Cells were rinsed in PBS, fixed in 4%
formaldehyde, and stained in 1% alizarin red solution
(Rowley Biochemical Institute, Danvers, MA, USA) for 3
minutes. Stained cells were observed under a phase-contrast
microscope (Olympus, Tokyo, Japan). To quantify the
change in osteogenic potential, the activity of alkaline
phosphatase (ALP) was detected by using an ALP enzyme
activity kit [27]. Expression levels of Bone Gla Protein
(BGP)-mRNA osteogenic markers were measured with
real-time polymerase chain reaction (RT-PCR) [27].

Cells for adipogenic differentiation were seeded in six-
well plates at 10° cells per well with CCM. After they
reached 60% to 80% confluence, the culture medium
was replaced by adipose cell-induction culture medium
containing 10% FBS, 100 U/ml penicillin/streptomycin
(Sigma-Aldrich), 200 mM indomethacin (Sigma-Aldrich),
1 mM dexamethasone (Sigma-Aldrich), 0.5 mM 3-isobutyl
-1-methylxanthine (Sigma-Aldrich), and 10 mg/ml insulin
(Sigma-Aldrich) in DMEM. The cells were cultured for 2
more weeks. Cells were rinsed in PBS(PH=7.4), fixed in
4% formaldehyde, and incubated in 2% (wt/vol) Oil Red O
(Sigma-Aldrich) for 5 minutes. Stained cells were observed
under a phase-contrast microscope (Olympus, Tokyo,
Japan). To quantify the change in adipogenic potential, the
optical-density (OD) values of lipid droplets stained by Oil
Red O were measured. Expression levels of adipocyte Pro-
tein 2 (aP2)-mRNA adipogenic markers [28] were mea-
sured with RT-PCR.

Magnetic resonance imaging of SPIO-labeled
mesenchyme-derived stem cells in vitro

We then determined the differences between the two kinds
of SPIO-labeled cells in MR relaxation time. The two kinds
of cells labeled with different concentrations of SPIOs were
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Figure 1 Identification of SPIOs by Zetasizer Nano and transmission electron microscopy (TEM). (a) Diameter and PDI of SPIO measured
by Zetasizer Nano. (b) Shape and bare core size of SPIOs measured with TEM.
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Figure 2 Identification of adipose-derived stem cells (ADSCs) and bone marrow mesenchymal stem cells (BMSCs) with flow cytometry.
Flow cytometry revealed that the distribution of ADSCs and BMSCs that stained for CD14, CD31, CD34, and CD45 (shaded regions) did not differ
from that of the isotype control (open regions). The majority of cells positively stained for CD29 and CD90 (shaded regions) compared with the
isotype control cells (open regions).
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Figure 3 Measurement iron in cells by Prussian blue staining. (a) Adipose-derived stem cells (ADSCs) or bone marrow mesenchymal stem
cells (BMSCs) were incubated with different concentrations of SPIOs. Then Prussian blue staining was taken to measure the iron content in ADSCs
or BMSCs. Blue particles in cytoplasm are SPIOs. (b) Labeling efficiency of ADSCs or BMSCs in different concentrations of SPIOs.
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suspended in 1% agarose before being transferred into
1.5-ml microcentrifuge tubes (Eppendorf, Westbury,
NY, USA). Each tube contained 1 x 10* cells. The tubes
were imaged with an eight-channel phased-array head coil
on a 3.0-Tesla MR scanner (GE Signa Excite; GE Medical
Systems, W1, USA). Enhanced T,:--weighted angiography
(ESWAN) sequences were used to enhance the T,- effects
of the SPIOs. The sequence parameters were: FOV = 20 x
20 mm? matrix = 240 x 240; TR = 45 msec; NEX = 0.69;
slice thickness = 2.0 mm; flip angle = 25 degrees; TE = 5
msec, 9.9 msec, 14.7 msec, 19.6 msec, 24.5 msec, 29.3
msec, 34.2 msec, and 39.0 msec.

Data analysis

Results were analyzed by using the Student ¢ test and
one-way ANOVA. P < 0.05 was considered statistically
significant.

Results and discussion

SPIOs and cells

The citric-acid-coated SPIOs were brownish-black colloid
fluids. The iron content was 22.4 mg/ml. The average
diameter of SPIOs was 95.58 nm, and the PDI was 0.101,
which means the distribution of the SPIO-diameter sten-
osis was ideal (Figure 1la). The shape of the bare core of
SPIOs was round, and the diameter of the bare core was
about 8 to 10 nm (Figure 1b). CD14,CD31,CD34,CD45
antigens were found to be negatively expressed in labeled
cells, while CD29 and CD90 were found to be positively
expressed in labeled cells (Figure 2). These cells thus
expressed the same cell surface markers as stem cells, so
could be identified as stem cells.

Labeling efficiency and intracellular iron content

After Prussian blue staining, we found blue particles in the
cytoplasm of cells. The blue particles were SPIOs sur-
rounding the nucleus (Figure 3a). The labeling efficiency
was highest in Group 2 (50 pg/ml), followed by Group 3
and Group 1 (P > 0.05). The labeling efficiency of the two
kinds of cells showed no significant difference (Group 1:
t = 1.005, P > 0.05; Group 2: ¢ = 0.860, P > 0.05; Group 3:
t = 0492, P > 0.05) (Figure 3b).

The intracellular iron content increased with increas-
ing concentrations of SPIOs (P < 0.05), but no difference
was found between the two kinds of cells (Group 1:
t = 0.020; P > 0.05; Group 2: t = 0.073; P > 0.05; Group 3:
t = 0.181; P > 0.05) (Figure 4). This implies that ADSCs
have a similar ability to take up SPIOs to BMSCs. The
intracellular iron content of Group 2 ADSCs confirmed
that the cells could be clearly traced by MRI in vivo, be-
ing above the minimum necessary for MRI (5 to 6 pg per
cell) [29,30].
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Figure 4 Intracellular iron content measured with a total iron
reagent set.

Viability and differentiation
The viability of cells decreased with increasing concentra-
tions of SPIOs (P < 0.05). However, the viability of the two
kinds of cells showed no significant difference (Group 1:
t = 0.533; P > 0.05; Group 2: t = 1.106; P > 0.05; Group 3:
t =0.773; P > 0.05; control group: ¢ = 0.0002; P > 0.05)
(Figure 5). Because of their higher labeling efficiency
and viability, we chose the cells in Group 2 to measure
the changes in adipogenic and osteogenic potential.
After induction, phase-contrast microscopy revealed
bone nodes and lipid droplets in the cells. Bone nodes
became smaller, whereas lipid droplets shrunk in size
(Figure 6a and b). The activity of ALP decreased
(ADSCs: t = 5.433; P < 0.05; BMSCs: t = 6.217; P < 0.05)
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Figure 5 Viability of cells measured with MTT assay. Adipose-
derived stem cells (ADSCs) or bone marrow mesenchymal stem cells
(BMSCs) were incubated with different concentrations of SPIOs,
seeded into 96-well microplates, and then the cell viability was
measured with the MTT assay.
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Figure 6 Differentiation ability of MSCs with or without SPIO incubation. (a) Adipose-derived stem cells (ADSCs) or bone marrow
mesenchymal stem cells (BMSCs) stained in alizarin red solution after osteogenic induction and stained in Oil Red O after adipogenic induction.
(b) ADSCs or BMSCs were incubated with SPIOs (50 ug/ml), and then the osteogenic ability or adipogenic ability was measured.
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Figure 7 Analysis of osteogenic and adipogenic ability. Adipose-derived stem cells (ADSCs) or bone marrow mesenchymal stem cells
(BMSCs) were incubated with or without SPIOs (50 ng/ml). (a) Activity of ALP in two kinds of cells after osteogenic induction. (b) Real-time PCR
analysis of BGP-mRNA after osteogenic induction. (c) OD value of lipid droplets after adipogenic induction. (d) Expression of aP2-mRNA after
adipogenic induction.
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(Figure 7a), as did the expression of BGP-mRNA
(ADSCs: t = 4.383; P < 0.05; BMSCs: ¢ = 5.419; P < 0.05)
(Figure 7b). Thus, the osteogenic potential of cells after
SPIO labeling decreased. The OD value of lipid droplets
decreased (ADSCs: ¢t = 5.171; P < 0.05; BMSCs: ¢t = 5.404;
P < 0.05) (Figure 7c), as did the expression of aP2-mRNA
(ADSCs: t = 4.992; P < 0.05; BMSCs: ¢ = 4.830; P < 0.05)
(Figure 7d). Thus, the adipogenic potential of cells after
SPIO labeling decreased. However, the differentiation po-
tential of the two kinds of cells showed no significant dif-
ference (P > 0.05), (ALP: ¢ = 0.210; P > 0.05; BGP-mRNA:
t = 0.156; P > 0.05; OD value: ¢t = 0.872; P > 0.05;
aP2-mRNA: ¢ = 2.235; P > 0.05) (Figure 7a through
d). Thus, ADSCs could withstand the toxicity of
SPIOs as well as BMSCs.

Many studies have reported that high levels of SPIOs
can affect the viability and differentiation of MSCs. Rice
et al. [24] confirmed that cell viability decreased with in-
creasing concentrations of SPIOs when iron concentra-
tions exceeded 12.5 pg/ml. Arhab et al. [31] found that
cell viability was affected when iron concentrations of
SPIOs reached 50 pg/ml. Wang et al. [32] and Kostura
et al. [33] suggested that SPIOs inhibit chondrogenesis
of stem cells at high concentrations, whereas Chen et al.
[34] assert that SPIOs inhibit osteogenesis of stem cells
at high concentrations. Kim et al. [22] found that stem
cell markers (Oct-4) and cell-surface markers (CD45)
changed after SPIO labeling. The mechanism of this ef-
fect is unclear. Pawelezyk et al. [35] and Karlsson et al.
[36] suggested the following possible reason: when the
intracellular iron concentration is too high, the iron
oxide nanoparticles can become toxic to cells through
Fenton-type Haber-Weiss reactions caused by free-radical
damage [37]. Thus, high levels of SPIOs can affect the via-
bility and differentiation of MSCs. Choosing the ideal con-
centration of SPIOs and optimizing the physical and
chemical characteristics of SPIOs are therefore important
in the tracing of transplanted ADCSs. Nevertheless, the
viability and differentiation of labeled ADSCs in our ex-
periments appeared to be largely retained, with labeled
ADSCs maintaining their “stem cell characteristics,”
suggesting that SPIO-labeled ADSCs offer promise for
stem cell therapies.

Magnetic resonance imaging of SPIO-labeled MSCs

in vitro

We found the intensity of the MR signal in control
group cells to be similar to that of water. The signal in-
tensity in SPIO-labeled cells decreased with increasing
concentrations of SPIOs (Figure 8a). The R,* of SPIO-
labeled MSCs increased with increasing concentrations
of SPIOs (P < 0.05), but no significant differences appeared
between the two kinds of cells (Group 1: ¢ = 0.087;
P > 0.05; Group 2: t = 0.328; P > 0.05; Group 3: ¢t = 0.798;
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Figure 8 MRI of SPIO-labeled MSCs in vitro. (a) Adipose-derived
stem cells (ADSCs) or bone marrow mesenchymal stem cells
(BMSCs) were incubated with different concentrations of SPIO and
then scanned with MRI. (b) R2* values of ADSCs or BMSCs in
different groups were measured.

P > 0.05; Group 4: t = 0.459; P > 0.05) (Figure 8b). Thus,
MR imaging of SPIO-labeled ADSCs was virtually identi-
cal to that of BMSCs. MRI can reflect changes in intracel-
lular iron concentrations, and so could be used to study
changes in SPIO-labeled ADSCs in vivo. Further animal
experiments should be undertaken to certify the influence
of SPIOs on functions of ADSCs and BMSCs in vivo.

Our study certified that ADSCs have similar and
comparative effects as BMSCs in vitro. Moreover,
ADSCs have more-abundant sources and greater pro-
liferation ability, compared with BMSCs. Once ADSCs
are further confirmed to have effects comparable to
those of BMSCs in vivo, ADSCs will be a significant
option in stem cell application in clinical tracing and
treatment.

Conclusions

In this study, we investigated the biological activity and
MRI of SPIO-labeled ADSCs and compared these with
BMSCs. We found that SPIO-labeled ADSCs were not
statistically significantly different from BMSCs in terms
of labeling efficiency, intracellular iron content, cell via-
bility, differentiation, and MR imaging. Thus, ADSCs
can be labeled and traced as easily as BMSCs in vitro.
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Given their abundance and higher proliferative capacity,
as was previously shown [4-6,9], ADSCs may be better
suited to stem cell therapy than BMSCs. When choosing
between BMSCs and ADSCs for clinical therapies, these
results should be taken into consideration in selecting
the best MSCs for the treatment.
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