
The clinical applications of stem cells

At present, stem cell therapies in veterinary patients are 

not rigorously supervised by regulatory agencies in any 

country [1]. Unfortunately, this has led to the implemen-

tation of some therapies that have not demonstrated 

effi  cacy in vitro or in preclinical animal studies. In 

general, the thera peutic role of stem cells in regenerative 

medicine is not fully understood. It is unclear whether 

stem cells ultimately function once diff erentiated into a 

tissue-specifi c cell such as a tenocyte or whether they 

primarily improve tissue repair through secretion of 

immuno modulatory and bioactive trophic factors or 

whether a combination of the two mechanisms occurs 

[2]. Th ese questions are not purely academic in nature, 

because if stem cells are truly immunomodulatory, then 

allogeneic transplantations should be possible. Safe and 

effi  cacious applications of allogeneic stem cells would 

imply that off -the-shelf stem cell products could be 

developed for increased availability and rapid 

implementation of stem cell therapies early in a disease 

course. Th e potential for allogeneic stem cells to be more 

cost-eff ective than autogenous stem cells is questionable. 

For allogeneic cells, there would be no costs associated 

with a tissue harvest procedure, but there would be 

added expenses of ensuring that the stem cell product 

was free of disease and of storing the stem cells until sale.

Th e therapeutic application of stem cell-based tech-

nolo gies in veterinary medicine was fi rst used by Herthel 

[3] to treat equine suspensory ligament desmitis. Th is 

application involved direct injection of large volumes (20 

to 60 mL) of naïve bone marrow aspirate obtained from 

the sternum into an injured ligament. In this report of an 

uncontrolled, nonrandomized case series, the technique 

appeared to improve return to athletic function rates 

over conventional therapies. However, it is unlikely that 

the observed results were due to stem cells, as it became 

known that there are very few stem cells in bone marrow 

aspirate. Mesenchymal stem cells (MSCs) represent a 

very small fraction of the total population of nucleated 

cells from bone marrow from humans [4] and cats [5] 

and are presumed to be similar in other species, including 

the horse. Th ese studies indicate that 0.001% to 0.01% of 

mononuclear cells isolated from a Ficoll density gradient 

of bone marrow aspirate are MSCs. Th e percentage of 

MSCs in raw bone marrow aspirate would be less than 

0.001% to 0.01% because the technique of Ficoll density 

gradient isolation omits several types of nucleated cells, 

including granulocytes and immature myeloid precur-

sors. Any clinical eff ect of bone marrow aspirate might be 

attributed to the numerous bioactive substances in the 

acellular fraction such as growth factors produced by 

cells or platelets. For example, bone marrow aspirate that 

is rendered acellular through freeze-thaw has some 

stimulatory eff ects on matrix synthesis when applied in 

vitro to tendons and ligaments [6,7].

Stem cell products in clinical use

In veterinary patients, three MSC-based approaches are 

currently used for the treatment of tendon, ligament, or 
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cartilage/joint injuries in horses or dogs. As stated 

previously, there are research-based but no clinical 

reports that document the use of stem cells to enhance 

fracture repair, nor are there any reports in cardio vas-

cular, gastrointestinal, or neuroendocrine body systems. 

Th e fi rst MSC-based method relies on a culture-expan-

ded cell population derived from bone marrow aspirate, 

the second is another bone marrow aspirate-based 

approach using a concentrated mixed cell population 

derived from bone marrow aspiration, and the third 

method employs a mixed nucleated cell population 

derived from adipose tissue. Each technique has its 

strengths and weaknesses. Embryonic stem (ES) cells, 

induced pluripotent stem (iPS) cells, and cord blood-

derived cells are also beginning to be investigated in the 

laboratory but have not yet been applied to the clinical 

scenario.

Culture-expanded bone marrow-derived mesenchymal 

stem cells

Bone marrow-derived mesenchymal stem cells (BM-

MSCs) have the advantages of being easily and relatively 

noninvasively obtained and have a greater capacity to 

diff erentiate into tissue types of the musculoskeletal 

system in comparison with other MSCs [8-10]. Further-

more, BM-MSCs have received the most scientifi c atten-

tion and hence are the best characterized. One dis-

advantage of culture-expanded BM-MSCs is the time lag 

of 3 to 6 weeks from bone marrow aspirate until treat-

ment. Th is time lag is necessitated by the time required 

to grow the MSCs. Bone marrow is collected from the 

sternum or the tuber coxae of horses under sedation or 

can be collected intraoperatively if the horse is already 

anesthetized. Th e horse has seven marrow spaces in the 

sternum, and marrow spaces 3 to 5 are the largest (up to 

5 cm in diameter). Ultrasonography can be used to isolate 

the marrow space but is not necessary if one is familiar 

with the regional anatomy. Bone marrow is typically 

aspirated from the proximal humerus, proximal femur, or 

tuber coxae in dogs.

Tendonitis
Th e use of culture-expanded BM-MSCs for the treatment 

of tendon injuries is supported by experimental investi-

gations in horses and laboratory animals in which MSCs 

were implanted in surgically or collagenase-induced 

tendon lesions. Th ese studies have shown favorable 

eff ects on tissue organization, composition, and mech-

anics of MSC-implanted tendons and ligaments [11-14]. 

Th ese studies vary in experimental design with respect to 

the number of BM-MSCs implanted (0.5 to 10 × 106), 

vehicle for suspension (plasma, phosphate-buff ered 

saline, bone marrow supernatant), and time post-injury 

to injection (up to 2 weeks). Th e clinical application of 

BM-MSCs was fi rst reported in 2003 [15]. More recently, 

a small case control study (n = 11) demonstrated that, as 

a result of BM-MSCs, 90% of treated horses successfully 

returned to pre-injury athletic function and race horses 

suff ered no re-injury of the superfi cial digital fl exor 

tendon after 2 years whereas all of the horses of a control 

population suff ered from re-injury [16]. In an unblinded, 

uncon trolled case series, Godwin and Smith [17] 

reported on 141 horses treated with cultured BM-MSCs 

with at least a 3-year follow-up. Th e authors reported a 

signifi cant decrease in re-injury rate for National Hunt 

race horses but not fl at-track Th oroughbred race horses 

treated with BM-MSCs when compared with conven-

tionally treated historical controls (23% to 66%). To date, 

preclinical and clinical studies have focused on the ability 

of stem cells to enhance tissue regeneration and have not 

investigated the potential immuno modu latory roles of 

stem cells for tendon repair. Th is is most likely simply a 

matter of timing, with the concept of immunomodulation 

being more recent than the more traditional paradigm of 

stem cells diff erentiating and functioning as tissue-

specifi c cells. Although the above-mentioned studies 

have docu mented stemness of the cells to varying degrees, 

tumor, ectopic bone, or cartilage formation has not been 

ob served in either clinical or research investigations.

Cartilage injury/osteoarthritis
Culture-expanded BM-MSCs have been evaluated in an 

equine model of acute cartilage injury in which 15-mm-

diameter full-thickness articular cartilage defects were 

created on the lateral trochlear ridge of the femur [18]. 

Th e BM-MSCs were implanted in autogenous fi brin as a 

scaff old in one limb, and the opposite limb was grafted 

with autogenous fi brin alone. At 30-day re-check 

arthros copy, arthroscopy scores and biopsy assessments 

for the BM-MSCs lesions were signifi cantly better than 

fi brin-only control grafts. However, at 8 months, no 

signifi cant diff erences between the two groups in histo-

logic or biochemical composition were observed. In an 

equine model of early osteoarthritis (OA), a direct 

comparison between BM-MSCs and adipose-derived 

stromal vascular fraction (AD-SVF) cells was made [19]. 

Th e two stem cell preparations were injected directly 

into aff ected joints 14 days after induction of OA. Joints 

treated with BM-MSCs showed signifi cantly less syno-

vial eff usion and signifi  cantly lower prostaglandina E2 

(PGE2) concentra tions in comparison with those 

treated with AD-SVF cells. No diff erences in cartilage 

biochemistry or histo logy, synovial fl uid analysis, or 

other clinical parameters were observed. It is interesting 

to note that synovial fl uid PGE2 concentrations, though 

not directly investigated in the study, were decreased by 

BM-MSC treatment because PGE2 is one mechanism 

by which BM-MSCs modulate immune cells and exert 
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anti-infl ammatory/immuno modu latory eff ects, such as 

suppression of lymphocyte proliferation and T-cell 

activation [2,20]. Several other preclinical studies in OA 

models using goats, sheep, rabbits, and rats have demon-

strated the capacity for BM-MSCs to enhance regenera-

tion of cartilage and even meniscus [21,22]. Combined, 

these studies suggest that BM-MSCs have the dual 

function in an articular environ ment to modulate the 

local T cell-mediated immuno logical response and to 

enhance tissue regeneration. Long-term studies using BM-

MSCs in naturally occur ring articular cartilage injuries in 

veterinary and human patients are required to demon-

strate restoration of joint function, decreased articular 

pain, and durability of BM-MSC-based therapies.

Bone marrow concentrate

Concentrated bone marrow aspirate was designed to 

increase the concentration of stem cells compared with 

naïve bone marrow aspirate and to avoid the lag time 

from diagnosis to treatment when culture-expanded 

BM-MSCs are used. In addition to the concentration of 

stem cells, the concentrations of platelets and therefore 

anabolic growth factors are increased [23]. When com-

bined with thrombin, the fi brinogen present in BMC is 

converted to fi brin and a solid scaff old forms to retain the 

cells and growth factors in a given location.

Tendonitis
No peer-reviewed preclinical or clinical reports on the 

use of BMC for tendonitis have been published. BMC is 

being applied clinically for ligament and tendon injuries 

in horses, but suffi  cient data are not currently available to 

assess its therapeutic potential.

Cartilage injury/osteoarthritis
In the equine model of acute cartilage injury discussed 

above (15-mm-diameter lesions), one limb was treated 

with BMC and microfracture and the other was treated 

with microfracture alone [23]. Re-check arthroscopy at 

3  months demonstrated signifi cantly improved repair 

tissue in BMC-grafted defects compared with micro-

fracture tissue with increased volume and greater inte-

gration of repair tissue with surrounding host cartilage. 

At 8 months, all macroscopic, histologic, and magnetic 

resonance imaging data indicated sustained improvement 

in BMC-grafted repair tissue in comparison with micro-

fracture. Like many other stem cell-based technologies, 

BMC is being applied in clinical veterinary and human 

patients, but no peer-reviewed results have been published.

Adipose-derived stromal vascular fraction cells

Th e currently available technique uses a mixture of cells 

derived from adipose tissue surgically excised from 

horses or dogs. Th e AD-SVF cells are simply isolated and 

injected into the patient without a cell culture step. 

Compared with cultured BM-MSCs, this technique has 

the advantage of supplying cells in a short time period 

(48 hours), and it should be remembered that although 

there are a large number of nucleated cells retrieved from 

the adipose digest, only a small percentage of nucleated 

cells are stem cells. In humans, 0.7% to 5% of nucleated 

cells in the stromal vascular fraction are stem cells [24].

Tendonitis
No references regarding the clinical application of AD-

SVF cells in equine tendonitis are currently available. 

Results of a pilot study demonstrated signifi cant im-

prove ment in histologic score in AD-SVF cell-treated 

tendons over phosphate buff ered saline-treated control 

tendons [25]. Although AD-SVF cells have been available 

for nearly 8 years and have been used to treat several 

thousand horses, no reports documenting their use in 

clinical cases of equine tendonitis have been published. 

AD-SVF cells are not approved by the US Food and Drug 

Administration for human application at this time.

Cartilage injury/osteoarthritis
As mentioned above, AD-SVF cell application in an 

equine model of early OA failed to result in any detec-

table improvement in articular health [19]. In fact, 

AD-SVF cells led to an increase in synovial fl uid concen-

tration of the proinfl ammatory cytokine tumor necrosis 

factor-alpha. In dogs, two reports of improved clinical 

signs of OA after treatment have been published. In a 

double-blinded study assessing the use of AD-SVF cells 

in the hip joint of dogs, examining veterinarians (but not 

the dog owners) reported signs of clinical improvement 

[26]. In a second, uncontrolled study using AD-SVF cells 

for elbow OA, veterinarians and, to a lesser extent, 

owners both reported improvements in clinical signs 

[27]. Th e disparity in the clinical benefi ts noted by 

owners in these studies investigating the use of AD-SVF 

cells in OA is unclear but perhaps suggests that any 

benefi t of AD-SVF cell application can be seen only in 

more advanced cases of OA or that changes in lameness 

associated with elbow OA in comparison with those of 

hip OA are more easily perceived by owners.

Debated hypothesis and the future of clinical stem 

cell therapy

Irrespective of the type of stem cell being investigated, 

the nature of the target tissue, or the species that is being 

treated, the fundamental questions underlying the 

clinical application of stem cells are the same and include 

the following: (a) What is the optimal tissue source of 

stem cells for each clinical application? In the current 

clinical applications of adult-derived stem cells, it is 

unlikely that a single stem cell source will be best for 
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regeneration of tissues from the three diff erent embry-

onic germ layers (endoderm, mesoderm, and ectoderm). 

(b) How many stem cells are needed to eff ectuate 

regener ation? Very few dose-response studies have been 

performed to date, and the available data suggest that 

‘more is not better’. (c) What is the best means to deliver 

the cells? Should they be administered locally to the site of 

damage or intravenously? Is a scaff old necessary, and if so, 

which scaff old is optimal for each tissue type? (d) Is there a 

requirement for co-delivery of growth factors to direct the 

function of the implanted cells? Many of these questions 

are intricately linked, and carefully designed research 

studies will be required to answer the debated theories.

Several avenues of stem cell therapy for tendon/

ligament pathologies are currently under investigation. 

Several types of stem cells not discussed herein, including 

ES cells, umbilical cord blood-derived stem cells, and iPS 

cells, show promise for regenerative applications. Finally, 

genetically modifi ed stem cells have been investigated in 

vitro and in vivo and show tremendous promise for 

enhancing organized repair of tendons and other 

musculoskeletal tissues.

Clinical uses of stem cells in reproductive medicine

Currently, there are no widespread uses of stem cell-

based therapies in reproductive medicine. However, the 

potential utility of such approaches makes them subjects 

of intensive research. Broadly speaking, two stem cell 

types are the primary topics of investigation: ES/iPS cells 

and spermatogonial stem cells (SSCs). Unfortunately, 

despite great eff ort, there are no completely characterized 

ES or iPS cells derived from species other than primates 

or mice [28]. For this reason, we focus here on SSCs, 

which are used in the techniques of testis xenografting 

and spermatogonial stem cell transplantation (SSCT).

Testis xenografting
Th e primary clinical application for testis xenografting 

would be as a means to preserve the breeding potential of 

a genetically valuable pre-pubertal male animal [29]. For 

example, in the captive management of threatened or 

endangered species, specifi c individuals often have high 

genetic value. If adult males die before contributing their 

genes to the population, mature sperm can be collected 

and cryopreserved for future use in artifi cial insemination 

or a form of in vitro fertilization (IVF). If neonatal or 

juvenile males die, testis xenografting off ers a means to 

develop sperm from their gonocytes or SSCs, which are 

present from parturition. In this procedure, small pieces 

(1 to 2 mm3) of donor testes are surgically grafted into 

immunodefi cient mice. In the absence of a functioning 

immune system, the recipient mice nurture the foreign 

testis tissue, which supports spermatogenesis [30]. By 

means of this approach, morphologically mature sperm 

have been produced in xenografts from a number of 

species, including rabbits [31], pigs and goats [30], ham-

sters [32], rhesus macaques [33], sheep [34], cats [35], 

and dogs [36]. However, the effi  ciency of spermatogenesis 

in xenografts diff ers among species, with the bull [37-39], 

cats [35,40], and dogs [36] being less effi  cient. One 

common fi nding across species is that if the donor testis 

tissue has germ cells actively undergoing meiosis (as in 

puberty or adulthood), then the xenografts lose the 

ability to support spermatogenesis [40,41]. Th e fertilizing 

ability of graft-derived sperm has been verifi ed by the 

production of viable off spring in allografted mouse [42] 

and xenografted rabbit [31] and pig [43]. Because there is 

no epididymis in this system, the functionally immature 

sperm can help generate off spring only through intra-

cytoplasmic sperm injection (ICSI), a procedure in which 

sperm are injected directly into an oocyte. Th us, although 

banking of material from genetically valuable individuals 

of multiple species might begin now, the ultimate 

production of off spring is restricted until ICSI is 

optimized for that species.

Spermatogonial stem cell transplantation
Th e primary clinical uses of SSCT would be to preserve 

or manipulate the male germline or both [44]. Briefl y, the 

technique involves isolation of a mixed germ cell 

population from a donor testis (preferably enriched in 

SSC if markers are known for that species). Th e isolated 

cells are then injected in a retrograde fashion into the 

testes of a recipient animal. To increase the SSC niches 

that might be open for colonization, the recipients are 

often treated with focal testicular irradiation [45,46] or 

systemic busulfan [47,48] to reduce their endogenous 

SSC. After time is allowed for colonization, proliferation, 

and spermatogenesis, semen is collected and assessed for 

the relative percentage that is of donor origin. Although 

it has been performed successfully in several species, this 

technique has multiple steps that are technically 

challenging and time- and labor-intensive. Th erefore, it is 

likely to be used in the future primarily as a clinical tool 

to develop transgenic biomedical research models or for 

the production of transgenic farm animals that produce 

tissues/organs genetically engineered to be compatible 

across species or to produce pharmaceutical proteins 

[49]. Xenogeneic transplantation has been attempted with 

various donor and recipient species. Unless the donor 

and recipient are closely taxonomically related (for exam-

ple, rat and mouse [50] as opposed to dog and mouse 

[51]), the recipient testes do not support spermatogenesis. 

Th erefore, utilization for the conservation of threatened 

species would require not only the use of a suitable 

domestic animal recipient that would support spermato-

genesis of the donor but also some method of sorting the 

sperm of donor origin from that of recipient origin.
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Debated hypothesis and the future of stem cell 

technologies in clinical reproduction

Several questions need to be addressed in order to 

enhance the clinical utility of both testicular xenografting 

and SSCT approaches: Can markers that will label the 

SSC of various species be identifi ed? Can cryopreser-

vation methods for individualized SSC, pieces of testis 

tissue, and sperm be optimized? Can ‘downstream’ 

technologies such as classical IVF and ICSI be developed 

for diff erent species? Other questions are specifi c to one 

or the other technique: Why are there diff erences among 

species in the effi  ciency of xenograft spermatogenesis? 

Why do xenografts from meiotic testes fail? Can we 

determine the critical parameters that defi ne the 

taxonomic gulf between SSC donor species and the 

species that might be able to function as recipients?

Conclusions

Th e clinical use of stem cells in veterinary medicine is 

clearly in its early stages. Applications for BM-MSC and 

AD-SVF cells in the treatment of musculoskeletal patho-

logies are currently in use in several species, although the 

diff erential effi  cacies of various approaches are still being 

investigated. Optimization of these stem cell-based 

therapies will focus on cellular origin, isolation, enrich-

ment, and processing as well as on the timing, route of 

administration, formulation, and dosing of those thera pies. 

Development of confi rmed ES or iPS cells in domestic 

species would greatly facilitate the development of a wider 

range of clinical applications. Use of stem cell-based 

approaches in attempts to preserve the germ plasm of 

threatened species could begin on an opportunistic basis 

in the form of xenografting of testis tissue obtained quickly 

after the death of pre-pubertal individuals. How ever, this 

must still be considered a research endeavor given the 

largely unknown causes of species diff erences in the 

success of spermatogenesis as well as the need to perform 

subsequent techniques of assisted reproduction which 

have themselves not yet been determined for most species.
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