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Abstract

chemotherapy or G-CSF treatment.

cell therapy.

Introduction: Hematopoietic stem/progenitor cells (HSPCs) reside in a tightly controlled local microenvironment
called bone marrow niche. The specialized microenvironment or niche not only provides a favorable habitat for
HSPC maintenance and development but also governs stem cell function.

Method: We investigated the effect of cytotoxic drugs on bone marrow niche. To mimic the multiple rounds of
chemotherapy followed by autologous hematopoietic stem cells (HSCs) transplantation in a clinical setting, we
further verified the hypothesis that targeting the niche might improve stem cell-based therapies in mouse models.

Results: We found that multiple rounds of cytotoxic drug treatment significantly disrupted niche and serum
osteocalcin level was significantly reduced after treatment in autologous HSPCs transplanted patients (P = 0.01). In
mouse models, the number of CD45 Ter119 OPN™ osteoblasts was significantly reduced after multiple rounds of
chemotherapies and granulocyte colony stimulating factor (G-CSF) treatment (P < 0.01). Parathyroid hormone (PTH)
or receptor activator of nuclear factor kappa-B ligand (RANKL) treatment significantly increased the number of HSCs
mobilized into peripheral blood (PB) for stem cell harvesting and protected stem cells from repeated exposure to
cytotoxic chemotherapy. Treatments with G-CSF and PTH significantly increased the preservation of the HSC pool
(P < 0.05). Moreover, recipient mice transplanted with circulation HSPCs that were previously treated with PTH and
RANKL showed robust myeloid and lymphatic cell engraftment compared to the mice transplanted with HSCs after

Conclusion: These data provide new evidence that the niche may be an important target for drug-based stem

Introduction

Hematopoietic stem cell transplantation (SCT) has pro-
vided lifesaving treatment for many hematological disor-
ders, but a significant proportion of patients who are
eligible for autologous SCT fail to mobilize a sufficient
number of CD34" hematopoietic stem/progenitor cells
(HSPCs), which is called “poor mobilization”, owing to
various premobilization (predictive) factors such as prior
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treatment with stem cell toxic drugs, underlying disease,
age, prior radiotherapy, and bone marrow involvement
[1-3]. Poor mobilization has disastrous consequences for
patients, with potential loss of transplant as a treatment
option. Moreover, 5-10 % of healthy donors cannot obtain
adequate HSPCs for allogenetic transplantation after gran-
ulocyte colony-stimulating factor (G-CSF) treatment [1, 4].
Repeated attempts during the mobilization process will in-
crease resource use, but morbidity and patient/donor in-
convenience are also increased in the meantime. How to
improve the mobilization efficiency is therefore becoming
a challenging topic for hematological scholars [5, 6].

Poor mobilization may result from significant depletion
of the bone marrow hematopoietic stem cell (HSC) pool
caused by G-CSF. Since the specialized microenvironment
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(niche) governs stem cell function [7, 8], targeting the stem
cell niche may change the fate of stem cells. Our previous
studies demonstrated that, except for the proteolytic en-
zymes, cellular components of osteoblasts and osteoclasts
are closely related to G-CSF-induced HSPC mobilization
in healthy donors [9, 10]. Recognition of the intimate rela-
tionship between endosteal niche cells (osteoblasts and os-
teoclasts) and HSPCs affords the possibility of targeting
the niche to improve stem cell mobilization efficiency. The
role of parathyroid hormone (PTH) in activating osteo-
blasts triggered researchers to investigate the possible ef-
fect of PTH on HSPCs. The pharmacological role of PTH
in HPSCs during G-CSF-induced mobilization has been
confirmed in a phase I clinical trial [11]. Moreover, it has
been found that the resorption of osteoclasts stimulated by
receptor activator of nuclear factor kappa-B ligand
(RANKL) can reduce the level of stem cell niche compo-
nents along the endosteum and finally trigger HSPC
mobilization, so RANKL may be used together with other
mobilization agents in clinical HSPC transplantation pro-
tocols [12]. In our previous study, PTH/RANKL was
added to manipulatively interrupt the bone remodeling
balance and then increase the number of HSPCs mobilized
into the peripheral blood (PB). We demonstrated that the
imbalance of bone remodeling can facilitate HSPC
mobilization [9], and targeting the HSC niche may im-
prove mobilization efficiency.

In this study, the role of bone remodeling in G-CSE-
induced mobilization was examined in clinical specimens
from autograft patients, and several animal models mim-
icking clinical mobilization situations were established to
explore the possibility of improving poor mobilization.

Materials and methods

Sample collection

PB samples from 10 autograft patients (including three
non-Hodgkin’s lymphoma (NHL) cases, two myeloma
cases, and five cases with acute lymphoblastic leukemia
(ALL)) were first collected after diagnosis (before treat-
ment). A median of four chemotherapy cycles (range 3-6
cycles) was then administered to these patients [13-15].
Before the mobilization course, PB samples were again
collected from patients (steady state). All patients were
autografted in the first remission. The mobilization course
consisted of subcutaneous injection of human recombin-
ant G-CSF (5 pg/kg/day, twice a day, Filgrastim; Japan)
used in the recovery phase of myelotoxic chemotherapy
(single-agent cyclophosphamide (China) infusion or
mitoxantrone (China) plus cytarabine (China)). Serum
samples were collected by centrifugation at 500 x g for 10
minutes and stored at —80 °C for assay. Human samples
were used in accordance with approved procedures by the
Human Experimentation and Ethics Committee of the In-
stitute of Hematology and Blood Diseases Hospital,
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Chinese Academy of Medical Sciences (CAMS) and Pe-
king Union of Medical College (PUMC). We obtained
consent from all patients involved in the study, including
consent to participate in the study where appropriate.

In vivo experiment

C57Bl/6 and B6.SJL female mice (6—8 weeks old) were
obtained from the Institute of Laboratory Animal Sci-
ence, CAMS and PUMC. All of the animal handling and
experimental procedures were approved by the Animal
Care and Use Committee of CAMS and PUMC. Mice
were housed in sterilized micro-isolator cages and re-
ceived autoclaved food and water. To study the changes
of niche cells and HSPCs after cytotoxic drug treatment,
C57Bl/6 (CD 45.2) mice were injected intraperitoneally
with cyclophosphamide (CTX) (Sigma, Sigma-Aldrich,
St Louis, MO, USA) at a dose of 5 mg once every 2
weeks for a total of four cycles, and then injected intra-
peritoneally with saline (CTLs group) or recombinant
human G-CSF (Filgrastim) (Gs group) at a dose of 250
ug/kg/day for 8 consecutive days. At the end of 10 weeks
(day 71, 8-week treatment period and 2-week recovery
period), mice were killed and the functions of osteoblast
and HSPCs were tested (Fig. 1).

To imitate the settings of autologous transplantation fol-
lowing chemotherapy, after each of the four cyclophospha-
mide treatments already mentioned C57B1/6 mice were
injected intraperitoneally with either saline (group CTL)
or 250 pg/kg/day G-CSF (Filgrastim, groups G, PTH, P +
G, P + R,and P + R + G) for 8 consecutive days. After 8-
week treatments, mice were treated with G-CSF for 4 days
(Filgrastim, 250 pg/kg/day, intraperitoneally, groups CTL
and G), or rat PTH for 14 days (80 pg/kg/day, intraperito-
neally, group PTH; Bachem, Torrance, CA), or a combin-
ation of PTH for 14 days and G-CSF for 4 days (group P +
@), or a combination of PTH for 14 days and RANKL for
5 days (6 pg/day, subcutaneous injection via the femur,
group P + R; PeproTech, Rocky Hill, NJ), or a combin-
ation of PTH for 14 days, RANKL for 5 days, and G-CSF
for 4 days (group P + R + G). At the end of treatments,
mice were sacrificed, and bone marrow HSPCs (groups
CTL, G, and PTH) and HSPCs mobilized into the blood
(groups CTL, G, P + G, P + R, and P + R + G) were
assessed by competitive repopulation assay (CRA) (shown
in Fig. 1).

Isolation of bone marrow nuclear cells and osteoblasts

Total bone marrow nuclear cells were isolated from
mouse femurs by flushing with phosphate-buffered saline
(PBS) plus 2 % fetal bovine serum. Red blood cells and
debris were removed by ammonium-chloride—potassium
(ACK) lysis (0.15 M NH,Cl, 1.0 mM KHCO3;, 0.1 mM
ethylenediamine tetraacetic acid (EDTA), pH 7.4) and fil-
tering through nylon mesh. Osteoblasts were isolated
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Fig. 1 Diagrammatic representation of the experimental procedure to analyze the effects of PTH (80 pg/kg/day, Bachem, Torrance, CA) and
RANKL (6 pg/day, PeproTech, Rocky Hill, NJ) treatment during multiple rounds of chemotherapy with cyclophosphamide (CTX,5 mg) and/or
G-CSF, 250 pgrkg/day. In the last 2 weeks, one-half of the CTL and G groups received no treatment. At the end of the 10-week treatment period,
mice were scarified (S), and bone marrow HSPCs (CTL / G / PTH) and HSPCs mobilized into the blood (CTL/ G/P+ G/P+R/P + R + G) were

from marrow-depleted femurs by mechanical disruption
(crushing with mortar and pestle), infused with PBS
containing 50 mg/ml type II collagenase (GIBCO, NY)
and incubated at 37 °C for 15 minutes. The collagenase-
treated femurs were flushed with PBS and a similar
procedure was repeated six times. Osteoblasts were col-
lected by centrifugation at 400 x g for 5 minutes and
cells were pooled [16].

Measurements of osteocalcin and tartrate-resistant acid
phosphatase 5b levels

Serum levels of osteocalcin and tartrate-resistant acid
phosphatase 5b (TRACP 5b) from mouse model and
healthy donors samples were tested using immunoassay
kits for osteocalcin (Biomedical Technologies, Stoughton,
MA, USA for mouse; Immunodiagnostic Systems Limited,
Boldon, UK for human) and TRACP 5b (Immunodiagnos-
tic Systems Limited for mouse) following the manufac-
turer’s instructions. The concentrations of osteocalcin and
TRACP 5b in each sample were calculated based on the
average of different dilutions and the experiments were re-
peated three times.

Competitive repopulation assay

For qualitative measurement of the HSC frequency in the
peripheral circulation, 300 ul PB were collected from the
retro-orbital vein of the C57Bl/6 (CD 45.2) mouse. PB was

collected into microtainer tubes containing lithium hep-
arin. The red cells were lysed with ACK lysing buffer and
the mononuclear cells were mixed with 2.5 x 10° bone
marrow mononuclear cells from two B6.SJL (CD 45.1)
mice. To measure the bone marrow HSC cell frequency,
the mice were killed with carbon dioxide and the bone
marrow mononuclear cells were isolated by flushing the
bone marrow cavity with PBS plus 2 % fetal bovine serum.
Then 25 x 10° bone marrow mononuclear cells from
C57Bl/6 mice were mixed with an equal number of bone
marrow mononuclear cells from two B6.SJL. competitor
mice. These two kinds of hybrid cells were then injected
into recipient B6.SJL mice that were lethally irradiated for
24 hours with 9.5 Gy radiation. The relative contribution
of engraftment from the different cell sources was
assessed by the detection of CD45.2 antigens in both the
myeloid (defined as Side ScatterMac-1%) and lymphoid
(defined as Side Scatter'®’CD3*/B220") fraction of cells
after 16 weeks. The cells were diluted and incubated
with phycoerythrin (PE)-conjugated CD45.2, fluores-
cein isothiocyanate (FITC)-conjugated CD3, allophycocya-
nin (APC)-conjugated B220, and PE-Cy5-conjugated
Mac-1 antibodies (eBiosciences, San Diego, CA, USA).
After incubation with these antibodies, the samples were
fixed and red cells were removed using BD fluorescence-
activated cell sorting (FACS) lysis solution (BD Biosci-
ences, San Jose, CA, USA).
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Flow cytometry

To quantify osteoblast lineage cells, bone-associated cells
obtained from enzymatic treatment were stained with
APC-conjugated anti-mouse CD45 and Ter119 antibodies
(eBiosciences, San Diego, CA, USA), and goat anti-mouse
osteopontin, followed by FITC-conjugate donkey anti-goat
IgG (Santa Cruz Biotechnology, Inc., Texas, USA). CD45
“/Ter1197/OPN" cells were enumerated [17]. The popula-
tion of different cells was assessed by FACS Calibur flow
cytometer and analyzed with Cell Quest software (Becton-
Dickinson).

Colony formation assay

Nucleated bone marrow cells (1.0 x 10*) were planted in
2.5 ml methylcellulose media supplemented with a cock-
tail of recombinant cytokines (MethoCult 3434; Stem-
Cell Technologies, Vancouver, BC, Canada). Cultures
were plated in duplicate and cultured in a humidified
chamber with 5 % carbon dioxide at 37 °C. Colonies
with at least 50 cells were counted on day 12 of culture.

Reverse transcription and real-time quantitative PCR
Mouse marrow-depleted bones were flushed with a total
of 1 ml TRIzol reagent (Invitrogen, Carlsbad, CA, USA)
followed by crushing of the remaining bone in TRIzol. Re-
verse transcription was carried out using the Superscript
First-Strand Synthesis System (Invitrogen) following the
manufacturer’s instructions. Real-time quantitative PCR
for osteocalcin (forward primer, 5'-TCTCTCTGCTCA
CTCTGCTGGCC-3'; reverse primer, 5 -TTTGTCAG
ACTCAGGGCCGC-3’) expression was performed on the
ABI 7500 Sequence Detection System (Applied Biosys-
tems, Foster, CA, USA). The 20 pl PCR mixture consisted
of 10 pl Power SYBR® Green PCR Master mix (Applied
Biosystems), 0.5 pl each primer (100 pM), 1 ul cDNA (40
ng RNA), and 8 pl ddH,O. The reaction was carried out
95 °C for 15 minutes, followed by 40 cycles of 95 °C for 15
seconds and 60 °C for 1 minute. AACT values were calcu-
lated from the differences between the targeted genes and
internal control B-actin. Each experiment was repeated
three times and the mean was calculated.

Immunohistochemistry

To mark osteoblasts, immunohistochemical staining of
osteocalcin was performed on formalin-fixed, paraffin-
embedded sections of human biopsy specimen samples.
Immunohistochemistry was carried out following the
standard protocols. After dewaxing and antigen retrieval,
the sections were blocked with goat serum for 1 hour
and incubated with mouse anti-osteocalcin monoclonal
antibody (1:100, ab13418; Abcam, Cambridge, UK) over-
night at 4 °C. The sections were stained with streptavidin-
peroxidase method and a 3,3’-diaminobenzidine (DAB,
Venata Medical Systems, Basal, Switzerland) kit.
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The osteoblast enumeration was performed in the
growth region of all trabecular bones, but not any cortical
bone (using 20x objective). Two pathologists counted the
positive cells in 15 fields (400x) per section in a blind
fashion. The number of osteoblasts was averaged and sig-
nified as the osteoblast number per bone surface.

Hematoxylin and eosin and TRACP staining

Mouse femurs were fixed in 4 % formaldehyde in PBS
for 48 hours, decalcified in 10 % EDTA (pH 7.5) for 14
days, and embedded in paraffin. Sections (4 um) were
deparaffinized, rehydrated, and stained with hematoxylin
and eosin (H&E) and TRACP immunocytochemistry kit
(Sigma-Aldrich Ltd, Dorset, UK) according to the manu-
facturer’s instructions for histochemical examination
[18,19].

Statistical analysis

The statistical significance of overall differences among
multiple groups was analyzed by the ordinary analysis of
variance using SPSS 15.0 (IBM, Chicago, IL, USA). Data
are presented as the mean + standard error of the mean.
Data were analyzed using the nonparametric Mann—
Whitney test as appropriate for the data set. P <0.05 was
considered statistically significant.

Results

Multiple treatments of cytotoxic drugs destroy bone
marrow niche osteoblasts in autologous transplantation
patients

Based on our previous results, a mobilization protocol
with G-CSF suppresses osteoblast function [9]. In this
study, we further investigated the effect of multiple
treatments of cytotoxic drugs on niche cells. PB samples
from 10 patients were collected after diagnosis (before
treatment) and before the mobilization chemotherapy
course (steady state). We found that the osteocalcin level
in the serum was significantly reduced after treatment
(22.19 + 1.08 ng/ml before treatment vs. 16.08 + 2.12
ng/ml steady state, P = 0.01) (Fig. 2a). Moreover, the
number of mature osteoblasts was significantly de-
creased after multiple chemotherapy cycles, which is de-
fined by osteocalcin-positive endosteum cells (Fig. 2b, c).
The number of osteoblasts per bone surface was de-
creased from 18.55 + 0.32 (before treatment) to 12.27 +
0.66 (steady state) (P <0.05). These data indicate that
cytotoxic drugs not only decrease the number of osteo-
blasts, but also suppress the activity of osteoblasts.

Multiple treatments of cytotoxic drugs influence both
osteoblasts and HSPCs in a mouse model

To verify the results from patients, two mouse models
(CTLs and Gs groups) were established by cyclophospha-
mide treatments and consecutive stimulations with G-CSF
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Fig. 2 Chemotherapy destroys bone marrow niche osteoblasts in autologous transplantation patients. a Serum osteocalcin concentrations
decrease after multiple rounds of cytotoxic drug treatment in human. Serum samples were collected from 10 patients and their serum
osteocalcin levels were measured by enzyme-linked immunosorbent assay (ELISA). b, ¢ Representative photomicrographs of human endosteal
osteoblasts after immunohistochemical staining. Osteocalcin-positive mature osteoblasts (red arrows) before treatment (b) were considerably

steady state

to mimic the patients who received high-dose chemother-
apy after autologous PB SCT. Compared with untreated
mice, osteocalcin mRNA expression was reduced 9.32 +
0.3-fold in the CTLs group (P <0.01) and 16.82 + 0.8-fold
in thex Gs group (P <0.01) (Fig. 3a). The number of
CD45 Ter119 OPN* osteoblasts (%CD45 Ter119 OPN* x
total bone cells per femur) was significantly reduced after
cyclophosphamide treatments and consecutive stimula-
tions with G-CSF (untreated, 3993 + 129 cells/femur;
CTLs, 1937 + 196 cells/femur; Gs, 1055 + 43 cells/femur;
P <0.01) (Fig. 3b, c). Moreover, the osteoblastic activity de-
creased to a low level. Circulation osteocalcin was de-
creased in the CTLs group (33.81 + 1.99 ng/ml) and the
Gs group (27.18 + 1.09 ng/ml) compared with untreated
mice (59.44 + 3.16 ng/ml) (P < 0.01; Fig. 3d). In addition,
the decreased number of trabeculae was observed in the
long bones from the mice in both the CTLs and Gs
groups (Fig. 3e). Furthermore, compared with untreated
mice (29.17 + 1.22 U), the number of HSPCs in the bone
marrow was significantly reduced in the CTL (21.16 +
1.35U) and Gs (13.00 + 1.71 U) groups (P = 0.01) (Fig. 3f).
These results indicate that chemotherapy, especially in
combination with G-CSF, can destroy the osteoblastic
niche and lead to a significant depletion of the bone mar-
row HSPC pool, which may be the primary cause for poor
mobilization.

PTH and RANKL can efficiently activate the functions of

osteoblasts and osteoclasts during cytotoxic chemotherapy
In this study, we found niche cells (osteoblasts and oste-
oclasts) involved in stem cell mobilization and cytotoxic
drugs combined with G-CSF suppressed the function of
osteoblasts and HSPCs, so we hypothesized that stimula-
tion of the HSPC niche, rather than the stem cell itself,
may provide therapeutic benefit for clinical SCT. Here

we found that PTH-treated mice showed a significant
increase in the absolute number and function of oste-
oblasts. The level of osteocalcin mRNA in the PTH
and P + G groups was significantly higher than that
in the CTL or G group (P <0.01; Fig. 4a). Consistent with
gene expression analysis, the number of CD45 Ter119™
OPN" osteoblasts in the PTH (2780 + 197 cells/femur)
and P + G (2768 + 236 cells/femur) groups was signifi-
cantly higher than that in the CTL (1091 + 114 cells/
femur) and G (954 + 87 cells/femur) groups (P <0.01;
Fig. 4b). Moreover, the density of trabeculae in the long
bones was significantly increased in the PTH and P + G
groups (Fig. 4c). PTH treatment also enhanced osteoblast
function. Of the two PTH-treated groups, the osteocalcin
level in the PTH and P + G groups was 51.89 + 5.17 ng/ml
and 3643 t 1.89 ng/ml, respectively, while its level was
30.39 + 1.47 ng/ml in the CTL group and 28.34 + 0.65 ng/
ml in the G group (P = 0.02; Fig. 4d).

RANKL can stimulate osteoclasts and elevate the serum
TRACP 5b level [15, 16]. Here we observed that RANKL
treatment significantly increased the number of osteo-
clasts in the trabecula bone (P + R group vs. PTH group;
Fig. 5a). The serum TRACP-5b level was also significantly
elevated after RANKL treatment (12.16 + 0.52 U/I) com-
pared with PTH treatment only (3.87 + 1.28 U/l) (P =
0.01; Fig. 5b). These data suggest that PTH may overcome
the side effect of cytotoxic chemotherapy on osteo-
blasts. Moreover, RANKL treatment can efficiently ac-
tivate osteoclast function.

PTH and RANKL can protect and expand the resident HSC
pool during cytotoxic chemotherapy

Our previous data demonstrated that interrupting the bal-
ance of bone remodeling can facilitate HSPC mobilization
[9]. In this study, the hematopoietic repopulation activity
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Fig. 3 Multiple treatments with cytotoxic drugs influence both osteoblasts and HSPCs in a mouse model. a Osteocalcin mRNA levels were significantly
decreased after four cycles of cyclophosphamide treatment, with or without supportive G-CSF therapy (n = 5-8 each group). b Representative scatter
plots showing the CD45 Ter119 OPN™ osteoblast population isolated from C57BI/6 mice. € Number of CD45 Ter119 OPN" cells from the femurs of
C57BI/6 mice after four cycles of cyclophosphamide treatment, with or without supportive G-CSF therapy (n = 4-6 each group). d Serum osteocalcin
concentrations decreased after four cycles of cyclophosphamide treatment, with or without supportive G-CSF. The osteocalcin levels were
measured by ELISA (n = 6-8 each group). e H&E staining of sections of decalcified proximal femur from the untreated, CTLs and Gs groups
(original magnification, x40). f The number of HSPCs (colony-forming cells) in the bone marrow of C57BI/6 mice reduced significantly

(n = 6 each group)

J

of HSCs and transplanted HSPCs was assessed at 16  did not receive supportive G-CSF therapy during chemo-
weeks after transplantation by flow cytometric analysis of  therapy there was mobilization of HSCs into the cir-
donor-derived (CD 45.2) myeloid, mature B and T cells in  culation, while mice who received supportive G-CSF
the recipients’ (CD 45.1) PB. CRA analysis of bone mar-  therapy alone showed little mobilization of HSCs into the
row HSPCs showed that there was a significant depletion  peripheral circulation (CTL 10.8 % CD45.2"chimerism
of the HSC pool in the mice treated with G-CSF (CTL vs. G 3.3 % CD45.2"chimerism, P <0.05) (Fig. 6b). This
11.2 % CD45.2"chimerism vs. G 4.8 % CD45.2 chimerism,  was partially reversed by the following treatment with
P =0.01) (Fig. 6a). However, treatment with PTH resulted PTH (G vs. P + G 19.5 % CD45.2"chimerism, P <0.01;
in relative preservation of the HSC pool (G vs. PTH 16.7 CTL vs. P + G, P <0.05) (Fig. 6b). Moreover, recipient
% CD45.2"chimerism, P <0.01; CTL vs. PTH, P <0.05)  mice transplanted with circulation HSPCs from the P + R
(Fig. 6a). Similarly, analysis of the mobilization of HSCs into  and P + R + G groups showed more robust myeloid and
the peripheral circulation demonstrated that in mice who lymphatic cell engraftment than those in the mice
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Fig. 4 PTH can efficiently activate the functions of osteoblasts during cytotoxic chemotherapy. a Osteocalcin mRNA level were higher in PTH and
P + G group compared with CTL or G group (n = 6-8 each group). b Number of CD45 Ter119"OPN™ cells from the femurs of C57BI/6 mice
(n = 6 each group). ¢ H&E staining of sections of decalcified proximal femur from untreated, CTL, G, PTH and P + G groups (original magnification, x40).

d Serum osteocalcin concentrations of CTL, G, PTH and P + G groups. The osteocalcin levels were measured by ELISA (n = 5 each group)
. J

Discussion

In this study, the activity of bone marrow niche osteo-
blasts was detected in 10 autograft patients and several
clinically relevant model systems. As expected, we found
that compared with G-CSF treatment alone, cytotoxic
chemotherapy combined with G-CSF treatment showed
more severe inhibition of osteoblasts as well as HSPCs.
Considering both PTH and RANKL are important regu-

transplanted with HSCs from either the CTL or G group
(Fig. 6b). RANKL could mobilize HSC efficiently as well
as G-CSF (P + G vs. P + R 16.8 % CD45.2"chimerism, P
>0.05) (Fig. 6b). However, RANKL treatment failed to
amplify the mobilization of HSCs treated with PTH and
G-CSF (P + Gvs. P + R + G 17.5 % CD45.2*chimerism, P
>0.05) (Fig. 6b). These data indicate that cytotoxic chemo-
therapy markedly depletes HSCs in bone marrow. Target-

ing the niche cells can protect and expand the resident
HSC pool in the bone marrow during chemotherapy, and
then effectively counteract the side effect of G-CSF.

lators for bone remodeling [20-25], they were added to
manipulatively interrupt the balance of bone remodeling.
Finally, our data show that PTH and RANKL treatment

P=0.01

& &
P+R
Fig. 5 RANKL can efficiently activate the functions of osteoclasts during cytotoxic chemotherapy. a TRAP staining of mouse femoral metaphysis
of PTH and P + R groups. Arrowheads: active TRAP* osteoclasts stained in red (original magnification, x400). b Serum TRAP-5b level also detected
by ELISA (n = 5 each group). P + R mice injected with PTH and RANKL, PTH parathyroid hormone, TRAP 5b, tartrate-resistant acid phosphatase 5b
.

PTH
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Fig. 6 PTH and RANKL can protect and expand the resident HSC pool during cytotoxic chemotherapy. a Measurement of the HSC content of the
bone marrow in the CTL, G and PTH groups by CRA at 16 weeks (n = 6 each group). b Measurement of the HSC content of the PB of mice in the
CTL, G, P+ G,P+Rand P+ R+ G groups by CRA at 16 weeks (n = 6-8 each group)

can protect and even expand the resident HSC pool dur-
ing cytotoxic chemotherapy.

HSCs reside within specific bone marrow niches and
are anchored by adhesive interactions [26, 27], so repeti-
tive cycles of chemotherapy may damage the niche and
disrupt HSC functions such as quiescence, proliferation,
and self-renewal [28]. During HSC mobilization in
healthy donors, G-CSF significantly increases the num-
ber of HSCs in PB, but suppresses the number and the
activities of osteoblasts in the meantime [5, 29, 30]. Our
previous data have demonstrated the pivotal role of bone
remodeling in the above processes, so it is reasonable to
manipulate this balance to improve the mobilization effi-
ciency [9]. During autologous SCT, a standard procedure
has been applied, which involves multiple rounds of
chemotherapy followed by G-CSF-induced mobilization
of HSPCs [1]. How about bone remodeling in auto-
logous SCT? Winkler et al. [28] demonstrated that the
effects of cyclophosphamide and G-CSF in the metaphy-
seal spongiosa are similar to those of loss of osteoblasts,
transient arrest in bone formation, and reduced CXCL12
expression. In this study, we also observed that the
osteoblast niche was impaired by multiple rounds of
cytotoxic drug treatment before G-CSF mobilization, in
which the serum osteocalcin level obviously declined
from 22.19 + 1.08 ng/ml to 16.08 + 2.12 ng/ml. We fur-
ther verified these findings in two clinically relevant
mouse models. The number of trabeculae and endosteal
osteoblasts and the serum osteocalcin level in the long
bones were significantly decreased in cyclophosphamide-
treated mice, an effect that was further aggravated by G-
CSF treatment. These data indicate that osteoblasts are
destructed during autologous transplantation, even more
severe than that in healthy donors. Moreover, multiple
rounds of chemotherapy can significantly deplete the
bone marrow HSPC pool, which is in accordance with
the published report [5]. Protection of the niche function

is therefore more important to ameliorate the poor
mobilizers.

Considering the close proximity and importance of
osteoblasts to HSPCs, we further demonstrated that both
G-CSF and cyclophosphamide suppressed niche-supportive
osteoblasts, and thus inhibited the expression of endosteal
cytokines and resulted in major impairment of HSC re-
constitution potential in the mobilized bone marrow.
Based on the above findings, multiple rounds of cytotoxic
chemotherapy (particularly when combined with G-CSF)
impaired bone marrow function, and also limited the abil-
ity of patients to receive multiple rounds of optimal
chemotherapy afterwards or limited the ability to obtain
suitable stem cell products before a salvage bone marrow
transplantation. Strategies to maintain the stem cell num-
ber and function in these clinical situations would there-
fore be desirable. Previous studies have demonstrated that
both hematopoiesis and the HSC niche related to the bone
remodeling process may be modulated by PTH and
RANKL activity [31-33]. Our previous study also showed
that, compared with G-CSF mobilization, an increase or
decrease of the osteoblast/osteoclast ratio was closely re-
lated to the number of HSPCs in PB, suggesting that the
imbalance of bone remodeling could facilitate HSPC
mobilization [9]. To further verify whether the activation
of endosteal niches can improve HSPC transplantation in
a poor mobilization model, here we established six mouse
models relevant to clinical uses of HSPCs. Our data
showed that PTH treatment could increase the absolute
number and function of osteoblasts, indicating that PTH
may counteract the negative effects of cytotoxic drugs and
G-CSF on osteoblasts. Moreover, we demonstrated that
PTH treatment could increase the number of stem cells
mobilized into PB and protect bone marrow stem cells
from repeated exposure to cytotoxic chemotherapy and
G-CSE. Furthermore, RANKL could also mobilize HSPCs
to PB, so it may be used as a valuable alternative to G-
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CSF. Our data indicate that targeting the endosteal niche
cells is a potential therapeutic approach to enhance stem
cell-based therapies.

Our data are also supported by previous studies. Consti-
tutive activation of the PTH receptor in osteoblasts in-
creased the HSC number and activity [34]. Ballen et al
[35] performed a phase I study for PTH and found that 47
% of patients with hematologic malignancies acquired ad-
equate CD34" cells with the help of PTH. Moreover,
RANKL-stimulated bone-resorbing osteoclasts reduce the
stem cell niche components SDF-1, SCF, and OPN in the
endosteum and finally trigger HSPC mobilization, so
RANKL may be used together with other mobilization
agents in an extensive range of clinical HSPC transplant-
ation protocols [12]. In the present study, the CRA
showed that recipient mice transplanted with circulation
HSPCs from the P + R and P + R + G groups had more
robust myeloid and lymphatic cell engraftment than either
the CTL or G group. These findings suggest that stimula-
tion of the endosteal bone marrow niche can lead to in-
creased engraftment of the HSC compartment through
increased expansion of the stem cell pool.

Conclusions

Using clinical specimens and clinically relevant models,
we demonstrate that manipulation of bone remodeling
can increase the efficiency of HSC mobilization and tar-
geting on the HSC niche is a viable and reasonable
therapeutic choice in stem cell therapy. More import-
antly, our findings provide new knowledge for the devel-
opment and treatment of poor mobilization.
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