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Abstract

Introduction: Gingiva-derived mesenchymal stem cells (GMSCs) have recently been harvested and applied for
rebuilding lost periodontal tissue. Enamel matrix derivative (EMD) has been used for periodontal regeneration and
the formation of new cementum with inserting collagen fibers; however, alveolar bone formation is minimal.
Recently, EMD has been shown to enhance the proliferation and mineralization of human bone marrow
mesenchymal stem cells. Because the gingival flap is the major component to cover the surgical wound, the effects
of EMD on the proliferation and mineralization of GMSCs were evaluated in the present study.

Methods: After single cell suspension, the GMSCs were isolated from the connective tissues of human gingiva. The
colony forming unit assay of the isolated GMSCs was measured. The expression of stem cell markers was examined
by flow cytometry. The cellular telomerase activity was identified by polymerase chain reaction (PCR). The
osteogenic, adipogenic and neural differentiations of the GMSCs were further examined. The cell proliferation was
determined by MTS assay, while the expression of mMRNA and protein for mineralization (including core binding
factor alpha, cbfa-1; alkaline phosphatase, ALP; and osteocalcin, OC; ameloblastin, AMBN) were analyzed by real
time-PCR, enzyme activity and confocal laser scanning microscopy.

Results: The cell colonies could be easily identified and the colony forming rates and the telomerase activities
increased after passaging. The GMSCs expressed high levels of surface markers for CD73, CD90, and CD105, but
showed low expression of STRO-1. Osteogenic, adipogenic and neural differentiations were successfully induced.
The proliferation of GMSCs was increased after EMD treatment. ALP mRNA was significantly augmented by treating
with EMD for 3 hours, whereas AMBN mRNA was significantly increased at 6 hours after EMD treatment. The gene
expression of OC was enhanced at the dose of 100 ug/ml EMD at day 3. Increased protein expression for cbfa-1 at
day 3, for ALP at day 5 and 7, and for OC at week 4 after the EMD treatments were observed.

Conclusions: Human GMSCs could be successfully isolated and identified. EMD treatments not only induced the
proliferation of GMSCs but also enhanced their osteogenic differentiation after induction.

Introduction

Mesenchymal stem cells (MSCs) are multipotent pro-
genitor cells derived originally from adult bone marrow
or some adult/fetal non-marrow tissues. Over recent
years, several different MSCs have been harvested and
identified from various dental tissues, including dental
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pulp stem cells [1,2], stem cells from exfoliated primary
teeth [3], periodontal ligament stem cells [4], dental fol-
licle precursor cells from wisdom teeth [5], stem cells
from periapical follicle [6] and gingiva-derived mesen-
chymal stem cells (GMSCs) [7]. Because of their capabil-
ities of multipotent differentiations, dental stem cells
have been suggested as a potential candidate for tissue
engineering and/or regenerative medicine. They can be
used not only for regenerating dental tissues, but also
for repairing non-dental tissues, such as bone and nerves
[8,9].
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Periodontal disease is a common bacteria-associated
inflammatory disease. The infective and inflammatory
reactions from periodontal disease may damage the sur-
rounding hard and soft tissue structures, called the peri-
odontal attachment which requires alveolar bone,
periodontal ligament and cementum, and results in
tooth loss in the end [10,11]. Numerous materials have
been utilized to improve the regenerative treatment out-
come of periodontal disease, including enamel matrix
derivative EMD (Emdogain®, Institut Straumann AG, Basel,
Switzerland). EMD (Emdogain®) is a purified acidic extract
from the enamel matrix protein of the tooth bud and pre-
dominantly consists of amelogenins [12]. The application
of EMD in periodontal regenerative treatment has been
widely focused on its ability to promote the formation of
the lost periodontal attachment, especially on the regener-
ation of the periodontal ligament and cementum [13,14].
Some studies have reported that EMD can also stimulate
cellular proliferation and mineralization of pre-osteoblasts
and osteoblasts [15-18]. On the other hand, some studies
have reported that EMD reduces the differentiation of
osteoblasts [19,20]. Although a significant amount of new
cementum has been widely observed following EMD
application during periodontal treatments, the alveolar
bone formation is reported to be minimal [21,22].

To rebuild the lost periodontal attachment is the ul-
timate goal of periodontal therapy; however, true regen-
eration after the therapy is still challenging [9]. Recently,
dental stem cells have been reported as candidates to re-
store the lost periodontal tissue [23]. In addition, it has
recently been reported that EMD enhances the prolifera-
tion and mineralization of human bone marrow MSCs
[24]. Clinically, the EMD is applied to the tooth surfaces
during periodontal regenerative surgery and covered
with a gingival flap which is the main source of GMSCs.
The effects of EMD on stem cells, especially on those
derived from the local gingiva, have never been evalu-
ated. The aim of the present study was to investigate the
effects of EMD on the proliferation and mineralization
of GMSCs.

Methods

Human gingiva-derived mesenchymal stem cells
(hGMSCs)

Gingival tissue specimens were obtained from patients
treated in the Periodontal Department of Tri-Service
General Hospital from July 2009 to December 2010. The
specimens were taken from either crown lengthening
procedures or distal wedge periodontal surgeries. After
being stored in an alpha modification of Eagle’s medium
(a-MEM) (Invitrogen, Grand Island, NY, USA) with 10%
qualified fetal bovine serum (FBS) (Invitrogen) and 1%
penicillin, streptomycin (P/S), the specimens were im-
mediately transported to the laboratory. In the present
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experiments, all of the procedures had been approved by
the Ethics Committee of the Faculty of Medicine, Tri-
service General Hospital, Taipei, Taiwan (TSGHIRB-100-
05-099) and all participants gave their informed consent.

The method for stem cell isolation was modified from
previously described procedures [4]. Briefly, the connect-
ive tissue was separated from the epithelium after over-
night treatment with Dispase II (Roche Diagnostics,
Indianapolis, IN, USA). Then, the connective tissue was
digested with 0.2% collagenase (Sigma-Aldrich Inc., St.
Louis, MO, USA), and the cell suspension of gingival fi-
broblasts was collected. After being filtered through a
70 um strainer, the cells were cultured at 1 x 10° cells/
10 cm culture dish with the a-MEM at 37°C and 5%
CO, (Figure 1A). In this study, passage 0 (PO, primary
culture) cells, the hGMSCs, were collected at this stage.
The passage 1 (P1) cells were collected two weeks later
and a series of subcultures was then performed after
confluence. In order to determine the characteristics of
the isolated cells, the colony forming efficiency (the self-
renewal ability) and telomerase activity (the cell prolifer-
ation capability), as well as the surface expression of
stem cells markers, were assayed.

Colony forming unit assay

The efficiency of hGMSCs in forming colonies was de-
tected with a colony forming unit (CFU) assay. PO cells
were plated at 5,000 cells/10 cm dish and P4 cells were
plated at 500 cells/10 cm dish. After being cultured for
14 days, they were fixed and stained with crystal violet.
The number and size of the colonies, containing 50 or
more cells, were recorded. The colony forming rate was
then calculated as the number of colonies formed per
hundred cells.

Telomerase activity assay

To examine the cell proliferation capability of hGMSCs, a
telomerase activity assay was carried out. The telomerase
activity of hGMSCs was measured with 1.5 pg of protein
extracts using a TRAPEZE® Telomerase Detection Kit
(§7700, Merck Millipore Headquarters, Billerica, MA,
USA), and the protein concentration was determined with
a BCA™ Protein Assay Kit (Thermo Fisher Scientific Inc,
Waltham, MA, USA). TRAP assay products were separated
on a 10% polyacrylamide gel following staining with SYBR®
Safe staining (Invitrogen) and were visualized with a camera
system (ChemiDoc XRS + system, Bio-Rad Laboratories,
Hercules, CA, USA). The gel images were scanned directly
with software (Image Lab, Bio-Rad Laboratories) and quan-
titated according to the kit instructions.

Flow cytometry for surface marker analysis
To determine the expression of the conventional surface
markers used to define hMSCs (CD73, CD90 and CD105)
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Figure 1 (See legend on next page.)
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Figure 1 The isolation and characterization of hGMSCs. (A) The isolation protocol/timeline of hGMSCs s illustrated. (B) The colony of isolated
hGMSCs was stained with crystal violet. (C) The mesenchymal stem cell surface markers, which are CD90, CD73 and CD105, were highly
expressed in hGMSCs, but STRO-1 was expressed at a low level. (D) The telomerase activity of hGMSCs was significantly higher than that of
gingival fibroblasts. (E) Multi-potency in the differentiation of these isolated hGMSCs was successfully induced and characterized, including the
osteogenic, adipogenic and neural differentiations. hGMSCs, human gingiva-derived mesenchymal stem cells.

and stromal stem cells (STRO-1) on hGMSC, they were
examined by flow cytometry. The hGMSCs were pre-
pared as single cell suspensions by trypsinization and
resuspended in blocking buffer containing Hank’s bal-
anced salt solution (Sigma—Aldrich Inc.) supplemented
with 1% bovine serum albumin (BSA; Sigma-Aldrich
Inc.) for 30 minutes. Approximately 1 x 10° cells/mL
were incubated with phycoerythrin (PE)- or fluorescein
isothiocyanate (FITC)-conjugated monoclonal antibodies
against CD73 (BD Biosciences, San Jose, CA, USA), CD90
(eBioscience, San Diego, CA, USA), CD105 (eBioscience)
and STRO-1 (Santa Cruz Biotechnology, Santa Cruz, CA,
USA, ) for 30 minutes at 4°C in the dark, then rinsed
and kept in Hank’s balanced salt solution with 1% BSA
on ice until analysis. Samples were analyzed using a
FACSCalibur flow cytometer (Beckman Coulter, Hialeah,
FL, USA). Data were processed using FCS Express V3 soft-
ware (Beckman Coulter).

Osteogenic, adipogenic, neural differentiations

of hGMSCs

Osteogenic differentiation was induced after the hGMSCs
were seeded at a density of 1x 10* cells/well on 12-well
culture plates in a-MEM with 5% FBS and 1% P/S. When
cells reached 80% confluence, the medium was changed to
osteogenic medium which contained a-MEM with 5%
FBS, 1 nM dexamethasone (Sigma-Aldrich Inc.), 50 pM L-
ascorbic acid 2-phosphate sesquimagnesium salt (Sigma-
Aldrich Inc.), 20 mM p -glycerophosphate (Sigma-Aldrich
Inc) and 50 ng/mL L-thyroxine sodium pentahydrate
(Sigma-Aldrich Inc.). The medium was changed twice a
week for three weeks for osteogenic induction. After being
fixed with 4% paraformaldehyde, the culture was stained
with 1% Alizarin Red S at pH 4.1 for 20 minutes.

For adipogenic differentiation, 1 x 10* cells/well were
seeded on 12-well culture plates. When the cells reached
80% confluence, the medium was changed to adipogenic
medium which contains «-MEM with 5% FBS, 1 puM
dexamethasone, 50 puM indomethacin (Sigma-Aldrich
Inc.), 5.0 pg/mL insulin (Sigma-Aldrich Inc.) and 0.5 pM
3-isobutyl-1-methylxanthine 3-isobutyl-1-methylxanthine
(IBMX, Sigma-Aldrich Inc.). Then the medium was
changed twice a week for four weeks for adipgenic in-
duction. After fixation, the culture was stained with
0.0125% Oil red O (Sigma-Aldrich Inc.) in isopropanol
for 20 minutes.

For neural differentiation, 1 x 10* hGMSCs/well were
seeded on poly-L-lysine/laminin-coated eight-well multiple-
chamber slides (Merck Millipore) in Dulbeccos modi-
fied Eagles medium/F12 (DMEM/F12) (InvitroGen)
supplemented with 125 ng/ml basic fibroblast growth
factor (bFGF) (InvitroGen), 1,000 unit/ml leukemia inhibi-
tory factor (Sigma-Aldrich Inc) and 4 mM forskolin
(Sigma-Aldrich Inc.). After three to approximately seven
days, the cells were fixed with 4% paraformaldehyde for
immunocytochemistry staining.

EMD treatment, the cell proliferation assay and
osteogenic differentiation

To evaluate the effects of EMD on the proliferation of
hGMSCs, 1 x 10* cells were cultured in a well containing
10% FBS in a-MEM media (Invitrogen Corporation,
Carlsbad, CA, USA) to 70% confluence in a 96-well plate,
and the medium was changed to serum-free a-MEM
(InvitroGen, Grand Island, NY, USA) to starve the cells
overnight. The cells were then treated with 0, 25 or
100 pg/ml of EMD (Emdogain®; Straumann AG, Basel,
Switzerland) for 24 hours or 48 hours. The proliferation of
hGMSCs was measured at OD 490 nm using the CellTiter
96° AQueous One Solution Cell Proliferation Assay
(MTS, Promega, Madison, WI, USA). All the experiments
were repeated three times.

To examine the osteogenic effects of EMD on hGMSCs,
the stem cells were cultured at a density of 1 x 10* cells/
well in 12 well culture plates and 1x 10 cells/well in
eight-well chamber slides (Merck Millipore) in a-MEM
with 5% FBS and 1% P/S (Invitrogen) until 70% conflu-
ence. The cells were treated with a mineralization solution
(50 uM ascorbic acid, 10 nM dexamethasone and 20 mM
B-glycerophosphate) (Sigma-Aldrich) either in the absence
of EMD (control cultures) or in the presence of EMD
(25 pg/ml or 100 pg/ml). Then, the medium was changed
twice a week. After one, two, three or four weeks of
cultivation in each treatment, hGMSCs were washed
with PBS and fixed with 4% paraformaldehyde (Sigma-
Aldrich). The cultured cells in the 12-well culture plate
were stained with Alizarin red S (ARS) (Sigma-Aldrich)
following routine procedures. Later, 0.5 N HCI and 5%
sodium dodecyl sulfate were added to each well to dis-
solve the stained nodules. The light absorbance of the
extracted dye was measured with a microplate spectro-
photometer (Thermo Fisher Scientific) at 405 nm as
previously described [25]. The cultured cells in the
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Figure 2 Cellular proliferation and extracellular matrix mineralization of hGMSCs after EMD stimulation. (A) The cellular proliferation of
hGMSCs after EMD stimulation for 24 hours and 48 hours, by MTS assay (means + standard deviations, * and #: significant difference at P <0.05
versus 0 and 25 pg/ml EMD, respectively). (B) The extracellular matrix mineralization, stained with ARS, of hGMSCs after EMD stimulation for up
to four weeks. (C) Semi-quantitative measurments of the ARS dye from the cultured cells during the osteogenic differentiation of hGMSCs

after the EMD stimulations presented in B (means + standard deviations, and *: significant difference at P <0.05 versus 0 pg/ml EMD at each
observation interval). ARS, Alizarin red S; EMD, enamel matrix derivative; hGMSCs, human gingiva-derived mesenchymal stem cells.

eight-well chamber slides were used for immunocyto-
chemistry staining.

Reverse transcription polymerase chain reaction and
real-time PCR

To explore the expressions of osteogenic genes, hGMSCs
were seeded at a density of 1 x 10° cells/well in six-well
culture plates, and the effects of different concentrations
of EMD on gene expression were observed. The treatment
conditions were identical to those of the osteogenic
differentiation.

After various times (including 3, 6, 12, 24 or 72 hours)
of cultivation and treatment with EMD or not, RT-PCR
was performed to evaluate the semi-quantity of gene ex-
pression in alkaline phosphatase (ALP) and osteocalcin
(bone y-carboxyglutamate (Gla) protein; OC). To measure
the mRNA expression of ALP and OC after osteogenic
treatment with or without EMD, total RNA was extracted
using TRIsure reagent (Bioline Ltd., London, UK). As de-
scribed previously [26] with slight modification, 1 pg of
total RNA was reverse transcribed with Tetro RT enzyme
(Bioline Ltd.) into cDNA, and used as the template for
PCR reactions and analysis.

Transcribed cDNA was then amplified using the Quan-
tiTect Primer Assay gene expression assay, including
QT00020517 for Cbfa-1, QT00012957 for ALP, QT0023
2771 for OC and QT01192646 for the endogenous control
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) ac-
cording to the manufacturer’s instructions using a Rotor-
Gene cycler (QIAGEN, Hilden, Germany). Gene expression
for human ameloblastin (AMBN), forward 5'-GAGTTTTG
CAGTGCCGTTCT-3" and reverse 5'-CTGCAGACTTC
CCAACTGTCT-3" (NM_016519.5) was also determined.
Calculations of relative gene expressions (normalized to
GAPDH reference gene) were performed according to
the 2*4“T method [27].

Alkaline phosphatase enzyme activity assay

We also addressed osteogenic differentiation of hGMSCs
by measuring ALP activity in culture. hRGMSCs were cul-
tured as described above, either without EMD (control
group) or with EMD (25 pg/ml or 100 pg/ml). On day 3
and day 5, the cells were washed in PBS and scraped in
10 mM Tris—HCI buffer (pH =7.6) containing 10 mM
MgCl, and 0.1% Triton X-100. ALP activity was deter-
mined colorimetrically with p-nitrophenyl phosphate as a

substrate. Then, the protein content was measured by a
Pierce BCA Protein Assay kit (Thermo Fisher Scientific)
with the use of a microplate spectrophotometer at 405 nm
and BSA as the standard. Enzyme activity was shown as
Units/mg protein.

Immunocytochemistry and confocal laser scanning
microscopy

hGMSCs in eight-well chamber slides (Merck Millipore)
were used for immunocytochemistry. After fixation with 4%
paraformaldehyde, cells were permeabilized with methanol,
blocked with 5% BSA in PBS for 20 minutes, and then
exposed to the primary antibody of nestin, microtubule-
associated protein 2 (MAP-2), glial fibrillary acidic protein
(GFAP) (Merck Millipore), cbfa-1 (Abcam, Cambridge,
UK), or OC (Epitomics Inc., Burlingame, CA, USA) over-
night at 4°C. The cells were washed in PBS, exposed to
the secondary antibody of FITC-conjugated goat anti-
rabbit immunoglobulin G (IgG) (Abcam) or Alexa Fluor
568-conjugated goat anti-mouse IgG (InvitroGen) for
30 minutes and counterstained with 4',6-diamidino-2-
phenylindole (DAPI). The nuclear translocation of cbfa-1
and protein expressions of nestin, MAP-2, GFAP and OC
in hGMSCs were observed by confocal laser scanning mi-
croscopy (LSM780, Carl Zeiss Microlmaging, Inc., New
York, NY, USA).

Statistical analysis

One-way analysis of variance (ANOVA) was selected to
evaluate the differences in the expression of mRNA for
Cbfa-a, ALP and OC between hGMSCs treated with
EMD (0, 25 or 100 pg/ml) for various times. Duncan’s
test was used for post-hoc analysis, and P <0.05 was
deemed to be significant.

Results

The stem cells could be successfully isolated from gingiva
The cell colonies could be easily identified after stain-
ing with crystal violet (Figure 1b left). At PO, the mean
colony formation rate was 1.4%; however, a significantly
increased colony formation rate was observed at P4
(mean =15.9%) (Figure 1b right). Significantly higher
telomerase activities, indicating a higher activity of cell
renewal, were observed in hGMSCs when compared
with the activity from gingival fibroblasts (Figure 1D).
The isolated cells at P4 expressed high levels of sur-
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face markers for CD73, CD90 and CD105, but a low
expression was observed for STRO-1 (Figure 1C).
Multi-potency in osteogenic, adipogenic, and neural
differentiation of the isolated hGMSCs was successfully
induced (Figure 1E).

Effect of EMD on the cell proliferation and osteogenic
differentiation of hGMSCs

The EMD increased the number of cells in a dose
dependent manner in both 24 and 48 hours (Figure 2A).
The effect of EMD on the osteogenic differentiation of
hGMSCs is summarized in Figure 2B-C. At the first
and second week after 100 pg/mL of EMD treatment,
some red nodules could be observed with ARS staining.
For those wells that recieved medium only or 25 pg/mL
of EMD, the nodules could only be observed three and
four weeks after the treatment. The semi-quantiative
measurment of the Alizarin red from the wells also
showed similar findings as those shown in Figure 2B
(Figure 2C).

Effect of EMD on gene expressions of hGMSCs during
osteogenic differentiation

Significantly increased ALP mRNA expression was ob-
served when the cells received 25 and 100 pg/mL of EMD
treatment for three hours (Figure 3A). The gene expres-
sion of OC after high dose EMD (100 pg/ml) treatments
was significantly increased at day 3 (Figure 3B). Although
the gene expression of AMBN was similar after EMD
treatment for three hours, significantly increased expres-
sions were observed at hour 6 (Figure 3C).

Effect of EMD on the protein expression of hGMSCs
during osteogenic differentiation

Using confocal laser scanning, increased protein expres-
sion of cbfa-1 after the EMD treatments could be ob-
served at day 1 and nuclear translocation could be
clearly observed at day 3 (Figure 3A). Increased protein
expression of OC was observed at weeks 3 and 4 after
the EMD treatments, especially at the 25 mg/mL con-
centration at week 4 (Figure 3B). Increased activities of
ALP were observed at days 5 and 7 after EMD treatment
(Figure 3C).

Discussion

The discovery of stem cells and recent progress in stem
cell biology has made a great contribution to the devel-
opment of regenerative therapeutic strategies for mul-
tiple diseases. Generally, there are two major properties
of stem cells: they are capable of both self-renewal and
differentiation upon division [10]. The aim of the present
study was to investigate the effects of EMD on the pro-
liferation and mineralization of GMSCs. Our isolated
human gingival cells had an increased colony forming
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Figure 4 Osteogenic protein expression of hGMSCs after EMD treatments. (A) The protein and nuclear translocation expressions of cbfa-1
in hGMSCs after EMD treatment for three days. (B) The protein expression of OC in hGMSCs after EMD treatment for four weeks. (C) The enzyme
activity of ALP in hGMSCs after EMD treatment for seven days. (means + standard deviations, * and #: significant difference at P <0.05 versus 0
and 25 ug/ml EMD, respectively). ALP, alkaline phosphatase; EMD, enamel matrix derivative; hGMSCs, human gingiva-derived mesenchymal stem

cells; OC, osteocalcin.

rate, high telomerase activity, high levels of common
MSC markers (for example, CD73, CD90 and CD105)
and multi-potency in differentiation (Figure 1). There-
fore, we suggest that the cells isolated in this study have
the characteristics of MSCs. In the present study, the
hGMSCs are adult mesenchymal stem cells, which are
the general cell types of the tissue near where they res-
ide. The application of adult stem cells in research and
medical therapies is less controversial than embryonic
stem cells because these cells can be harvested and iso-
lated without destroying an embryo [11]. In addition,
adult stem cells can be found almost throughout all
body tissues, including dental tissues [6], although the
proliferative potential and the differentiation capacity of
adult stem cells, such as the periodontal ligament stem
cells, decrease as age increases [8].

Previous in vitro and in vivo studies have shown that
EMD promotes the regeneration of periodontal tissues
and affects the proliferation and mineralization of cells,
such as cementoblasts and periodontal ligament cells
[28-34]. EMD also promotes the regulation of osteoclas-
togenesis, the proliferation and migration of periodontal
cells, and also stimulates the signal transduction of bone
morphogenic protein and transforming growth factor-f3
[31,35-40]. In addition, the properties of EMD are like
those of the extracellular matrix protein which guide or
regulate the proliferation, migration and differentiation
of osteoblasts [28,30-32]. An in vitro study with DNA
microarrays has shown that EMD is able to modulate a
broad range of osteoblast biologic activity genes, such
as cell cycle regulation, proliferation, apoptosis, cyto-
skeleton, cell adhesion, extracellular matrix production
and vesicular transport in ostoeoblast cultures [28]. A
recent study in a mouse preosteoblast cell line also
showed that EMD increased the mRNA expression of bone
sialoprotein and osteopontin, the phenotypic markers of
osteoblastic differentiation; as a result, it accelerates
and improves matrix mineralization [41]. In another
study of human bone marrow stromal cells, EMD af-
fected cell proliferation positively while decreasing the
osteogenic differentiation [42].

In the present study, all experiments were performed
with MSCs obtained from the soft tissue of gingiva which
is non-ossifying tissue. In order to demonstrate the
mineralization capability of the hGMSCs, the expression
of mRNA and protein for mineralization markers (for

example, Cbfa-1, ALP and OC) was determined. Cbfa-l is
a transcription factor, which belongs to the runt-domain
gene family and is preferentially in the osteoblast lineage
during osteogenesis. Studies have reported that Cbfa-1 is
an essential transcription factor for osteoblast differenti-
ation [43]. In the present study, mRNA expression of
Cbfa-1 was upregulated and protein nuclear translocation
was clearly observed in hGMSCs with EMD treatment
(Figure 4A).

ALP is a common early marker of osteogenic differ-
entiation. Its activity was increased by EMD stimulation
(Figure 4C) and, therefore, a significantly increased number
of osteogenic differentiation nodules and stronger staining
were observed in the extracellular matrix mineralization
after being treated with EMD than without EMD (Figure 2B
and C). The mineralization of extracellular matrix which is
the foundation for hard tissue construction comprises two
stages: preliminary synthesis of collagenous network and
deposition of hydroxyapatite crystals, catalyzed by ALP.
Our results demonstrate that EMD markedly assisted the
mineralization of extracellular matrix.

OC is a specific late marker of osteogenic differentiation,
indicating the major non-collagenic protein of the bone
matrix. OC plays important regulatory functions in the
bone-remodeling process, and its levels usually proceed
in parallel with the final event of matrix mineralization
[44,45]. In our present study, EMD significantly stimulated
OC expression at all of the time points at the high dose
(100 pg/ml) (Figure 3C). This finding was consistent with
the increased mineralization of extracellular matrix after
EMD treatment. OC was a matrix signal for bone forma-
tion, stimulating differentiation of osteoblasts.

In the present study, EMD not only enhanced the osteo-
genic differentiation of hGMSCs but also promoted the
proliferation of hGMSCs (Figure 2a). In osteogenesis, the
cell cycle progression of the osteoblast is arrested and,
hence, increases its differentiation [23,46]. However, the
proliferation of progenitor cells usually occurred at the
early stage before the differentiation starts [47,48]. In the
present study, different media were used for cell prolifera-
tion and mineralization. In the experimental hGMSC pro-
liferation, the medium was not suitable for osteogenic
differentiation and the observation period was limited to
no more than 48 hours (which is at the early stage of cell
proliferation). Furthermore, in the osteogenic differenti-
ation experiment, an osteogenic medium was used and
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the observation period was much longer than in the pro-
liferation experiment. As a result, hGMSCs were treated
with EMD in different culture media that enhanced either
proliferation or osteogenic differentiation.

Conclusions

Our data demonstrate that hGMSCs could be success-
fully isolated from human gingiva, and EMD treatment
could promote not only the proliferation but also the
mineralization of these isolated hGMSCs.
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