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Abstract

Background: Multiple sclerosis is a widespread inflammatory demyelinating disease. Several immunomodulatory
therapies are available, including interferon-β, glatiramer acetate, natalizumab, fingolimod, and mitoxantrone. Although
useful to delay disease progression, they do not provide a definitive cure and are associated with some undesirable
side-effects. Accordingly, the search for new therapeutic methods constitutes an active investigation field. The use of
mesenchymal stem cells (MSCs) to modify the disease course is currently the subject of intense interest. Decidua-
derived MSCs (DMSCs) are a cell population obtained from human placental extraembryonic membranes able to
differentiate into the three germ layers. This study explores the therapeutic potential of DMSCs.

Methods: We used the experimental autoimmune encephalomyelitis (EAE) animal model to evaluate the effect
of DMSCs on clinical signs of the disease and on the presence of inflammatory infiltrates in the central nervous
system. We also compared the inflammatory profile of spleen T cells from DMSC-treated mice with that of EAE
control animals, and the influence of DMSCs on the in vitro definition of the Th17 phenotype. Furthermore, we
analyzed the effects on the presence of some critical cell types in central nervous system infiltrates.

Results: Preventive intraperitoneal injection of DMSCs resulted in a significant delay of external signs of EAE. In
addition, treatment of animals already presenting with moderate symptoms resulted in mild EAE with reduced
disease scores. Besides decreased inflammatory infiltration, diminished percentages of CD4+IL17+, CD11b+Ly6G+ and
CD11b+Ly6C+ cells were found in infiltrates of treated animals. Early immune response was mitigated, with spleen cells
of DMSC-treated mice displaying low proliferative response to antigen, decreased production of interleukin (IL)-17, and
increased production of the anti-inflammatory cytokines IL-4 and IL-10. Moreover, lower RORγT and higher GATA-3
expression levels were detected in DMSC-treated mice. DMSCs also showed a detrimental influence on the in vitro
definition of the Th17 phenotype.
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Conclusions: DMSCs modulated the clinical course of EAE, modified the frequency and cell composition of the central
nervous system infiltrates during the disease, and mediated an impairment of Th17 phenotype establishment in
favor of the Th2 subtype. These results suggest that DMSCs might provide a new cell-based therapy for the
control of multiple sclerosis.
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Background
Multiple sclerosis (MS) is a progressive inflammatory dis-
order of the central nervous system (CNS) elicited by an
immune reaction against self-neuroantigens. Compelling
support for the autoimmune etiology of MS is provided by
the experimental autoimmune encephalomyelitis (EAE)
animal model of CNS inflammation. In this model, illness
is triggered by the immune response to experimentally
supplied auto-antigens [1]. This reaction is driven by
auto-responsive T cells in lymph nodes and spleen able to
migrate to the CNS and cross the blood–brain barrier,
where they find their cognate antigen in the context of
resident antigen-presenting cells, such as microglia or as-
trocytes, or of immigrant macrophages or dendritic cells.
These events favor an inflammatory environment with
CNS injury, characterized by loss of the insulating myelin
sheath of neuronal axons resulting in motor disability.
EAE can also be induced by transplanting T helper (Th)
cells delivering interleukin (IL)-17 (Th17) or interferon
(IFN)-γ (Th1) [2]. Since IFN-γ has, however, demon-
strated a dual role in disease pathogenesis, the IL-17 path-
way is considered a more appropriate therapeutic target
[3, 4]. Two other subsets of CD4+ cells, namely Th2 and T
regulatory (Treg) cells, are able to control or ameliorate
EAE disease evolution [5–7] by secreting cytokines such
as IL-4 [8], IL-10 [9], and transforming growth factor
(TGF)-β [10]. Several other cytokines are able to modify
EAE course, such as IL-27—a main negative regulator of
Th17 development [11–14].
Although significant progress has been made in MS

therapy, none of the available treatments achieves a halt
or reversion of disability progression. Hence, develop-
ment of new therapeutic strategies is a crucial challenge.
To this end, stem cells have been introduced into the
MS scenario in recent years. While some reports support
possible advantages of embryonic over adult stem cells
[15], ethical concerns about the use of the former promote
the study of adult stem cells [16, 17]. Several phase I/II
clinical trials underway in MS patients are evaluating the
therapeutic potential of mesenchymal stem cells (MSCs)
derived from different tissues, such as bone marrow (BM),
adipose tissue, placental or umbilical cord blood [16–23].
Preliminary results indicate that administration of MSCs
to patients with MS is feasible and safe. In addition, some
studies have reported a degree of structural, functional,

and physiological improvement after treatment, consistent
with the immunomodulatory and neuroprotective effects
of MSCs. Despite early clinical stabilization or improve-
ment in some of these patients, further controlled trials
are warranted to evaluate alternative cell sources and
administration schedules which might affect MS disease
course more consistently. Some preclinical data from
experimental models would appear to supply grounds for
postulating neuroprotective and immunomodulatory prop-
erties for MSCs. Neuroprotection by MSCs is suggested by
reports showing stimulation of oligodendrogenesis, oligo-
dendrocyte progenitor migration, remyelination, and re-
duction of axonal loss [24–27]. Some MSC subpopulations
deliver active neurotrophins [28], and human neural pro-
genitors obtained in vitro from MSCs improved neuro-
logical function in EAE [29]. Immunomodulatory effects
ascribed to MSCs throughout EAE treatment include
hepatocyte growth factor production [30], prostaglandin
E2 secretion [31], promotion of IL-27 [14], inhibition of
IL-17 and tumor necrosis factor-alpha (TNFα) production
[24, 32], downregulation of IFNγ T-cell expression [33]
and T-cell anergy [34].
Most of the studies focused on adult MSC therapy for

EAE have used BM as a cell source. However, MSCs
derived from other tissues, such as adipose [35, 36],
endometrial [37], umbilical cord [38, 39], or placenta
[40, 41], have also been shown to influence EAE devel-
opment. MSC content in adult BM is limited, invasive
procedures are required for MSC procurement, and the
number and differentiation capacity of such cells de-
crease with the age of the donor. Placenta-derived MSCs
present several advantages over other sources, since the
cells can be isolated without any donor injury and a
large amount of cells with high differentiation ability can
be obtained [42]. We previously characterized a subset
of human decidua-derived MSCs (DMSCs) with capacity
to differentiate at the clonal level into the three embry-
onic germ layers [42–45]. DMSCs display some proper-
ties of embryonic cells and others of adult stem cells, as
they express transcription factors involved in pluripotency
(Oct-4 and Rex-1) and organogenesis (GATA-4), though
not embryonic markers (SSEA-1, -3, -4 and TRA-1-81)
[42] expressed by other placental-derived MSCs [46].
DMSCs are of maternal origin and show higher prolifera-
tion rates and differentiation capacity than do BM-derived

Bravo et al. Stem Cell Research & Therapy  (2016) 7:43 Page 2 of 16



MSCs [47, 48], thereby making them biologically different
to MSCs derived from other adult sources.
In the present study we have evaluated the therapeutic

potential of DMSCs on EAE. Results showed that a
prophylactic treatment with DMSCs was able to delay the
onset and reduce the severity of the disease substantially
for as long as treatment was maintained. Furthermore, the
therapeutic utility of DMSCs was also demonstrated in ani-
mals which were initially treated when they presented with
moderate symptoms, with this resulting in a mild course of
EAE. DMSC treatment reduced CNS injury areas and
modulated the peripheral immune response, leading to an
anti-inflammatory profile of spleen T cells. The frequency
and cell composition of CNS infiltrates were also modified,
with the percentages of CD4+IL-17+, CD11b+Ly6G+, and
CD11b+Ly6C+ cells being reduced by DMSC treatment.

Methods
Animals, EAE induction, clinical evaluation and treatments
All experiments were conducted under institutional
ethical and safety guidelines, with approval number
017/15 of the Madrid Regional Authority’s Ethics Com-
mittee, in accordance with European Union legislation.
C57BL/6 mice were bred and maintained at the Institution’s
animal facility. Mice were housed in groups of 4–5. To in-
duce EAE, 10- to 14-week-old female mice were anesthe-
tized by intraperitoneal administration of ketamine and
xylazine and immunized by subcutaneous injection in
flanks with 200 μg myelin oligodendrocyte glycoprotein
(MOG)35–55 peptide (Peptide 2.0, Chantilly, VA, USA) in
complete Freund adjuvant containing 2.5 mg/ml Mycobac-
terium tuberculosis H37RA (Difco) in a total volume of
100 μl. Bordetella pertussis toxin (300 ng in 100 μl) was
administered intraperitoneally on the day of antigen inocu-
lation and 48 hours later (D0 and D2 post-immunization
(p.i.), respectively). Groups of 7–10 animals were used for
each experiment. Clinical signs were scored on a 0–5 scale
as follows: no clinical signs, 0; loss of tail tonicity, 1; rear
limb weakness, 2; paralysis of one rear limb, 3; paralysis of
two rear limbs, 4; full paralysis of four limbs, 5. At value 4,
animals were sacrificed to avoid further progress of the dis-
ease. Score values were calculated as the average of the
evaluations assigned to each mouse by three independent
observers in blind inspection. For DMSC treatments, cells
at passage 6–8 with 95–98 % viability were used. At this
passage number, the cells still preserve a high proliferation
and multilineage differentiation capacity [42]. One million
cells were administered in 100 μl phosphate-buffered saline
(PBS) by intraperitoneal injection to every treated animal
on the days indicated for each experiment.

Isolation of human DMSCs and culture
Human placentas from healthy mothers were supplied
by the Department of Obstetrics and Gynecology under

written consent previously approved by the Ethics
Committee at the Hospital Universitario 12 de Octubre.
DMSC isolation and culture was performed as previ-
ously described [42]. Briefly, placental membranes were
digested with trypsin-versene (Lonza, Spain), and the
cells were seeded at 1.2 × 105 cells/cm2 and cultured at
37 °C, 5 % CO2 and 95 % humidity in Dulbecco’s modi-
fied Eagle medium (DMEM; Lonza) supplemented with
2 mM L-glutamine, 0.1 mM sodium pyruvate, 55 μM B-
mercaptoethanol, 1 % nonessential amino acids, 1 %
penicillin/streptomycin, 10 % fetal bovine serum and
10 ng/ml epidermal growth factor 1 (EGF-1; Sigma-
Aldrich Química, Spain). The morphology, phenotype
and MSC characteristics of DMSCs have been previously
reported [42]. Cells were cryopreserved and, before use,
were thawed and passaged at a density of around 5 × 104

cells/cm2 until passage 6–8.

Mouse cell isolation and culture
Mouse spleen cells were obtained as previously described
[49]. CD4+ cells were magnetically sorted (Miltenyi
Biotech) to 90–95 % purity, and tested by flow cytometry
with anti-CD4 antibody (L3T4; Miltenyi Biotech). Total
spleen population or purified CD4+ cells from each group
of animals were pooled, washed and suspended in Click’s
medium [50] before in vitro culture. For anti-CD3/anti-
CD28 stimulation, cells were cultured in microwell plates
coated with anti-CD3 (Y-CD3-1, 10 μg/ml) [51] and
soluble anti-CD28 (clone 37.51, 1 ng/ml; eBioscience,
Hatfield, UK). For antigenic stimulation, 25 μM MOG35–

55 was used in cell cultures. Th17 phenotype skewing
conditions were achieved by IL-6 and TGFβ treatment as
previously described [52]. Briefly, anti-CD3/anti-CD28
stimulation was supplemented with 20 ng/ml IL-6
(eBioscience), 5 ng/ml TGFβ (eBioscience), 25 μg/ml anti-
IL-4 (11B11; ATCC HB188) and 25 μg/ml anti-IFN-γ
(R46A2; ATCC HB170). Cocultures of DMSC-murine
spleen cells were performed at a ratio of 1:7. First, plates
were seeded with DMSCs in DMEM supplemented with
EGF-1 (10 ng/ml; Sigma-Aldrich Química). After 12 hours
this medium was removed and spleen cells were added in
Click’s medium with soluble anti-CD3 (25 μg/ml) and
anti-CD28 (1 μg/ml). For isolation of CNS inflammatory
infiltrates, animals were sacrificed and perfused through
the left ventricle with 200 ml PBS to wash out leukocytes
present within the blood vessels. Spinal cords and brains
were removed, and tissue from each mouse was homoge-
nized through a 100-μm pore strainer. After centrifuga-
tion, the pellet was dissolved in 30 % Percoll (Amersham)
and the homogenate mix was layered over 80 % Percoll.
Infiltrating cells were collected from the 30–80 % inter-
face, after centrifugation at 3,000 rpm for 30 minutes at
room temperature without brake. Spleen cells for early
immune response analysis were obtained from animals at
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day 7–10 p.i., while CNS studies were performed on mice
at day 20 p.i.

T-cell proliferation and cytokine expression
measurements
Total spleen cells or purified CD4+ cells (2 × 105) were
split into p-96 well microtiter and subjected to T
lymphocyte-specific stimuli (anti-CD3/anti-CD28 anti-
bodies or MOG35–55, as specified above) through
72 hours. Colorimetric assay based on MTT was used as
a T-cell proliferation measurement according to that
described in [53]. Cytokines released to the medium
were quantified by enzyme-linked immunosorbent assay
(ELISA), with each sample assayed in quintuplicate. Cap-
ture and biotin-conjugated antibodies were, respectively:
eBio17CK15A5 and eBio17B7 (e-Bioscience) for IL-17A;
Jes5-2A5 and Jes5-16E3 (BD-Bioscience) for IL-10; and
11B11 and BVD6-24G2 (Becton-Dickinson) for IL-4.
Obtention of total RNA for retrotranscription and quan-
titative real-time polymerase chain reaction (RT-qPCR)
were performed as previously reported [54]. The primer
pairs used for each gene were as follows:

IL-17 forward: 5′-GAAGCTCAGTGCCGCCA-3′;
IL-17 reverse: 5′-TTCATGTGGTGGTCCAGCTTT-3′;
IL-4 forward: 5′-ATCCTGCTCTTCTTTCTCG-3′;
IL-4 reverse: 5′-GATGCTCTTTAGGCTTTCC-3′;
IL-10 forward: 5′-TGCTATGCTGCCTGCTCTTA-3′;
IL-10 reverse: 5′-GCTCCACTGCCTTGCTCTTA-3′;
RORγT forward: 5′-CCGCTGAGAGGGCTTCAC-3′;
RORγT reverse: 5′-TGCAGGAGTAGGCCACATTA
CA-3′;
GATA-3 forward: 5′-AGAACCGGCCCCTTATCAA-
3′;
GATA-3 reverse: 5′-AGTTCGCGCAGGATGTCC-3′;
Foxp3 forward: 5′-ACCACCTTCTGCTGCCACTG-
3′;
Foxp3 reverse: 5′-TGCTGTCTTTCCTGGGTGTACC-
3′;
β-actin forward: 5′-TGTTACCAACTGGGACGACA-
3′; and,
β-actin reverse: 5′-GGGGTGTTGAAGGTCTCAAA-
3′.

PCR product quality was checked by a melting curve
analysis for each sample and the reaction efficiencies
were checked to be near 2. Each result was normalized
by the housekeeping β-actin gene expression. Relative
quantification of gene expression analysis was performed
using the Pfaffl method [55].

Flow cytometry cell staining
For all experiments, cells were incubated in 0.5 μg FcBlock
(BD Bioscience) for 10 minutes at room temperature.

Surface molecule staining was performed in the dark
for 30 minutes at 4 °C. Cells were then washed twice
with staining buffer followed by fixation in 1 % parafor-
maldehyde. Antibodies for surface markers were: anti-
CD4 clone RM4-5 biotin (eBioscience); anti-CD8α clone
53–6.7 biotin (eBioscience); anti-CD19 clone 1D3 biotin
(eBioscience); anti-NK1.1 clone PK136 biotin (eBioscience);
anti-CD11c clone HL3 biotin (BD-Pharmingen); anti-
CD11b clone M1/70 APC (eBioscience); anti-Ly6G clone
AL-21 APC-Cy7 (BD-Pharmingen); and anti-Ly6C clone
1A8 PE (BD-Pharmingen). For biotin antibodies, strep-
tavidin PE-Cy7 (eBioscience) was used to detect posi-
tive cells. For intracellular staining, anti-IL17 (clone
TC11-18H10-PE; BD-Pharmingen), anti-RORγT (clone
AFKJS-9-APC; eBioscience) and anti-Foxp3 (clone FJK-
16S; eBioscience) were used on cells previously perme-
abilized and fixed by Cytofix/CytopermTM (Becton
Dickinson) and Staining Set Kit (eBioscience), respect-
ively, for cytoplasmic IL-17 and nuclear RORγT detec-
tion. Cells were acquired on a BD FACSCantoTM II.
Data were collected by BD FACS Diva software and
analyzed by FlowJo software (Tree Star Inc.). Fluores-
cence minus one (FMO) controls were used for gating
analysis to distinguish positive and negative cell popula-
tions. Propidium iodide staining was used for live/dead
discrimination. Compensation was carried out using
single color controls, and compensation matrices were
calculated and applied by FlowJo software.

Histopathology
Mice were anesthetized by intraperitoneal administration
of ketamine-xylazine and transcardially perfused with 4 %
paraformaldehyde. Spinal cords and brains were fixed
in 4 % paraformaldehyde. Vibratome free-floating slices
(15–30 μm) were preserved in 0.1 M phosphate buffer.
For detection of demyelinating and inflammatory
lesions, slices were subjected to luxol fast blue (LFB)–
periodic acid-Schiff (PAS)–hematoxylin triple staining
according to Goto [56] and hematoxylin–eosin staining,
performed as previously described [52]. Perivascular
infiltrates were quantified by examining hematoxylin–
eosin serial sections along the brain and spinal cord of
each animal. Slices were classified as positive or nega-
tive for infiltrate quantification. For immunodetection
of CD4+ and GFAP+ cells, free-floating spinal cord
sections were boiled in a microwave oven in 10 mM so-
dium citrate buffer for antigen retrieval. Prior to incu-
bation with antibodies, endogenous peroxidase activity
was inhibited with 2 % hydrogen peroxide in CD4
immunohistochemistry samples, and tissue autofluores-
cence was minimized by 2 % sodium borohydride treat-
ment of the immunofluorescence samples. As primary
antibodies, L3T4 (Sino Biological Inc), EPR1034Y
(Millipore) and PC10 (Abcam) were, respectively, used

Bravo et al. Stem Cell Research & Therapy  (2016) 7:43 Page 4 of 16



for detection of CD4, GFAP and PCNA (as a marker of
cell proliferation). Overnight incubation with primary
antibody was followed by 1-hour incubation with Biotin-
conjugated goat anti-rabbit (Jackson Inmunoresearch Lab
Inc.) for CD4 detection, or Alexa Fluor 594 Donkey anti-
rabbit IgG (Invitrogen) and Alexa Fluor 488 Donkey anti-
mouse IgG (Invitrogen) for immunofluorescence of GFAP
and PCNA, respectively. Thereafter, samples for CD4 im-
munohistochemistry were exposed for 30 minutes to Vec-
tastain ABC reagent (Vector Laboratories) and to DAB
developing solution (Vector Laboratories), and counter-
stained with hematoxylin for visualization using a Leica
DM2000 microscope. Fluorescent images were captured by
confocal microscopy using a Leica TCS SP5 AOBS Con-
focal Microscope (Leica Microsystems GmbH, Wetzlar,
Germany), and analysis was performed with Image J soft-
ware designed by the NIH (MD, USA). In all cases, specifi-
city of staining was confirmed by controls omitting the
primary antibody.

Statistics
Statistical analyses were performed with Graph Pad Prism
version 5.02 (Graph Pad software, Inc). The t-test was used
for unpaired data; in cases where n ≤ 10 (with a minimum
of 5), Welch’s correction was introduced in order not to as-
sume equal variances. Contingency table analysis for com-
parison of perivascular infiltrate quantification and disease
incidence was performed using Chi-square test (n > 30) or
Fisher’s test (n < 30, with a minimum of 14). The area
under the curve (AUC) was calculated from EAE clinical
course for each mouse, and differences between groups
were analyzed by the Mann–Whitney test. Statistical sig-
nificance is indicated as *p < 0.05, **p < 0.01 or ***p < 0.001.

Results
DMSC treatment delays the development of EAE and
restrains early Th17 response
To determine whether DMSC administration had pro-
tective effects on EAE, we designed a preventive ap-
proach comprising three intraperitoneal injections of
cells at days −1, 3 and 6, with the day of MOG inocula-
tion being established as day 0. Daily monitoring of
score values showed that DMSC treatment resulted in a
significant delay in the onset of EAE symptoms. The first
clinical signs were apparent in the EAE control group at
day 10–13 p.i., whereas most of the DMSC-treated mice
did not show symptoms of established disease (score
values higher than 1) before day 25–30 p.i. (Fig. 1a).
Although DMSC-treated animals ultimately attained
score values near those of the EAE control group, sig-
nificant differences between both groups of mice
remained until at least day 30 p.i. (Fig. 1b). We also eval-
uated the AUC as a measure of disease severity. When
such analysis was restricted to the late phase of the

clinical course (from day 30 to day 55 p.i.), no difference
was found between groups. However, overall clinical
course examination showed significantly lower values for
the DMSC group, in line with the beneficial effect of
DMSCs until at least day 30 p.i. (Fig. 1c). Furthermore,
data from individual mice demonstrated notably delayed
disease onset (Fig. 1d) and decreased disease incidence
evaluated at day 20 p.i. (Fig. 1e) for DMSC-treated ani-
mals with respect to the EAE group.
For a more in-depth examination of differences between

DMSC-treated and untreated animals, we chose the dis-
ease phase with the most striking divergences in clinical
signs (days 10–20 after MOG inoculation). Histopatho-
logical images of cerebellum and spinal cord sections from
animals sacrificed at day 20 p.i. supported that DMSCs at-
tenuated CNS pathology in EAE. LFB–PAS–hematoxylin
staining showed important areas of myelin disruption in
EAE mice whereas DMSC administration contributed to
preservation of myelin integrity (Fig. 2a and b). In
addition, DMSC-treated mice showed a smaller degree of
infiltration, as both the number of analyzed hematoxylin–
eosin stained sections showing perivascular infiltration
(Fig. 2c) and the number of perivascular infiltrates per sec-
tion (Fig. 2d) were strongly reduced in DMSC-treated
mice. Moreover, CD4+ cells were frequent in the infiltra-
tion areas of EAE animals, while CD4 immunoreactivity
was rather limited in DMSC-treated mice (Fig. 2e). Like-
wise, GFAP staining of spinal cord from EAE animals
showed swollen astrocytic processes, indicative of astro-
cytic reactivity, with less severity in DMSC-treated mice
(Fig. 2f). Furthermore, the use of anti-PCNA as a marker
of cell proliferation revealed a lessening of astrocyte-
division activity by DMSC treatment.
We next studied the early immune response in both

groups of animals by comparing T-cell reactivity in total
spleen cell populations from DMSC-treated and un-
treated EAE mice shortly after MOG35–55 inoculation
(day 7–10 p.i.). Cells were stimulated by anti-CD3 and
anti-CD28 antibodies to induce broad T-lymphocyte ac-
tivation, and by MOG35–55 to induce antigen-specific T-
cell reactivity. In both cases, cells from DMSC-treated
mice showed reduced proliferation and IL-17 release as
compared to EAE control mice, while expression of the
anti-inflammatory cytokines IL-4 and IL-10 were mark-
edly increased in cultures of cells from DMSC-treated
animals as against control (Fig. 3a and b). These results
were also observed when purified CD4+ cell fractions
were evaluated, suggesting a direct effect on this cell
population without the need for other intermediate cell
types (Fig. 3c). Moreover, analysis of IL-17, IL-4 and IL-
10 mRNA levels from DMSC-treated versus untreated
animals showed marked differences between the two
groups which correlated with the results of soluble cyto-
kine release (Fig. 3d). RORγT and GATA-3 transcription
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factors are known to be the master transcription factors
that control the definition of Th17 and Th2 phenotypes,
respectively [57]. We also analyzed their mRNA levels
and found that, while RORγT expression was downregu-
lated, GATA-3 mRNA levels were upregulated in CD4+

cells from DMSC-treated mice as compared to EAE un-
treated mice (Fig. 3e), which suggests that the Th17
phenotype is restrained while the Th2 subset is favored
by DMSC treatment. Conversely, quantification of the
mRNA levels of Foxp3, the transcription factor control-
ling Treg cell development, did not show differences
between CD4+ cells from untreated and DMSC-treated
EAE mice (Figure S1 in Additional file 1).

Impaired establishment of Th17 phenotype in
DMSC-treated animals is independent of experimentally
induced inflammatory response
To ascertain whether the effects of DMSC treatment
on T-cell activity were dependent on the inflammatory
response triggered by MOG inoculation, healthy mice
were subjected to three successive DMSC doses every
3 days to emulate the treatment procedure used for
EAE animals. As previously observed for EAE mice, T-
cell proliferation and IL-17 expression were lower in

DMSC-primed mice than in naïve animals (Fig. 4), sug-
gesting that DMSCs do not require an inflammatory
environment to downregulate the inflammatory poten-
tial of T cells.
We next examined the influence of DMSCs on Th17

phenotype establishment in vitro. When spleen T cells
and DMSCs were cocultured in vitro under nonpolariz-
ing effector T cell condition (Fig. 5a) or under Th17-
skewing condition in the presence of IL-6 and TGFβ
(Fig. 5b), soluble IL-17 release was reduced as compared
to cultures of exclusively spleen cells. The same results
were obtained when the CD4+ cell population was cocul-
tured with DMSCs (Figure S2 in Additional file 2), im-
plying that, as in the case of in vivo treatments, there is
a direct effect of DMSCs on CD4+.
This deficiency in IL-17 production seems to be ac-

quired in perpetuity, since removal of DMSCs from the
culture before a second round of T-cell stimulation was
unable to restore the levels of IL-17 released by the T
cells that had been previously cocultured with DMSCs
(Fig. 5c and d). Accordingly, flow cytometry analysis of
IL-17+ and RORγT+ cells showed a decrease in both
Th17 cell markers expressed by the T cells cocultured
with DMSCs (Fig. 5e and f).

Fig. 1 Decidua-derived mesenchymal stem cell (DMSC) treatment delays onset of MOG-experimental autoimmune encephalomyelitis (EAE). Groups of
7–10 C57BL/6 mice were established by MOG35–55 peptide inoculation. a DMSC group animals received 1 × 106 DMSCs at days −1, 3 and 6
post-immunization (p.i.) (arrows). Daily mean clinical scores along EAE course are shown from one representative (n = 10 mice/group) out of
five independent experiments. b Statistical significance by unpaired t-test for mean scores at different days after immunization. c Area under
the curve (AUC) was calculated from EAE clinical course for each mouse between days 0 and 55 (D0–55) or between days 30 and 55 p.i. (D30–D50),
and differences between groups were analyzed using the Mann–Whitney test. Standard error of the means are shown. Data from individual mice
included in five independent experiments were used to examine d individual disease onset and e disease incidence at day 20 p.i.; the differences
between groups were analyzed by t-test and by Chi-square test, respectively (n for each group is indicated). The bar graphs for representation of the
disease incidence contingency table show the numbers of symptomatic and asymptomatic mice at day 20 p.i. for each group. **p < 0.01, ***p < 0.001.
ns Not significant
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To explore whether the effect of DMSCs on IL-17 pro-
duction was dependent on a direct cell interaction be-
tween DMSCs and T cells, we used the supernatant of
DMSC cultures as conditioned medium for anti-CD3/
anti-CD28 T-cell stimulation. Inhibition of IL-17 secre-
tion was consistently found for both nonpolarizing
(Fig. 6a) and pro-Th17 (Fig. 6b) culture conditions, even
after DMSC supernatant removal (Fig. 6c), indicating

that cellular interaction is not required, but that one or
more soluble factors produced by DMSCs are involved
in IL-17 inhibition.

Influence of DMSC treatment on the content of
pro-inflammatory cell types in EAE CNS infiltrates
The above data demonstrate that DMSCs can modu-
late both CD4+ T-cell activity and Th subset definition

Fig. 2 Decidua-derived mesenchymal stem cell (DMSC) treatment of experimental autoimmune encephalomyelitis (EAE) decreases inflammation
in the CNS. a Cerebellum and b spinal cord sections from EAE control and DMSC-treated animals were LFB–PAS–hematoxylin stained; arrows
show perivascular infiltrates (PI). Hematoxylin–eosin stained slices were classified as positive (with PI) or negative (without PI) for presence of
perivascular infiltrates; the difference between the EAE group (n = 47) and the DMSC group (n = 52) was analyzed by Chi-square test and shown
as the histogram representation of the contingency table (c). d Each section was also classified according to the number of PI that they contained
and the averages of PI/section for each group were compared by t-test; standard error of the means are shown. Immunohistochemistry with
e anti-CD4 antibody (arrows show CD4+ cells) and f immunofluorescence for astrocytes with anti-GFAP (red), anti-PCNA (green) and DAPI (blue)
are illustrative. Scale bars for magnifications are indicated. ***p < 0.001. HC Healthy control, EAE Untreated EAE group, DMSC DMSC-treated group
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in lymphoid organs. To address whether such modu-
lation correlates with the severity of inflammatory
infiltration in the CNS, the content of different
immune cell types with recognized inflammatory

contribution was analyzed in CNS infiltrates. CD4+IL-
17+ cell analysis showed that this cell type was
present in a smaller percentage in DMSC-treated
mice (Fig. 7a and d).

Fig. 3 Decidua-derived mesenchymal stem cell (DMSC) treatment of experimental autoimmune encephalomyelitis (EAE) promotes anti-inflammatory
T-cell profile. Total spleen cell population (a, b) or purified CD4+ cells (c) from EAE animals were obtained at day 10 p.i. Cells from each group were
pooled and stimulated in vitro by anti-CD3 and anti-CD28 antibodies or by MOG35–55 peptide as indicated; dashed lines designate unstimulated cell
cultures. Each sample was assayed in quintuplicate. Proliferation and soluble cytokines released to the medium were measured by the MTT colorimetric
method and ELISA, respectively. RNA from anti-CD3/anti-CD28-stimulated CD4+ cells was used for RT-qPCR reactions to evaluate mRNA expression
levels of cytokines (d) or RORγT and GATA-3 transcription factors (e). Results are shown from one representative out of five independent experiments.
Significance was analyzed by t-test; standard error of the means are shown. *p< 0.05, **p < 0.01, ***p < 0.001. IL Interleukin, MOG Myelin oligodendrocyte
glycoprotein, OD Optical density
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Two CD11b+ cell subtypes, Ly6G+ and Ly6C+SSClow,
which identify neutrophils and inflammatory monocytes,
respectively [58, 59], were also quantified. Treatment of
EAE mice with DMSCs resulted in a reduction of infil-
trating neutrophils (Fig. 7b and d), a significant compo-
nent of immune infiltration in the CNS during EAE
[60–62] whose recruitment is related to IL-17 activity
[63]. In our experiments, CD11b+Ly6C+ inflammatory
monocytes (other pathogenic players in inflammation
[64–66]) could be divided into two subsets (Ly6Cint and
Ly6Chigh), as described by Vainchtein et al. [67]. Both
Ly6Cint and Ly6Chigh cell percentages were lower in the
infiltrates of the DMSC-treated group than in those of
the control animals (Fig. 7c and d).

Long-term DMSC treatment provides a more lasting
therapeutic effect on EAE
All the above mentioned EAE experiments were per-
formed following the stipulated preventive approach,
based on three doses of DMSCs at days −1, 3 and 6
with respect to the day of MOG inoculation. We
wished to investigate further the effects of DMSCs on
EAE by continuous dosages of DMSCs over a longer
period after MOG inoculation (Fig. 8a). In contrast to
the result yielded by the brief treatment used before-
hand, extended administration of DMSCs showed sig-
nificant differences in clinical scores between untreated
and DMSC-treated groups for at least 52 days after
MOG35–55 inoculation (Fig. 8b). In addition, disease se-
verity as measured by the AUC was significantly lower

for the DMSC group, even at advanced phases of the
clinical course of the disease (Fig. 8c).
We also tested different post-MOG inoculation ap-

proaches, once the peripheral immune response had
been triggered. Administration of DMSCs once the mice
had reached EAE scores higher than 2.5 failed to yield
any beneficial effects (data not shown). However, con-
tinuous administration of DMSCs to MOG35–55-primed
mice with lower scores showed that DMSCs could also
limit the disease progression when the immune response
had already been triggered. For the experiment depicted
in Fig. 9, the mice received the first DMSC dosage at day
6 p.i. or at day 10 p.i. (with score values higher than 1),
and four additional doses were administered every 3–4
days. For as long as DMSC continued to be dispensed, the
clinical signs were significantly milder for both treated
groups as compared to the EAE control group (Fig. 9a
and b). In addition, the AUC showed lower values for the
DMSC-treated animals (Fig. 9c). Moreover, as for the pre-
ventive treatment, disease incidence at day 20 decreased
by DMSCs, even if treatment had begun when the disease
symptoms were already developed (Fig. 9d).

Discussion
The results of this study, showing that EAE is signifi-
cantly ameliorated by human decidua-derived MSCs
(Figs. 1, 8 and 9), suggest that these cells could be seen
as a promising cell therapy for MS. We describe here
that in vivo treatment of EAE mice with DMSCs inhibits
T-cell proliferation driven by antigen presentation and
downregulates IL-17 production (Fig. 3). The role of IL-17
in the severity of EAE has been extensively demonstrated
[3, 4]. It is likely that the decrease in IL-17 secretion after
DMSC treatment is related to impaired differentiation of
CD4+ cells into the Th17 phenotype, since expression of
the master regulator for Th17 development, RORγT, is
downregulated in DMSC-treated animals. This view is
reinforced by data from cocultures of T cells with DMSCs,
showing diminished percentages of IL-17+ and RORγT+

cells after TCR stimulation (Fig. 5). In spite of the fact that
Th17 and Foxp3+ Treg cells are CD4+ subsets mutually
exclusive [68], we did not find differences between treated
and untreated EAE mice in the levels of Foxp3 mRNA in
CD4+ cells nor in the percentages of spleen CD4+Foxp3+

cells (Figure S1 in Additional file 1). However, we cannot
rule out that other regulatory cells, as myeloid-derived
suppressor cells, could be involved in the lack of prolifera-
tion of spleen cells from DMSC-treated EAE mice (Fig. 3).
On the other hand, DMSCs were able to inhibit Th17

establishment even in the Th17-skewing culture condi-
tions generated by IL-6 and TGFβ. Suppression of Th17
cells during EAE by BM-MSCs has also been observed
[14, 24, 32], and a recent report has shown that placenta-
derived adherent cells led to diminished numbers of IL-

Fig. 4 Decidua-derived mesenchymal stem cell (DMSC) administration
to healthy mice reduces IL-17 production. Healthy C57BL/6 mice
(5 mice/group) were exposed to three successive doses of DMSCs
(DMSC group) or PBS (Naïve group) at 3-day intervals. Seven days
after the first DMSC inoculation, total spleen cells from each group
were pooled and stimulated in vitro by anti-CD3/anti-CD28. Each
sample was assayed in quintuplicate. Results are shown from one
representative out of three independent experiments. Proliferation,
soluble IL-17 released to the medium, and IL-17 mRNA were measured
by the MTT colorimetric method, ELISA and RT-qPCR, respectively.
Significance was analyzed by t-test; standard error of the means are
shown. **p < 0.01, ***p < 0.001. IL Interleukin, OD Optical density
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17-producing cells in spinal cord infiltrates [41]. Our data
from experiments with DMSC-conditioned medium sug-
gested that the inhibiting activity of the Th17 differenti-
ation process is mediated by one or more soluble factors
produced by DMSCs (Fig. 6). In contrast, a cellular cross-
talk requirement has been reported for the attenuation of
IL-17 expression on T cells by BM-derived MSCs [69].
Such differences in the mechanisms involved in Th17 con-
trol might be linked to the MSC source. Most probably
this discrepancy could be related to the different matur-
ation state of T cells. Ghannam et al. [69] analyzed the
effect of MSCs on fully polarized Th17 cells, whereas we
studied the behavior of T cells during the Th phenotype
polarization. Indeed, Luz-Crowford et al. [70] found that
BM-MSCs displayed different mechanisms, based on sol-
uble factors or on direct cell interaction for regulation of
IL-17 production during Th17 development or in fully
polarized Th17 cells, respectively.

Concomitant with the reduced levels of IL-17, spleno-
cytes from DMSC-treated animals produced higher levels
of IL-4 and IL-10 than did EAE control mice (Fig. 3). Such
cytokines have a critical role in tolerance induction, resist-
ance to, and recovery from, EAE [8, 9, 71, 72]. Judging by
the results of the analysis of the master transcription fac-
tors and the cytokine profiles in isolated CD4+ spleen
cells, DMSCs act directly on this cell type, resulting in a
deviation of the Th phenotype in favor of the Th2 versus
Th17 subset. However, as IL-4 and IL-10 are not solely
produced by CD4+ cells, DMSCs could also induce other
spleen cell types to produce them. In fact, DMSC-induced
increase in IL-10 levels was more noticeable in total
spleen cell cultures than in isolated CD4+ cells, which
might suggest that, besides CD4+ cells, other cell popu-
lations could also be induced by DMSCs to deliver this
anti-inflammatory cytokine. Similarly, other studies in
different disease animal models have reported IL-4 or

Fig. 5 In vitro treatment of T cells with decidua-derived mesenchymal stem cells (DMSC) interferes with Th17 phenotype definition. Spleen cells (SC)
from C57BL/6 mice were stimulated in vitro by anti-CD3/anti-CD28 antibodies under nonpolarizing condition (a, c) or under pro-Th17 pressure in the
presence of IL-6 and TGFβ (b, d, e). Three-day cultures were analyzed for IL-17 expression (a, b) or used for a second round of anti-CD3/anti-CD28
stimulation after DMSC removal during 3 subsequent days before new analysis (c, d, e). Soluble IL-17 measurements were quantified by ELISA (a–d).
Each sample was assayed in quintuplicate and significance was analyzed by t-test; standard error of the means are shown. Percentages of IL-17+ (e) or
RORγT+ (f) cells were determined by FACS analysis of intracellular staining with anti-IL17 and anti-RORγT antibodies, respectively (e). Results are shown
from one representative out of three independent experiments. *p < 0.05, ***p < 0.001. IL Interleukin, Th T helper
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IL-10 increases by MSCs from different sources [14, 24,
37, 41, 73, 74].
In addition to the Th2 phenotype deviation in peripheral

immune organs during DMSC treatment of EAE, we
found lower numbers of infiltrating IL17+ cells in the
spinal cord of treated animals (Fig. 7). We cannot cur-
rently discern whether this difference in cellular infiltra-
tion is due to reduced migration to the CNS or to a direct
effect of DMSCs on the target organ. Regardless of the
cause for the decreased IL17+ cell infiltration in the CNS,
it could affect the recruitment of CD11b+Ly6G+ neutro-
phils, as indeed was found by the cell composition analysis
of CNS infiltrates (Fig. 7). A main role for IL-17 is to co-
operate in the chemoattraction of polymorphonuclear leu-
kocytes, mainly neutrophils, to inflammatory sites through
induction of CXCL-8, CXCL1 and CXCL2 [75–77], which
is critical for the disruption of the blood–brain barrier
[60]. Alternatively, the diminished number of neutrophils
in inflammatory infiltrates could be due to a direct effect
of DMSCs unrelated to IL-17 levels. In this regard, some
immunomodulatory properties of MSCs have been as-
cribed to secretion of TSG-6 [78, 79], a molecule recently
involved in inhibition of neutrophil migration by inter-
action with CXCL-8 [80]. We also detected a reduction in
CD11b+Ly6C+ cell infiltration in the CNS of DMSC-

treated animals. CD11b+Ly6C+ cell subtype, which identi-
fies inflammatory monocytes [58], is another typical com-
ponent of CNS infiltrates in EAE [64, 66]. This myeloid
subset constitutes the precursor of macrophages and den-
dritic cells able to produce high levels of tissue damage
mediators, such as TNFα and IL-1 [58]. These also act as
antigen-presenting cells, reactivating T cells to contribute
to the inflammatory cascade in the CNS. A reduction in
the number of neutrophils and mature macrophages has
been described in MSC therapy for other disease models,
such as traumatic brain injury [81], ischemia [82], acute
kidney injury [83], and allergic inflammation induced by
Aspergillus [84]. However, to our knowledge, there are no
previous reports on MSC treatment of EAE showing
diminished presence of neutrophils or monocytes in in-
flammatory infiltrates. No effect of DMSCs was found in
the number of spleen neutrophils or monocytes (data not
shown), suggesting that a migration deficiency might
underlie the diminished presence of these cell types in the
CNS. Any or all of the immunomodulatory effects trig-
gered by the DMSC treatment described here could con-
tribute to a less pro-inflammatory environment in the
target organ, which might be involved in the restraining of
tissue damage observed in DMSC-treated mice (Fig. 2).
DMSCs offer several advantages over MSCs from other

tissues to be used as a therapy, such as easy isolation of
cells without any invasive procedures. DMSCs are of
maternal origin but express factors involved in pluripo-
tency and organogenesis though not embryonic markers
(SSEA-1, -3, -4 and TRA-1-81) [42] expressed by other
placental-derived MSCs [46]. These features allow high
plasticity and differentiation capacity into derivatives of all
germ layers, with reduced ethical problems with respect
to embryonic stem cells. In addition, DMSCs also display
high genomic stability after proliferation in culture, and
low and limited telomerase activity [42, 43, 45]. DMSCs,
like BM-derived MSCs, do not express the major histocom-
patibility complex class II nor the T-cell costimulatory mol-
ecules, conferring them an intrinsically hypo-immunogenic
and immunomodulating stem cell character [41, 42, 45].
These properties would allow DMSCs to be tolerated,
potentially effective and clinically useful in allogeneic recep-
tors. Supporting this discernment, MSCs derived from
healthy, full-term human placentas have been administered
to relapsing-remitting and secondary progressive MS pa-
tients via intravenous infusion. The results showed that pla-
cental MSC injections in these patients were safe and well
tolerated [23]. In addition, DMSCs show higher prolifera-
tion rates and differentiation capacity than do BM-derived
MSCs [47, 48]. Furthermore, DMSCs can be easily cryopre-
served over the long term without losing their original
phenotype, exponential growth, and differentiation charac-
teristics. Indeed, all the effects of DMSCs on EAE described
above were observed with thawed cryopreserved cells.

Fig. 6 DMSC effect on Th17 phenotype definition is mediated by
soluble factors. DMSC-culture supernatant from one EGF-1-free passage
was used as conditioned medium for C57BL/6 spleen cells. Spleen cells
were stimulated by anti-CD3 and anti-CD28 antibodies in fresh Click’s
medium, in Click’s medium diluted one-half with conditioned medium
(50 %), or in whole conditioned medium (100 %). Soluble IL-17 levels
were evaluated by ELISA after 3 days under nonpolarizing condition
(a), in the presence of IL-6 and TGF-β (b), or after a second round of
anti-CD3/anti-CD28 stimulation in the absence of DMSC supernatant
(c). Each sample was assayed in quintuplicate and significance was
analyzed by t-test; standard error of the means are shown. Results are
shown from one representative out of three independent experiments.
Conditioned medium was supplemented with 10 % fresh fetal bovine
serum before use. *p < 0.05, **p < 0.01, ***p < 0.001. IL Interleukin, Th
T helper
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Fig. 8 Decidua-derived mesenchymal stem cell (DMSC) continuous treatment sustains mild experimental autoimmune encephalomyelitis (EAE)
course. a EAE mice were subjected to DMSC administration every 3–4 days, beginning the day before MOG35–55 injection (arrows). Daily mean clinical
scores from one representative out of two independent experiments are shown. b Statistical significance by unpaired t-test for mean scores at different
days after immunization. c Area under the curve (AUC) was calculated between days 0 and 54 (D0–54) or between days 30 and 54 p.i. (D30–D54), and
differences between groups were analyzed using the Mann–Whitney test; standard error of the means are shown; n = 14 mice/group. **p< 0.01

Fig. 7 Decidua-derived mesenchymal stem cell (DMSC) treatment of experimental autoimmune encephalomyelitis (EAE) modifies the cell composition of
inflammatory infiltrates in the CNS. CNS infiltrates from C57BL/6 EAE and DMSC-treated mice (n = 4/group) were obtained at day 20 p.i. and subjected to
flow cytometry analysis. Debris and doublets were excluded and live/dead discrimination was determined using propidium iodide. Percentages of CD4+IL-
17+ were obtained by analysis of surface and intracellular staining with anti-CD4 and anti-IL17, respectively (a). CD11b+ Lineage- cells (gated out using CD4,
CD8, CD19, CD11c, NK1.1 biotin-PE-Cy7 dump channel) were then subgated for identification of CD11b+Ly6G+ subpopulation (infiltrating neutrophils) (b)
or CD11b+Ly6C+SSClow subpopulation (infiltrating monocytes) (c) cells are shown by representative flow dot plots from two experiments. Data for quantifi-
cation of infiltrating cell types in DMSC-treated mice are shown as percentages of each subset found in untreated mice (d). Significance was analyzed by t-
test; standard error of the means are shown. *p< 0.05. IL Interleukin
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Thus, based on the high proliferation rate of placental-
derived MSCs, a single donor could be used for multiple
patients after cell storage. Finally, these maternal-derived
mesenchymal stromal cells could be also an autologous
source for cell therapy on several diseases developed by the
mother [42]. All these advantages make DMSCs a poten-
tially safe and useful product for future use in humans.
Our results show effective prevention of the disease

through short-term DMSC treatment, albeit of limited
durability. Interestingly, periodical administration of the
cells results in mild clinical course of the disease, even if
animals receive the first treatment when they are already
presenting moderate symptoms (Figs. 8 and 9). Along
with preliminary studies with autologous BM-derived
MSC transplantation in MS patients yielding promising
results, the clinical use of alternative cell sources, such
as placenta-derived DMSCs, warrants further investiga-
tion to address whether the long-term safety and poten-
tial clinical efficacy of using this new cell therapy could
actually provide improvements over other sources of
MSCs. Since MS is a chronic disease, several authors
have suggested that, to ensure a sustained therapeutic
benefit, clinical application of MSCs might require

repeated administration of cells instead of just one dos-
age [18, 29]. MSCs are thought to function through a
‘hit-and-run’ mechanism, whereby they release an array
of cytokines and trophic factors without any significant
engraftment. Under conditions of chronic autoimmunity
and CNS injury, multiple doses of MSCs are likely to be
necessary for the sustained production of immunomodu-
latory and trophic factors in order to exceed a therapeutic
threshold [29]. This scenario is in line with our results in
EAE mice, which strongly support a cell therapy strategy
based on repeated administration of DMSCs, by adapting
the dose schedule to the clinical level, which might sub-
stantially modulate the long-term progression of MS, the
main treatment goal in this progressive and disabling
demyelinating disease.

Conclusions
This study reveals immunomodulatory effects of DMSCs
able to modulate EAE. The beneficial properties of such
treatment on the disease signs, and on the frequency in
infiltration foci in the CNS, correlate with impairment of
the Th17 phenotype in favor of the promotion of IL-4
and IL-10 production at the early immune response.

Fig. 9 Decidua-derived mesenchymal stem cell (DMSC) treatment after experimental autoimmune encephalomyelitis (EAE) triggering. a EAE mice
were subjected to DMSC administration every 3–4 days, beginning at day 6 (D6) or at day 10 (D10) after MOG35–55 injection (arrows). Daily mean
clinical scores from one representative out of two independent experiments are shown. b Statistical significance by unpaired t-test for mean scores at
different days after immunization. c Area under the curve (AUC) was calculated between days 0 and 33 post-immunization (p.i.) (D0–33), and differences
between groups were analyzed using the Mann–Whitney test; standard error of the means are shown; n = 16 mice/group. d Disease incidence at day 20
p.i. was analyzed by Fisher’s test. The bar graphs for representation of the disease incidence contingency table show the numbers of symptomatic and
asymptomatic mice at day 20 p.i. for each group. *p< 0.05, **p< 0.01, ***p< 0.001
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Therefore, human decidua seems to be a valuable source
of MSCs, with therapeutic potential for MS and for
other immunological diseases in which IL-17 has a
pathogenic role.

Additional files

Additional file 1: Figure S1. Foxp3 expression by T cells from
untreated or DMSC-treated EAE mice (n = 9/group). Spleen cells from EAE
animals were obtained at day 10 p.i. Total RNA samples were obtained from
purified CD4+ cells and used to quantify Foxp3 mRNA by RT-qPCR (A). Total
spleen populations from individual mice were analyzed by cytometry ana-
lysis of surface and intracellular staining with anti-CD4-APC and anti-Foxp3-
PE, respectively (B). Percentages of CD4+Foxp3+ cells are shown by represen-
tative flow dot plots and by the average of the values obtained for each indi-
vidual mouse from each group. Standard error of the means are shown.
(PDF 150 kb)

Additional file 2: Figure S2. In vitro treatment of CD4+ T cells with
DMSCs interferes with Th17 phenotype definition. CD4+ cells purified from
C57BL/6 mice spleens were stimulated in vitro by anti-CD3/anti-CD28
antibodies under nonpolarizing condition (A) or under pro-Th17 pressure in
the presence of IL-6 and TGFβ (B). Three-day cultures were analyzed for IL-
17 expression. Soluble IL-17 measurements were quantified by ELISA. Each
sample was assayed in quintuplicate and significance was analyzed by t-test;
standard error of the means are shown. Results are shown from one
representative out of three independent experiments. (PDF 17 kb)
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