
Introduction

Most cancer-related mortality is due to distant meta-

stases. Metastasis is a multistep process whereby cells 

from the primary tumor invade or migrate through 

surrounding tissues and barrier matrices, disseminate via 

the vasculature (hematologic or lymphatic), arrest and 

extravasate at the metastatic niche, and ultimately survive 

and outgrow in this ectopic environment. Ectopic-site 

survival and subsequent proliferative outgrowth is the 

rate-limiting step in clinically evident disease [1,2]. 

Distant metastases are generally more resistant to 

treatments than the primary tumor [3], underscoring the 

need to develop more rational therapeutic approaches 

based on the molecular pathophysiology in the metastatic 

microenvironment [4].

Clinically undetectable metastases have serious impli-

cations for cancer patients; approximately one-third of 

women suff ered a metastatic relapse within 5 years post 

lumpectomy [5,6]. Th is late emergence implies that 

tumor cells disseminate early and survive undetected in 

ectopic sites [5,6]. Numerous three-dimensional models 

of tumor cells capture a subset of tumor behaviors [7-11]. 

A signifi cant gap exists in investigating how metastatic 

nodules interact with the host tissue due to the inherent 

small-scale dimensions of most microfl uidic devices, 

poor disease recapitulation by cell lines, and lack of a 

primary cell environment. Th ere is an urgent need for 

integrated in vitro systems that can support the initial 
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micrometastatic nodules [12] to develop rational 

approaches to target growing cancer cells and promote 

clinically undetectable micrometastases towards a 

dormant state [13]. Th is process occurs over days to 

weeks and current endpoint analyses provide correlative, 

not mechanistic, insights and are mainly limited to 

carcinoma cell behavior. Th e microphysiological system 

proposed is evaluable over weeks, and is comprised of all 

human modifi able components with programmable 

inputs of modifi ers that allow defi nition of the required 

signals for the microenvironment.

Th e liver as a target tissue is ideal because it is a 

preferred site of metastasis for many tumors (breast, 

lung, colon, prostate, brain, melanomas). Th e liver is also 

the major organ for drug metabolism (both activation 

and detoxifi cation), a signifi cant factor in determining 

effi  cacy and limiting toxicities in cancer therapeutics. 

Hepatic tissue can thus be used to develop and determine 

the effi  cacy of anticancer agents and regimens [12,14]. 

Th e liver is also one of the primary sites of systemic 

regulation of nutrients and hormones associated with 

circadian rhythms and immune system function. Th ese 

nutrients, hormones, and modulators impact the 

metabolic functioning of the liver and the responsiveness 

of tumor cells [15,16]. Chronic disruption of circadian 

rhythms is correlated with changes in immune regulators 

[17,18], and reductions in nutrients may provide better 

tolerance of high-dose chemotherapy [19]. Although 

toxicity of some chemotherapeutic agents is linked to 

circadian timing of delivery in patients [20], it is unknown 

whether chronobiological dosing is more eff ective in 

treating micrometastases due to inability to detect these 

small tumors in the clinical setting. A large gap exists in 

linking the complex metastatic microenvironment to 

molecular signals that change on a diurnal basis at both 

systemic and local levels [21-23]. Th is model will yield 

markers of metastatic behavior that enable better clinical 

monitoring, and will guide the design of clinical studies 

to understand effi  cacy.

Technology for this work

Platform

Th e perfused microreactor system (LiverChip; Zyoxel Ltd, 

Oxford, UK) we are using allows for tissues with high-level 

structural organization, functional complexity, ease of use, 

adequate samples for assays and weeks of culture while 

avoiding materials that adsorb steroid hormones and drugs 

[24]. Th is project dovetails with a parallel eff ort on a 

DARPA (Defense Advanced Research Projects Agency 

(USA))-funded Microphysiological Systems program (PI: L 

Griffi  th, MIT), where a fl uidic circuit is being applied to a 

broader platform of 10 diff erent integrated micro physio-

logical systems on a platform, enabling the study of gut/

liver eff ects on metastases.

To achieve temporal control of medium components, 

we invoke inlet micropumps to dose insulin/glucagon, 

glucose/fructose, cortisol, and chemotherapeutics into 

the reactor in tandem with a fl uid control system that 

infuses fresh basal medium and removes waste. Bio-

reactors are also instrumented with oxygen measurement 

systems based on ruthenium microprobes. Th is highly 

instrumented three-dimensional culture format hosting a 

growing tumor and monitoring its responses is readily 

transferable to other organs.

Cells

Fresh human hepatocytes and a full complement of 

nonparenchymal cells off er the ability to evaluate the role 

of the diverse populations in the metastatic tumor micro-

environment in an all-human system. Cryopreserved 

hepatocytes and Kuppfer cells are also evaluated. To 

study metastatic nodules in the liver we use represen-

tative breast cancer cell lines (MDA MB 231, MCF-7, and 

BT474), control epithelial cells (human mammary epi the-

lial cells), as well as primary breast carcinoma explants.  

Th ese cell sources allow us to closely model the meta-

static niche of the liver in an unprecedented manner.

Modeling

Prediction of disease phenotypes and therapeutic eff ects 

based on genomic variation has proved elusive. To under-

stand how the deregulation of cellular networks underlies 

complex disease states, such as cancer, an alternative 

systems-based approach will elucidate cellular responses 

to external stimuli. Predictive mathematical models are 

constructed by introducing the system (that is, cells) to 

perturbations or cues, which result in multiple cell states. 

Phenotypic responses are measured, enabling quantita-

tive, multivariate computational models to evaluate how 

cells will respond to new combinations of cues [25,26]. 

From a systems biology perspective, signaling networks 

are identifi ed that in turn facilitate the evaluation of 

therapeutic targets and modulate systemic eff ects [27,28]. 

Methods of multivariate analyses allow the integration of 

complex data (for example, cytokines, chemokines, and 

growth factors, acute phase proteins, and metabolites) 

resulting from the growth of small metastatic nodules, 

both to glean possible signatures of early metastatic 

disease and response to therapies as well as to identify 

therapeutic targets.

Key questions addressed

Do diurnal changes within host liver tissue alter the 

phenotypic behavior of the tumor cells compared with 

standard culture?

Noninvasive measurements (capabilities noted in Figure 1) 

that reveal information about the evolution of cell signal-

ing networks, coupled with appropriate computa tional 
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analysis, will provide a foundation for comparison with 

clinical observations. We previously demonstrated E-

cadherin coupling between carcinoma cells and hepato-

cytes, and continued uncontrolled growth of other cancer 

cells in the population [12,14]. Th e latter phenomenon 

may arise from stimulation of insulin-like growth factor-1 

receptor by the supraphysiological concen trations of 

insulin in standard hepatocellular cultures or the 

infl ammatory cytokines due to matrix stiff ening, or even 

the matrix stiff ness itself. Diurnal control of nutrients 

and hormones will aff ect both the cancer cell and host 

tissue phenotypes to give rise to both macroscopic and 

molecular behaviors that are diff erent from those 

observed in standard culture (Figure  1). An attenuated 

growth pattern in diurnal control cultures compared with 

standard culture may refl ect a more physiological 

condition (metastatic dormancy) that will be related to 

experimentally testable mechanisms (for example, 

diff erences in the activation of insulin-like growth 

factor-1 receptor). Simultaneously sampling oxygen, 

metabolic, and cytokine measurements will yield insights 

that include crosstalk between tumor and host tissue, 

early markers of drug effi  cacy and toxicity, and 

therapeutic targets.

Do chemotherapeutic toxicological eff ects on liver 

parallel clinically reported toxicological eff ects? Is 

effi  cacy of chemotherapy agents against metastatic 

tumors infl uenced by diurnal control of metabolism and 

hormones?

Hepatotoxicity of fi rst-line, nontargeted chemotherapy 

agents (doxorubicin, carboplatin, and so forth) and newer 

targeted drugs (lapatinib) is well known and managed 

clinically due to their effi  cacy in primary cancer 

treatment. Th e liver bioreactor intimately links tumor 

effi  cacy with hepatic metabolism of the agent allowing 

for the identifi cation of drug combinations that may 

exhibit synergistic or antagonistic eff ects that are diffi  cult 

to identify in preclinical trials. Metastases likely alter 

metabolism of chemotherapeutics by hepatocyte crowd-

ing and loss as well as by the signals produced by the 

cancer cells themselves [29]. Th ese reciprocal paracrine 

Figure 1. Micrometastasis progression in standard and diurnal cultures. Conceptual view of (top) micrometastasis progression in three-

dimensional perfused liver microreactors maintained with controlled circadian profi les of key components of the portal circulation (nutrients, 

insulin) and the systemic circulation (cortisol) compared with (bottom) micrometastasis progression in standard culture with daily medium 

changes. Approximate relative values of diurnal fl uctuations in the tissue microenvironment are shown for each case; absolute magnitudes of 

cortisol and insulin are conventionally supraphysiological in the standard culture. Micrometastases are created by seeding individual tumor 

cells within the parenchyma of the tissue mimic, where fl ow of oxygenated culture medium into the tissue supports survival and proliferation. 

Carcinoma cells may re-express cadherin and integrate into the tissue, or may exhibit unrestrained growth. As tumors grow, the tissue becomes 

hypoxic, stromal cells proliferate, and the mix of cytokines and acute phase proteins becomes altered. Parameters listed (nutrient and hormone 

levels, cytokine levels, oxygen) are measured noninvasively to assess the progression of metastases. A premise is that the uncontrolled metastases 

stimulated by supraphysiological levels of hormones and nutrients in standard culture will be easier to eradicate by traditional chemotherapeutic 

agents that target proliferation, and thus fail to represent the full spectrum of behaviors of clinically important metastases compared with the case 

of controlled diurnal stimulation. P
O2

, oxygen partial pressure.
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eff ects likely alter both effi  cacy and toxicity/detoxi fi cation 

and are further infl uenced by diurnal changes in the 

bioactive hormones and nutrients that feed into the liver.

Do mild infl ammatory states of liver stimulate tumor 

growth and alter effi  cacy of chemotherapeutics?

Th e mechanisms for metastatic dormancy and emergence 

remain unknown but a proposed explanation is that 

infl ammatory cytokines and matrix components drive 

the cancer cells into a proliferative state [5]. Infl ammation 

in the liver can come from in situ insult or portal 

circulation that has bacterial infl ammatory initiators 

from the gut microbiome (among others). In the assess-

ment of how infl ammatory cues aff ect the tumor 

response we will use lipopolysaccharide as a cue [30] at 

low chronic doses, challenge the tissue with chemo-

therapy, and integrate these data into our systems biology 

models. We can then explore gut–liver interactions 

directly on our microphysiologic systems platform. Th e 

chemoresponsiveness is unpredicatable because the 

greater proliferative fraction should increase chemo-

therapy sensitivity while the infl ammatory milieu should 

promote resistance, making this model vital for better 

understanding of metastatic disease therapies.

Future needs and research directions

From this work we anticipate eff ective solutions to 

augment the existing cell culture models throughout the 

drug development pipeline – target identifi cation, valida-

tion, preclinical effi  cacy, and safety – and shift substantial 

risk from human clinical trials back to the preclinical 

development stage. We focus on occult metastases as 

these represent substantial challenges in preclinical 

development due to the complexities of identifying such 

nodules and monitoring their response to therapies in 

the clinic. We anticipate linking this model to other 

physiological systems (intestine, cardiovascular, pan-

creatic) that both regulate and are regulated by the liver 

to frontload the risk from human and animal subjects to 

in vitro systems. Additionally we envision that this 

platform can have substantial impact on the study of the 

mechanisms infl uencing breast cancer metastatic dor-

mancy, emergence, proliferation and chemo responsive-

ness under heretofore elusive conditions. Th is robust in 

vitro model in conjunction with systems biology will 

better predict disease response to new combinations of 

cues and treatments allowing for the identifi cation and 

testing of eff ective therapeutic targets.
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