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Abstract

Introduction: Based on some well-documented reports, we attempted to clarify the antifibrotic mechanisms of human
Wharton's-jelly-derived mesenchymal stromal cells (WJ-MSCs) from the perspective of induction of hepatocyte growth
factor (HGF) expression in tubular epithelial cells (TEC).

Methods: A rat model of acute kidney injury (AKI) was established through unilateral renal ischemia for 1 hour. Two
days later, a single intravenous cell or vehicle injection, or contralateral nephrectomy, was performed. Rats were
sacrificed at 1 day, 1 week, 4 weeks, or 6 weeks after the intervention. Renal fibrosis was evaluated by Masson trichrome
staining and Sircol collagen assay. The upregulation of a-smooth muscle actin (a-SMA) versus E-cadherin expression was
adopted as an indicator of tubular epithelial-mesenchymal transition (EMT). Gene and protein expression of HGF or
transforming growth factor-betal (TGF-1) was determined by real-time polymerase chain reaction (RT-PCR) and
Western blot, respectively. HGF expression in TECs was detected with immunostaining. /n vitro, rat TECs subjected to
hypoxia injury were incubated with or without conditioned medium (CM) from WJ-MSCs for 1, 3, 24, or 48 hours. Rat or
human HGF synthesis in TECs was assessed with immunostaining, RT-PCR, or ELISA.

Results: Cell delivery or nephrectomy led to abrogation of renal scarring. At the incipient period of AKI, through
induction of HGF expression, either of them remarkably promoted the upregulation of HGF versus TGF-31 expression in
damaged kidney. Rat TECs were not only the principal cells expressing HGF but also exhibited human HGF expression
after cell infusion. During fibrogenesis, the downregulation of HGF versus TGF-31 expression was greatly prevented by
WJ-MSCs or kidney removal, thereby resulting in tubular EMT delay. In vitro, after 24 or 48 hours of incubation, CM not
only robustly induced the upregulation of rat HGF gene expression in TECs but substantially amplified the release of rat
HGF. Under the induction of CM, human HGF mRNA and protein were detected in rat TECs.

Conclusions: WJ-MSCs contribute to tubular EMT delay and the alleviation of renal fibrosis. Induction of native and
foreign HGF synthesis in damaged TECs at the initial stage of AKl leads to recovery of the disturbed balance of HGF/
TGF-B1 during scar formation, being one of the vital mechanisms.
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Introduction

AKI can result in proliferation of fibroblasts and exces-
sive deposition of extracellular matrix [1] and has been
recognized as a major contributor to end-stage kidney
disease [2]. The mechanisms implicated in AKI-induced
kidney scarring remain controversial. Tubular EMT has
been proposed to one of crucial cellular mechanisms
[3-5]. One maneuver abrogating tubular EMT during in-
jury will halt the progression of renal fibrosis.

TGEF-P1, as a prototypic inducer of tubular EMT, can
initiate and complete the entire course of EMT [6]. By
contrast, HGF can mechanistically inhibit the EMT
through blockade of Smad signaling, the downstream of
TGE-P1 [7,8]. Hence, the delicate balance between HGF
and TGF-B1 may have an influence on tubular EMT.

The role of MSCs in accelerating AKI recovery has
been appreciated for a long time. It is generally
thought that the administration of MSCs exerts
antiinflammatory, proproliferative, antiapoptotic ef-
fects by paracrine/endocrine mechanisms [9-11]. Sol-
uble factors and microvesicles (MVs) released by
MSCs, are acknowledged as the vital mediators of
these effects [12]. Because of the benefit of HGF in
AKI [13], we have great interest in its role played in
the sophisticated mechanisms of MSCs. In our previ-
ous study, WJ-MSCs, an alternative source of MSCs,
mitigate AKI through delivery of exogenous HGF and
induction of HGF gene expression in damaged kidney
tissue [14]. Given that MVs can affect gene transcrip-
tion of target cells through the transfer of genetic in-
formation (including transcription factor and mRNA)
[10], we hypothesized that WJ-MSCs may be involved
in the modulation of the HGF/TGF-B1 balance
through induction of native and foreign HGF synthesis
in injured renal TECs (target cells), thereby stopping
tubular cell phenotype transition.

The aim of the present study was to test this hypothesis
in a rat model of unilateral ischemia-reperfusion injury
(IRI). We demonstrated that WJ-MSCs can restore the
disturbed balance of HGF/TGEF-B1 during fibrogenesis via
induction of native and foreign HGF synthesis in host
renal TECs at the initial stage of ischemic AKI, as a result
of which tubular EMT delay and rescue of renal fibrosis
occur. To the best of our knowledge, this is the first article
to disclose the antifibrotic mechanisms of MSCs from the
perspective of their impact on HGF expression in renal
tubular cells.

Methods

Preparation of WJ-MSCs

Fresh human umbilical cords that are usually discarded
after delivery were obtained with the written consent of
the parents. This experiment was approved by the Re-
search Ethics Committee at Shanghai Jiaotong University
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First People’s Hospital (Permit number: 2013KYO0O01).
WJ-MSCs were prepared and identified as described pre-
viously [14]. In brief, mesenchymal tissues were cut into
1-mm? pieces and then stuck to the substrate of culture
plates individually, followed by the addition of low-
glucose Dulbecco Modified Eagle Medium (DMEM)
containing 10% fetal bovine serum (FBS). About 12 days
later, the colonies appeared and cultured on new plastic
plates for further expansion. The cultured cells
expressed the markers of MSCs (CD44, CD73, CD90,
and CD105) with no expression of hematopoietic and
endothelial markers, and had the potential to differenti-
ate toward chondrocytes and osteoblasts. The isolated
cells fulfilled minimal criteria for defining MSCs by the
International Society of Cellular Therapy (ISCT) [15].
The cells at the third to sixth passage were used in
in vivo and in vitro experiments.

Animals

All works involving animals were in accordance with the
animal use protocol enacted by the Institutional Animal
Care and Use Committees of School of Medicine,
Shanghai Jiaotong University. Adult male Sprague—
Dawley (SD) rats weighing 180 g to 200 g were housed
at a constant temperature and humidity, with a 12:12-
hour light—dark cycle, and were allowed ree access to a
standard diet and water. After the operation, rats were
housed individually in a ventilated cage system.

Animal model of unilateral renal ischemia-reperfusion
injury

Under induction of isoflurane, IRI animals were subjected
to left kidney ischemia for 60 minutes. Two days later,
sham operation was performed followed by the intraven-
ous infusion of 2 x 10° WJ-MSCs in 0.5 ml serum-free
medium (SFM) (vehicle), whereas control animals re-
ceived 0.5-ml vehicle infusion instead of the cells. IRI ani-
mals undergoing intact kidney removal were regarded as
the positive control. Sham-operated animals did not ex-
perience ischemic injury. The animals were randomized
according to different therapeutic procedures: (a) sham-
operated animals (n = 24); (b) unilateral IRI plus
vehicle-injected animals (n# = 24); (c) unilateral IRI plus
cell-injected animals (n = 24); and (d) unilateral IRI
plus nephrectomized animals (n = 24). The animals
were killed at 1 day, 1 week, 4 weeks, and 6 weeks after
intervention, respectively. Blood and tissue samples
(including kidney, lung, and liver) were obtained at
death and submitted to corresponding evaluation.

Tissue collagen concentration

The total soluble collagen concentration within each
renal tissue sample was determined with Sircol collagen
assay kit (Biocolor, Carrickfergus, Northern Ireland, UK)
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according to the manufacturer’s protocol. Tissue samples
were dissolved in 0.5 M acetic acid and pepsin at 4°C.
Through centrifugation of tissue suspensions, the super-
natants were collected. The concentration of total colla-
gen was measured at 546 nm.

Masson trichrome staining

The degree of interstitial fibrosis was scored semiquan-
titatively on a 0-to-3 scale (0, no lesion; 1, <33% of par-
enchyma affected by the lesion; 2, 33% to 67% of
parenchyma affected by the lesion; 3, >67% of paren-
chyma affected by the lesion). The scores were
assessed by a blinded observer in 100 random high-
power fields (HPFs) (magnification x400) of paren-
chyma for each rat (n = 3 rats, each group). Total score
was obtained by the addition of all scores, with a max-
imum score of 300.
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Immunohistochemistry staining

The 5-pm-thick paraffin-embedded sections were la-
beled with rabbit antibody to human nuclear mitotic ap-
paratus protein (NuMA) (dilution, 1:50; Abcam,
Cambridge, UK), rabbit antibody to rat or human HGF
(dilution, 1:250 or 1:500; Abcam), mouse antibody to rat
a-SMA (dilution, 1:500; Abcam), or rabbit antibody to
rat E-cadherin (dilution, 1:500; BD Biosciences, Franklin
Lakes, NJ, USA) followed by HRP-conjugated secondary
antibody by using 3,30 diaminobenzidine (DAB) reagents
as substrate. Negative control was performed by omitting
primary antibodies. Harris hematoxylin counterstaining
was performed. All the sections were reviewed by a
blinded doctor from a pathology discipline.

Western blot
Protein extracts (30 pg per lane) were electrophoresed
and then transferred to polyvinylidene fluoride membrane.

deposition. The original magnification is x400.

Figure 1 Representative micrographs of Masson trichrome staining in tubular interstitial area. Ischemic injury caused a progressive
increase in positive-staining collagen deposition, whereas either nephrectomy or cell injection resulted in a remarkable reduction in collagen
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Immunoblotting was performed by incubating each mem-
brane with an anti-HGF (dilution, 1:1,000; Abcam), TGF-
B1 (dilution, 1:1,000; Abcam), a-SMA (dilution, 1:1,000;
Abcam), E-cadherin (dilution, 1:2,500; BD Biosciences), or
[B-actin antibody overnight at 4°C. After being washed in
PBS, each membrane was incubated for 1 hour with a sec-
ondary antibody conjugated by peroxidase at room
temperature. The band was developed by use of enhanced
chemiluminescence (Amersham Pharmacia Biotech,
Piscataway, NJ, USA). The density of each band was deter-
mined. The results were repeated twice to confirm the
reproducibility.

Real-time PCR

Total RNA was extracted with the TRIzol Reagent
(Invitrogen, Carlsbad, CA, USA) according to the stand-
ard protocol. Five micrograms of RNA was reverse tran-
scribed with the M-MLV reverse transcriptase kit and
Oligo dT primers (Invitrogen) for 60 minutes at 42°C.
Real-time PCR was performed with TagMan gene expres-
sion assays (Applied Bio-Systems, Foster City, CA, USA)
for detection of gene expression of HGF, rat HGF, rat
TGF-B1, human HGE, or human or rat B-actin. Real-time
PCR was carried out by using the following primers: HGF,
5’tgacatcactcccgagaact, 3 caatagcaccgttaccctt; rat HGE 5°
cctatttcecgttgtgaag, 3'gtcatcccacctaccaatca; rat TGF-1, 5
gaaggacctgggttggaagt, 3’ gagatgttggttgtgttgggc; rat S-actin,
5’cctctatgccaacacagt, 3'gacacacctaaccaccga; human HGEF
5'CTCTGGTTCCCCTTCAATAG, 3'GATAGCCCCATT
TCTGGATGTC; human p-actin, 5'AAGGTGACAGC
AGTCGGTT, 3'GGAGAGGGTTCAGGTGTGT.
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The Ct (threshold cycle) for each gene was determined
for each sample. The quantification of the target gene
was normalized by [B-actin. The values were expressed
relative to a reference sample (samples from sham-
operated rats or TECs without exposure to CM). The
relative mRNA expression was calculated by 2744¢T,
Triplicates of each sample were performed.

Analyses of HGF synthesis in injured-rat TECs

For the preparation of CM, WJ-MSCs were cultured
overnight in SFM (low-glucose DMEM) (Life Technolo-
gies, Carlsbad, California, USA). Cell supernatants were
collected and subjected to centrifugation at 2,000 g for
20 min to remove cell debris.

TECs (Sciencell, San Diego, CA, USA) were maintained
in epithelial cell medium (EpiCM) (Sciencell), containing
2% EBS, until the cells were 80% confluent. For assess-
ment of HGF production in rat TECs, the cells were culti-
vated in a humidified atmosphere containing 5% O, and
5% CO, at 37°C for 1 hour (Incubator, Binder, Germany)
and then incubated with or without CM under ambient
oxygen concentration (21%). After 24 or 48 hours of incu-
bation, cell number was estimated with a hemacytometer,
whereas trypan blue exclusion was used to assess cell via-
bility. The supernatants and cells were harvested. HGF
level in the supernatants was measured with a rat HGF
ELISA Kit (R&D Systems, Minneapolis, MN,USA),
whereas total RNA extracted from TECs was submitted to
real-time PCR for evaluation of rat HGF gene expression.
The ELISA results were normalized by cell numbers in
culture.
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Figure 2 Quantitative evaluation of collagen deposition in kidney tissues. (A) Fibrosis score. The highest fibrosis score was achieved by
vehicle-injected IRI rats, whereas cell-injected rats or nephrectomized rats had a significantly lower score. The fibrosis score was obtained by the
addition of all scores for collagen staining from 100 random high-power fields (HPFs; magnification, x400), with a maximum score of 300. All
quantitative data were collected from three rats for each experimental condition. *P < 0.01, IRI+WJ-MSCs versus IRI+VEHICLE; #P <0.005, IRI
+NEPHRECTOMY versus IRI+VEHICLE; xP < 0.001, IRI+VEHICLE versus SHAM; (B) Total renal collagen concentration. At either 4 weeks or 6 weeks,
the highest collagen concentration was detected in kidney samples of IRl animals receiving vehicle injection, whereas cell injection or
nephrectomy caused a marked decline in collagen concentration in damaged kidney tissues. All quantitative data were obtained from three
animals for each experimental condition. *P < 0.02, IRI+WJ-MSCs versus IRI+VEHICLE; #P < 0.02, IR+NEPHRECTOMY versus IRHVEHICLE; xP < 0.05,
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For ascertainment of the delivery of human HGF
mRNA from CM into rat TECs, the hypoxia-injured
TECs were exposed to CM for 1, 3, 24, or 48 hours.
These cells were collected and submitted to real-time
PCR for human HGF mRNA detection. TECs without
exposure to CM and WJ-MSCs were used as negative
and positive controls, respectively. Moreover, the cells
were submitted to immunochemistry staining for human
HGF protein expression in TECs (described later).

All samples were frozen at —80°C until analysis. All ex-
periments were performed in triplicate.

Immunochemistry staining for human HGF expression in
rat TECs

TECs injured by hypoxia were incubated on chamber
slides and exposed to CM or control medium for 24
hours or 48 hours. Subsequently, the slides were fixed in
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4% paraformaldehyde and permeabilized with HEPES-
Triton X100 buffer (Sigma, St. Louis, MO, USA). Rabbit
anti-human HGF antibody (dilution, 1:100; Abcam) was
used as the primary antibody. In the negative control,
the primary antibody was omitted. Harris hematoxylin
was added for nuclear counterstaining. WJ-MSCs and
rat TECs without exposure to CM were used as positive
and negative controls, respectively.

Statistical analysis

Data are expressed as mean + SD. Primary data collec-
tion used Excel, and statistical analyses were carried out
by using Prism software (Graph Pad, San Diego, CA,
USA). Analysis of variance (ANOVA) or Student ¢ tests
were used to assess differences between data, as appro-
priate. A P value of <0.05 was considered significant.
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Figure 3 Densitometric analysis and gel photograph of E-cadherin and a-smooth muscle actin (SMA) expression in kidney tissues.
Ischemic injury initiated the time-dependent upregulation of a-SMA/E-cadherin expression, indicative of the progression of EMT. This alteration
was greatly prevented by cell treatment or intact kidney removal. The density of each band was determined. Values in the graph are expressed
as densitometric ratios of E-cadherin/B-actin, a-SMA/B-actin, or a-SMA/E-cadherin as folds over control (sham-operated samples) (dotted line).
Data are shown as mean + SD of three kidney samples for each experimental condition. *P < 0.05, IRI4+WJ-MSCs versus IRI+VEHICLE; #P < 0.01,
IRI+NEPHRECTOMY versus IRI+VEHICLE; xP < 0.01, IRI+VEHICLE versus SHAM. (a) relative abundance of E-cadherin/B-actin; (b) relative abundance
of a-SMA/B-actin; (c) relative abundance of a-SMA/E-cadherin; (d) gel photograph of E-cadherin, a-SMA, and 3-actin protein expression.
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Results
No WJ-MSCs reside in ischemic kidney at any given time
Through immunohistochemistry staining for human

NuMA, WJ-MSCs were exclusively detected in lung tissues
at 1 day and 1 week after infusion, whereas no positive-
staining cells were detectable in damaged or normal kid-
neys, or other tissues (liver or spleen) at any point (1 day; 1,
4, or 6 weeks) (data not shown), implying an endocrine
mechanism in favor of the notion proposed by Bi et al. [16].

Cell treatment mitigates renal fibrosis triggered by
unilateral IRI

At 4 or 6 weeks, either Masson trichrome staining or
Sircol collagen assay revealed a marked increase in colla-
gen deposition in ischemic kidney, whereas cell treat-
ment or contralateral nephrectomy led to a remarkable
decline in collagen deposition (Figures 1 and 2).
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The tubular EMT process triggered by unilateral IRl is
delayed by cell delivery

Tubular EMT is characterized by loss of epithelial proteins,
such as E-cadherin, and acquisition of new mesenchymal
markers, including a-SMA [17]. Thus, the upregulation of
a-SMA/E-cadherin expression was adopted as an indicator
of tubular EMT. Induction of IRI caused a substantial
time-dependent upregulation of a-SMA/E-cadherin ex-
pression in injured kidney, as determined with Western
blot (Figure 3), indicative of the development and progres-
sion of tubular EMT. However, in the presence of
WJ-MSCs or nephrectomy, the upregulation was robustly
frustrated. This finding was further corroborated with
immunostaining for a-SMA and E-cadherin (Figures 4 and
5). The expression of a-SMA is a key feature of
myofibroblasts [18], the key effector cells in the pathogen-
esis of fibrosis [19]. Therefore, the decline in myofibroblast

WJ-MSCs

VEHICLE

C)

Figure 4 Representative micrographs illustrating a-smooth-muscle actin (SMA) expression in kidney tissues. In comparison with IRl rats
receiving cell treatment or nephrectomy, vehicle-treated rats exhibited stronger positive staining for a-SMA in kidney tissue sections, especially at
6 weeks after intervention. In kidney tissue sections from sham-operated rats, a-SMA was expressed mostly in vessels. The original magnification is x 400.
(a) through (h), photographs showing a-SMA expression in kidney tissue sections at 4 weeks after intervention; (i) through (p), photographs
showing a-SMA expression in kidney tissue sections at 6 weeks after intervention.
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Figure 5 Representative micrographs illustrating E-cadherin expression in kidney tissues. Positive expression of E-cadherin was sparse in
kidney tissue sections from vehicle-injected IRl rats, especially at 6 weeks, whereas abundant E-cadherin-positive expression was noted in those of
sham-operated rats. In the presence of cell treatment or nephrectomy, a lot of loss of E-cadherin induced by IRI did not occur. The original
magnification is x400. (a) through (h), photographs showing E-cadherin expression in kidney tissue sections at 4 weeks after different treatment;
(i) through (p), photographs showing E-cadherin expression in kidney tissue sections at 6 weeks after different treatment.

.

accumulation undoubtedly accounts for the decrease in
collagen production.

At the initial stage of IRI, through native and foreign
HGF induction in injured TECs, cell administration sub-
stantially shifted the balance between HGF and TGF-fp1
in injured kidney in favor of HGF activity, facilitating
immediate injury repair and thereby preventing the shift
of the balance toward TGF-B1 during fibrogenesis

At a very early stage (1 day), unilateral IRI initiated the
upregulation of HGF/TGEF-B1 expression in support of
injury repair [8] (Figures 6 and 7). Kidney excision or
WJ-MSCs further induced the upregulation of HGF/
TGEF-B gene expression rather than protein expression
(Figures 6 and 7). At 1 week, the expression of HGF/
TGEF-B1 in damaged kidney tissue declined to baseline
(Figures 6 and 7). Because of induction of HGE-

expression upregulation, this alteration did not occur in
cases of cell administration or nephrectomy (Figures 6
and 7). Subsequently, we deliberately separated native
HGF expression from foreign HGF. By use of specific
primers for detection of rat or human HGF mRNA, we
found that rat HGF mRNA was remarkably upregulated
by cell treatment, whereas human HGF mRNA was un-
detectable at this time (1 week) (data not shown). In
addition, immunostaining pictures showed that HGF ex-
pression was mainly present in rat TECs (Figure 8A). As
a response to cell administration, a significant intensifi-
cation of HGF-staining occurred in TECs (Figure 8A).
More intriguingly, human HGF protein expression in rat
TECs was unambiguously identified in cell-injected ani-
mals, whereas no positive staining for human HGF
existed in kidney sections from vehicle-injected or
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Figure 6 Hepatocyte growth factor (HGF) or transforming growth factor (TGF)-B1 gene expression in kidney tissues. At the incipient
stage (1 day), IRl triggered the upregulation of HGF/TGF-B1 expression, further promoted by nephrectomy or WJ-MSCs. At 1T week, WJ-MSCs
remarkably induced the upregulation of HGF expression in damaged kidney tissue, thereby preventing the expression of HGF/TGF-B1 from
decline to baseline. At 4 or 6 weeks, the HGF/TGF-31 expression was substantially downregulated in vehicle-injected IRl rats, whereas this change
was robustly prevented by cell injection or nephrectomy. The Ct (threshold cycle) for the target gene and (3-actin was determined for each
sample. The quantification of the target gene was normalized by (-actin. HGF/TGF-31 was generated by referencing HGF expression to TGF-31
expression. Gene expression in sham-treated samples was regarded as the calibrator (dotted line).The relative expression of HGF, TGF-31, or HGF/
TGF-R1 was calculated by 274t Data are expressed as the mean of 2722 + SD of three rats for each experimental condition. xP < 0.05, IRI+WJ-
MSCs versus IRI+VEHICLE; #P < 0.05, IRI+NEPHRECTOMY versus IRI+VEHICLE; *P < 0.01, IRIH+VEHICLE versus SHAM. (a) through (d) graphs
representing relative expression of HGF/B-actin, TGF-31/B-actin, and HGF/TGF-31 at 1 day, 1, 4, and 6 weeks after treatment, respectively.
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sham-operated animals (Figure 8B). Moreover, at day 1,
human HGF mRNA was found in injured kidney tissues,
as indicated by real-time PCR. This indicates that WJ-
MSCs induce native and foreign HGF expression in in-
jured TECs, thereby leading to the shift of the balance
between HGF and TGF-f1 toward the side of HGEF,
which provides a favorable milieu for repairing injury.

With the progression of chronic kidney injury trig-
gered by IRIL the expression of HGF/TGF-p1 gradually
turned to downregulation, facilitating tubular cell pheno-
type transition, as well as the formation of fibrotic lesion
(Figure 6) [8]. By contrast, the administration of WJ-
MSCs or excision of intact kidney dramatically prevented
the downregulation of HGF/TGF-P1 expression via inhib-
ition of TGF-B1 expression (Figure 6).

In vitro, CM from WJ-MSCs induces the synthesis of native
and foreign HGF in hypoxia-injured rat TECs

When rat TECs subjected to hypoxic injury were incu-
bated with CM for 24 hours or 48 hours, a marked in-
crease in rat HGF level was detected with ELISA in the
supernatants of TECs (Figure 9A). Moreover, gene ex-
pression of rat HGF in TECs was enhanced by CM at ei-
ther point in time, although a significant difference was
not achieved at 48 hours (Figure 9B). These results sug-
gest that CM not only induces native HGF expression in
rat TECs but also amplifies its release.

Inspired by the in vivo evidence, we attempted to de-
termine whether CM from WJ-MSCs induces foreign
HGF synthesis in damaged rat TECs. At 24 hours or
48 hours after exposure to CM, human HGF resident
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treatment. At 1 day, exposure to IRl stimulated the upregulation of HGF/TGF-31 expression. However, by 1 week, the HGF/TGF-31 expression
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induction of HGF expression in damaged kidney, in favor of immediate injury repair. The density of each band was determined. Values in the
graph are expressed as densitometric ratios of HGF/B-actin, TGF-31/B-actin, or HGF/TGF-B1 as folds over control (sham-operated samples; dotted line).
Data are shown as mean + SD of three kidney samples for each experimental condition. *P < 0.05, IRH+WJ-MSCs versus IRIH+VEHICLE; #P < 0.001, IRI
+NEPHRECTOMY versus IRI+VEHICLE; xP < 0.05, IRI+VEHICLE versus SHAM. (a) Relative abundance of HGF/B-actin; (b) relative abundance of TGF-31/
B-actin; (c) relative abundance of HGF/TGF-31; (d) gel photograph of HGF, TGF-31, and (B-actin protein expression.

in TECs was distinctly identified by immunostaining
(Figure 10A). In addition, the presence of human HGF
mRNA in TECs was evidenced by real-time PCR as
early as 3 hours after exposure (Figure 10B). On the
basis of these findings, we are convinced that a foreign
HGF gene transcript existing in CM enters rat TECs
subjected to hypoxia injury and then is translated into
the objective protein.

Discussion

In some AKI animal models, the impact of MSCs on
AKI-induced chronic kidney disease (CKD) has been
well documented [20,21]. Consistent with these reports,
WJ-MSCs delivered at 2 days after IRI unambiguously
protected IRI animals against the development of fi-
brotic lesions.

In this study, IRI animals undergoing contralateral
nephrectomy were regarded as positive controls to facili-
tate the understanding of potential mechanisms. Some
evidence gives support to this choice. First, it is increas-
ingly appreciated that aberrant incomplete repair trig-
gered by AKI contributes to CKD, whereas complete
repair leaves no lasting evidence of damage [2,22]. In the
wake of unilateral nephrectomy, renal regeneration is
initiated [23], thus leading to more complete repair in
the injured remaining kidney. It has been reported that
renal fibrosis triggered by unilateral IRI can be abolished
by contralateral nephrectomy [24]. As expected, neph-
rectomy undergone at 2 days after ischemia rescued the
fibrosis in the ischemic kidney.

In spite of unresolved tubular cell mechanisms impli-
cated in the fibrogenetic process, tubular EMT has been
proposed as one of the crucial mechanisms [25-27]. In
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(@) Magnification x100; (b) and (c) Magnification x400.

Figure 8 Hepatocyte growth factor (HGF) expression in injured kidney tissues at 1 week after intervention. (A) Representative
micrographs illustrating HGF expression in injured kidney tissues. The overwhelming majority of positive staining resided in tubular cells. HGF
staining in tubular cells was substantially intensified in cases of cell injection or nephrectomy. (a) through (c) Magnification x200; (d) through

(i) Magnification x400. (B) Representative micrographs illustrating human HGF expression in injured kidney tissues. No positive-staining TECs were
identifiable in kidney sections from sham-operated animals or IRl animals receiving vehicle injection (data not shown). By contrast, at 1 week after
injection, positive staining (black arrows) was detected in kidney sections from cell-injected animals, mostly residing in cytoplasm of tubular cells.

this study, we succeeded in ascertaining the intimate as-
sociation of tubular EMT with fibrogenesis. IRI initiated
and fueled the process of EMT in parallel with the pro-
gression of fibrogenesis, whereas inhibition of EMT by
nephrectomy or cell administration coincided with res-
cue of renal fibrosis.

HGF and TGEF-P1 function as the Yin and Yang of tis-
sue fibrotic signals that elicit opposite actions [8]. To a
large extent, the reciprocal balance of TGF-B1 and HGF
determines the sequelae of tissue injury. The predomin-
ance of HGF promotes tissue repair, whereas tissue scar-
ring occurs in the advantage of TGF-f1 over HGEF.
Mounting evidence establishes the pivotal role for TGE-
[/Smad signaling in mediating EMT [28], whereas tubular
EMT can be blocked by HGF through inducing gene ex-
pression of the Smad co-repressor SnoN [7]. In cultured

proximal tubular epithelial cells, HGF completely abol-
ishes TGE-P1-triggered induction of EMT [29].

By contrast, blocking the action of HGF by a neutraliz-
ing antibody induces a-SMA expression in renal tubular
epithelium [30]. The opposite effects of HGF and TGEF-
Bl are also reflected by their reciprocal regulation of
each other [31-33]. However, Esposito et al. [34] found
that HGF acts as anti-fibrotic factor reducing TGF effect
only on quiescent renal tubular (HK-2) cells. On prolif-
erating cells, HGF increases TGF expression. But this
in vitro study needs further confirmation. In view of this
rational evidence, one strategy devoted to maintenance
of the delicate balance between TGF-f1 and HGF may
be favorable for the retardation of tubular EMT.

Our observations provided further support for this no-
tion. In this study, after exposure to IRI for 4 or 6 weeks,
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Figure 9 Rat hepatocyte growth factor (HGF) synthesis in the injured rat TECs after 24 hours or 48 hours of incubation with CM or not.
(A) Release of rat HGF by rat TECs. A total absence of rat HGF appeared in the medium conditioned by WJ-MSCs, SFM, or EpiCM. After 24 hours
or 48 hours of incubation, CM strongly amplified the release of rat HGF by rat TECs subjected to hypoxia injury when compared with SFM. The ELISA
results were normalized by cell numbers. Data are expressed as mean + SD of three experiments. *P = 0.003, CM+EpiICM+TECs versus SFM+EpiCM+TECs;
#P < 0.05, CM+EPICM+TECs versus SFM+EpICM+TECs; CM, conditioned medium from WJ-MSCs; SFM, serum-free medium; EpiCM, epithelial cell medium.
(B) Rat HGF gene expression in rat TECs. Rat HGF gene expression in hypoxia-injured rat TECs was enhanced by CM from WJ-MSCs at 24 hours or 48
hours of incubation. Statistical significance was not achieved at 48 hours. Rat HGF mRNA was undetermined in WJ-MSCs, as a negative control. The Ct
(threshold cycle) for rat HGF and {3-actin was determined for each sample. The quantification of HGF was normalized by B-actin. HGF expression in TECs
incubated without CM was regarded as the calibrator (dotted line).The relative expression of the target gene was calculated by 274, Data are
expressed as mean of 2722 + SD of three experiments. P < 0.05, CM+EpiCM+TECs versus SFM+EpiCM+TECs.

the balance between HGF and TGF-P1 in the damaged
kidney turned toward TGF-B1, accompanying the devel-
opment of EMT. On the contrary, the recovery of the
biased balance, just as in cases of intact kidney removal
or cell delivery, was followed by the EMT delay.

nephrectomy hinders tubular EMT through restoration
of the disturbed balance of HGF/TGF-fl1 during
fibrogenesis.

We were interested in the mechanism whereby WJ-
MSCs adjusted the HGF/TGEF-P1 balance. To facilitate

Therefore, it is reasonable that either WJ-MSCs or understanding, we first made clear how nephrectomy
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Figure 10 Human hepatocyte growth factor (HGF) mRNA and protein present in injured rat TECs after exposure to CM. (A)
Representative micrographs indicating human HGF expression in the damaged rat TECs. Human HGF was present in cytoplasm of most of the
WIJ-MSCs and was used as a positive control. Rat TECs without exposure to CM, as a negative control, did not contain this heterogeneous protein.
By contrast, it magically appeared in TECs exposed to CM for 24 hours or 48 hours. (a) WJ-MSCs; (b) TECs without exposure to CM; (c) TECs after

24 hours of exposure to CM; (d) TECs after 48 hours of exposure to CM; (B) Human HGF mRNA entering the injured rat TECs. Human HGF mRNA was
detected in rat TECs exposed to CM for 3 hours or longer. Human HGF expressions in WJ-MSCs and rat TECs without exposure to CM were used as
positive and negative controls, respectively. The Ct (threshold cycle) for human HGF gene and (3-actin gene (rat or human) was determined for each
cell sample. The quantification of the target gene was normalized by 3-actin. Data are expressed as mean + SD of three experiments.
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exerted an effect on this balance. In our study, at 1 day
or 1 week after nephrectomy, HGF expression in the is-
chemic remaining kidney was substantially intensified in
agreement with the role of HGF in nephrectomy-
stimulated regrowth [23]. Because of the multifaceted
beneficial functions of HGF [13], acute injury repair is
accelerated, thereby alleviating the ensuing chronic kid-
ney injury, which inevitably leads to recovery of the
skewed balance at the fibrotic stage. In our opinion, in-
duction of kidney in situ HGF expression at the incipi-
ent period of IRI is one of the crucial mechanisms.

Interestingly, WJ-MSCs were involved in the balance
modulation via a similar mechanism. At 1 week after in-
jection, cell injection robustly induced gene and protein
expression of HGF in the ischemic kidney and thus led to
HGF dominance in the balance. By means of immuno-
staining, we not only identified tubular cells as the main
cells expressing HGF but also detected the intensification
of HGF-staining in renal tubular cells after cell treatment.
Foreign HGF protein expression in injured tubular cells
was also distinctly determined. These findings indicate
that WJ-MSC:s tip the balance through induction of native
and foreign HGF synthesis in tubular cells.

More solid evidence is derived from in vitro study.
After 24 or 48 hours of incubation, the media condi-
tioned by WJ-MSCs not only substantially induced the
upregulation of rat HGF mRNA expression in TECs
subjected to hypoxia injury but also greatly stimulated
the release of rat HGF by rat TECs. Moreover, human
HGF protein was detected in rat TECs exposed to CM,
which along with the presence of human HGF mRNA in
TECs as early as 3 hours after exposure, shows that for-
eign HGF transcripts existing in CM may enter rat TECs
and then be translated into the protein.

As supportive of our findings, in the animal models of
ischemia or cisplatin-induced AKI, the administration of
human MSCs stimulated the upregulation of HGF
mRNA expression in injured murine kidney tissues
[14,35]. However, distinct from this study, the previous
studies neither deliberately distinguished native HGF
from foreign HGF nor determined the target cells where
HGF was induced. It is noteworthy that it is the first
study documenting foreign HGF expression in injured
host tubular cells under induction of heterogeneous
MSCs.

Growing evidence suggests that microvesicles (MVs)
released by MSCs can deliver mRNA, regulatory micro-
RNA and transcriptional factor to injured tissue cells,
thus leading to alteration of cell function [10,11]. We
think that MVs secreted by WJ-MSCs in an endocrine
manner may be implicated in the induction of native
and foreign HGF synthesis in renal tubular cells (target
cells). It is feasible for this event to occur. In an in vitro
study, incubation of murine TECs with different doses of
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Figure 11 Representative micrographs of scanning electron
microscopy of microvesicles (MVs) isolated from CM from WJ-
MSCs. MVs show a spheroid shape with size ranging from 30 to
500 nm.

MVs derived from human bone marrow MSCs induced
de novo expression of some human proteins in murine
tubular cells [36]. The ascertainment of this mechanism
will be the goal of the future research. We have isolated
MVs from CM from WJ-MSCs and have partly deter-
mined its characterization (Figure 11), but we still have a
long way to go.

Conclusions

Against the background of ischemic AKI, WJ-MSCs
contribute to restoration of the biased balance of HGF/
TGEF-B1 during fibrogenesis via induction of native and
foreign HGF synthesis in injured tubular cells at the ini-
tial stage of AKI, which consequently results in the EMT
delay and alleviation of renal fibrosis.
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